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Abstract
Fruit detection and recognition is a key technology in precision agriculture such as automated picking, orchard yield meas-
urement, and fruit sorting. Although current algorithms have good detection performance for single-class objects in living 
scenes, they have lower detection and recognition accuracy for different varieties of fruits with high similarity in complex 
environments and consume high computing resources and costs, which cannot be applied to edge devices for real-time detec-
tion and sorting of varieties fruits species. This paper proposed a lightweight model based on YOLOv5 for the detection 
and recognition of coarse-fine variety fruits in clean or complex scenes. First, the networks with different widths and depths 
of YOLOv5 were trained to find the best baseline detection net; second, GhostConv, a lightweight convolution layer, was 
introduced to reduce parameters and computations in the baseline network; finally, the input channels of the depth convolu-
tion in the backbone was expanded and the Wise-IoU bounding box loss function was introduced to improve the detection 
accuracy of the baseline network. The experimental results showed that, considering both detection performance and model 
complexity, YOLOv5s performs better as the baseline network. After optimization, the model parameters and weight volume 
were reduced by approximately 33%, the mean average precision at 0.5 IoU(mAP@.5) increased by 0.6%, and increased by 
1.2% at IoU = 0.5:0.95(mAP@.5:.95). The improved model achieved the reasonable balance between detection accuracy 
and complexity. It is suitable for real-time detection, online grading, and rapid sorting of fruits in precision agriculture.
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Introduction

China is one of the largest fruit producing countries in the 
world. Following the grain and vegetable industries, the fruit 
industry has developed into the third largest agricultural 

plantation industry [1]. However, compared with developed 
countries, most of the fruit picking and post-harvest process-
ing task rely on high-cost and inefficient manual work, which 
restricts the automation of the fruit industry, and results in 
backward of post-production commercialization processing 
technology [2]. With the acceleration of population aging 
process and urbanization, labor shortage will also bring dif-
ficulties and challenges to the sustainable development of 
the fruit industry. Information technology-supported preci-
sion agriculture provide a better solution for these problems. 
Automated intelligent equipment and machinery can be used 
instead of manual labor to complete tasks such as automatic 
fruit picking, accurate yield measurement in orchards and 
fruit sorting, thus saving labor and material expenses. Fruit 
detection and recognition is a key technology to realize 
vision system in precision agriculture, which can provide 
category information and location information for intelligent 
agricultural equipment.

The traditional fruit detection algorithm is based on color, 
geometry, texture and other features to classify and detect 
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fruit targets, including three parts: region selection, feature 
extraction and classification, which is relatively mature but 
not robust to uneven illumination, fruit occlusion and similar 
color of fruit and background, and cannot meet the real-
time requirements of application scenarios [3]. Since 2014, 
the advanced development in deep learning technology, 
particularly of convolutional neural networks (CNN), has 
significantly improved the state of the art in object detection 
[4]. Deep learning technology can self-learn and automati-
cally extract feature information from images, with stabil-
ity and efficiency in fruit detection and recognition [5, 6]. 
Deep learning-based fruit detection algorithms are divided 
into two types: region-based models and regression-based 
models. The region-based models consist of two stages: gen-
erating candidate regions and extracting features from each 
candidate box for bounding box and classification regression 
tasks, which leads to a slower recognition speed, such as 
Fast Region-based CNN (R-CNN) [7], Faster R-CNN [8], 
and Mask R-CNN [9]. The regression-based object detection 
method abandons the stage of extracting candidate regions, 
and directly obtains the category probability and position 
of the object, resulting in a simpler network structure, such 
as You Only Look Once (YOLO) series [10–12] and Single 
Shot MultiBox Detector (SSD) [13]. Although some accu-
racy is sacrificed, the detection and recognition speed of the 
algorithm has been improved.

Although deep learning-based object detection algo-
rithms have superior detection performance, they require 
large numbers of parameters and high computational costs, 
making them difficult to deploy on edge devices with lim-
ited space and computing power. As a result, the application 
of algorithms to real-time detection and efficient sorting of 
fruits is challenging [14, 15]. Due to the lack of public detec-
tion datasets for coarse-fine variety fruits, the current model 
cannot detect both coarse and fine variety fruits with highly 
similar phenotypes.

To address the problems that existing fruit detection mod-
els are too complex and cannot accurately detect coarse-fine 
variety fruits, this paper proposes a detection and recogni-
tion model for multiple coarse-fine variety fruits based on 
improved YOLOv5, which has high robustness and accu-
racy, low complexity, and can be applied to real-time detec-
tion, online grading and fast sorting of coarse-fine variety 
fruits. The main contributions are as follows: 

(1) A fruit image dataset containing 20 different fruit vari-
eties under clean and complex backgrounds was con-
structed to address the lack of public detection datasets 
for coarse-fine variety fruits, which can provide data 
support for the research, optimization, and application 
of detection models for coarse-fine variety fruits.

(2) To address the difficulty of complex networks in 
deploying on edge devices with limited computing 

power, a lightweight network based on GhostConv and 
C3Ghostv1 was proposed by introducing deep convolu-
tion on baseline detection network suitable coarse-fine 
variety fruits, which greatly reduced the number of 
parameters and computation of the model.

(3) To address the poor accuracy of existing networks for 
fine variety fruit detection in complex scenes, a feature 
extraction network based on C3Ghostv2 was proposed 
to obtain rich overall features of fruits and the bound-
ing box loss function was optimized to improve the 
localization of ordinary-quality anchor boxes in com-
plex scenes.

Related works

Traditional fruit detection and recognition methods typically 
use manually designed methods to extract features. First, 
features such as size, shape, color, and texture of the fruit 
image are extracted, and then a classifier is built by fus-
ing one or more of these features to achieve automatic fruit 
classification and recognition. Liu et al. [16] developed a 
machine vision algorithm based on elliptical boundary mod-
els to recognize immature and ripe grapefruit fruits on trees 
by converting images from RGB space to Y’ CbCr space and 
then fitting an implicit second-order polynomial of ellipti-
cal boundary models in Cr–Cb color space using ordinary 
least squares (OLS). To achieve accurate detection of litchi 
fruits in natural environments, Yu et al. [17] used color and 
texture features to train a random forest binary classifica-
tion model to identify litchi fruits and proposed a ripe litchi 
identification method based on multiscale detection and non-
maximal suppression algorithm to further improve the fruit 
detection accuracy. Pothen and Nuske [18] proposed a high-
precision key point detection algorithm using round fruits 
such as grapes and apples, which determines the marquee 
location of fruits by intensity variation and gradient direc-
tion on the fruit surface, and uses a random forest classi-
fier to identify fruit species. Traditional fruit detection and 
recognition algorithms are relatively mature, but the detec-
tion accuracy is highly dependent on the extracted features 
and trained classifiers, resulting in low detection rate, slow 
detection speed, and poor applicability for targets in complex 
environments.

With the improvement of computer performance, many 
deep learning-based object detection algorithms have been 
applied to fruit detection and recognition tasks, resulting 
in significantly improved detection performance and speed. 
Prakash and Prakasam [19] proposed an intelligent fruit 
classification system based on convolutional neural net-
work and bilinear pooling of heterogeneous streams. Gao 
et al. [20] proposed a multi-class apple detection method 
based on improved Faster R-CNN network for the problem 
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of reduced fruit picking efficiency due to several branches 
shading in fruit forests, with mean average precision (mAP) 
reaching 87.9% and average detection time of 0.241 s for a 
single image. The regression-based object detection algo-
rithm has faster detection recognition speed and is suitable 
for practical application scenarios, and many improved algo-
rithms based on it have been proposed. Mirhaji et al. [21] 
trained and tested different versions of the YOLO model 
using image datasets of orange trees under different lighting 
conditions, and adapted the models using a migration learn-
ing strategy, finally concluding that YOLO-V4 is the best 
model for orange detection. To address inaccurate cherry 
fruit detection due to leaf shading, Gai et al. [22] proposed 
an improved YOLOv4 deep learning algorithm, which 
increased the density between network layers to enhance 
feature extraction by combining DenseNet in the backbone 
of YOLOv4, and its average accuracy was improved by 0.15 
compared to the original model. Wang et al. [23] proposed 
the DSE-YOLO algorithm to detect multi-stage strawberries 
by introducing DSE modules in the backbone to extract vari-
ous details and semantic features in horizontal and vertical 
dimensions, which achieved mAP of 86.58% and F1 score of 
81.59%. Yao et al. [24] developed a defect detection model 
based on YOLOv5 for kiwi flaw detection, which can detect 
defects accurately at a fast speed. In response to the lack of 
accuracy in detecting small tomato targets, Wang et al. [25] 
proposed an improved small mobile network YOLOv5 (SM-
YOLOv5) detection algorithm based on YOLOv5 for target 
detection of tomato picking robots in plant factories. Ma 
et al. [26] proposed a lightweight fruit recognition network 
DGCC-Fruit based on YOLOv5 to detect fine-grained fruits 
in different environments.

Deep learning-based fruit detection algorithms can learn 
features automatically from training data and exhibit strong 
fruit recognition capabilities in complex environments. 
However, their parameters and computational complexity 
are too high to be deployed on edge devices for real-time 
fruit detection tasks. Additionally, current deep learning-
based fruit detection algorithms primarily focus on coarse-
variety fruit datasets in ideal environments, with weak 

model generalization capabilities, which cannot accurately 
detect multi-objective and fine-variety fruits in complex 
environments.

Materials and methods

Dataset

Samples in the experiments

Considering the wide cultivation area, variety diversity, 
species and varieties classification of fruits in botany, five 
coarse variety of apples, cherries, watermelons, oranges 
and pomelos as well as their 20 fine variety fruits were 
selected as experimental samples in this study, the variety 
information is shown in Table 1 and Appendix. Specifi-
cally, seven varieties of cherry samples were procured in 
Yantai and Yangling, China for this paper, namely, black 
pearl, red light, huang mi, lapins, rainier, tieton, and pio-
neer. Samples of three varieties of apples, ruiyang, ruixue, 
and aifei, were obtained at the Baishui Apple Experiment 
Station of Northwest Agriculture and Forestry University, 
China. Watermelon varieties include futian watermelon, 
dafugui watermelon, xinfunong watermelon, and chengyu 
watermelon. Pomelo varieties include meizhou pomelo, 
liangping pomelo, and liangjiang pomelo. All samples 
were stored in a cooler at 0–5 ◦ C and 85% relative humid-
ity for up to 5 days to preserve freshness prior to the 
experiment.

Dataset creation

JPG images of 5 coarse variety fruits and their 20 fine vari-
ety fruits were collected using a motorized turntable and a 
normal camera in a simple background. The camera param-
eters are shown in Table 2. The acquisition process consisted 
of three steps: 

Table 1  Variety of samples

 aSpecies in Botany
 bVariety in Botany

Coarse-varietya   Fine-varietyb  

Apple Ruyang Ruixue Aifei
Cherry Black Pearl Red Light Huang Mi Lapins

Rainier Tieton(dalian) Tieton(yantai) Pioneer
Watermelon Futian Dafugui Xinfunong Chengyu
Pomelo Meizhou Liangping Liangjiang
Orange Gannan orange Sugar orange
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(1) Fixed the camera position, placed the fruit samples in 
the center of the motorized turntable, and adjusted the 
initial pose of each sample to neck facing upward.

(2) Controlled the motorized turntable to rotate 360° clock-
wise and took pictures of the samples every 30° to 
obtain pictures of the samples at multiple angles.

(3) Adjusted the sample pose to neck facing forward, 
repeated the operation in (2), and a single sample could 
get 24 pictures in a single background.

To improve the generalization and applicability of the 
model, multi-angle, multi-variety, and different fruit den-
sities images were captured in different complex scenes 
indoors and in the field. Finally, as shown in Fig. 1a, 13,198 
fruit images with 3024*4032 pixels were get and stored in 
JPG format after compression.

To address insufficient data and unbalanced samples 
of fruit images, the fruit dataset was expanded using data 
enhancement methods such as flip, rotation, crop, and 
brightness transformation and a total of 23,198 images were 
obtained. The data-enhanced images are shown in Fig. 1b.

As shown in Fig. 1c, the images were manually labeled by 
LabelImg software. Firstly, the target fruit in the image was 
marked by the smallest outer rectangle and its variety was 
indicated, then a txt format annotation file was generated, 
which contained the variety of fruit, the coordinates x and 
y of the center point of the rectangle, width w and height h 
relative to the image. Finally, the dataset was divided into 
training set, validation set and test set in the ratio of 8:1:1, 
and the details of the dataset are shown in Table 3.

Algorithmic optimization

Baseline network selection

As the detection algorithm with superior detection speed and 
accuracy performance among the YOLO family of algorithms 
[27], YOLOv5 consists of four parts: input, backbone, neck, 
and head [28]. The training image is fed into the backbone 
after data enhancement, adaptive anchor frame computation 
and adaptive image scaling at the input. Backbone mainly 
consists of CBS, C3, and SPPF modules, which is used to 

Fig. 1  Dataset creation. a The original captured images. b The data enhanced images. c The image annotation process

Table 2  Camera parameters

Parameters Model or size

Branding Redmi k60 rear camera
Sensor Sony imx766 / 0.5 inch
Pixels 64 million
Aperture f/1.79
Panoramic 120°
Storage methods JPG
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extract feature maps at three scales. C3 module performs fea-
ture extraction on the feature maps, which reduces the rep-
etition of the gradient information during the optimization 
process of convolutional neural network, thus reducing the 
amount of computation and guaranteeing the accuracy rate. 
Neck fuses the features of the backbone output. By using a 
structure that combines Feature Pyramid Networks (FPN) 
and Perceptual Adversarial Networks (PAN), it fully fuses the 
high-level semantic features and the low-level localization fea-
tures. Head generates bounding boxes and predicts varieties 
using loss functions and Non-Maximum Suppression (NMS).

Depth_multiple is used as a scaling factor for the residual 
blocks in C3 and controls the depth of the network. Meanwhile, 
width_multiple is used as a scaling factor for the number of 
channels, controlling the width of the network. As shown in 
Table 4, YOLOv5 is divided into YOLOv5n, v5s, v5m, and v5l 
according to depth_multiple and width_multiple. It can be seen 
that the YOLOv5n network has the simplest structure, the small-
est network depth, and the fewest parameters.The YOLOv5l net-
work has the most complex structure, the deepest network, and 
the most parameters. While complex networks can achieve better 
detection accuracy, they require more parameters and computa-
tional costs, and take longer to train and detect. To detect coarse-
fine variety fruits accurately and quickly, YOLOv5s was chosen 
as the baseline network, which can maintain a balance between 
detection performance and model complexity.

Algorithm improvement

Deep learning-based object detection algorithms require 
high computational resources, which result in limit appli-
cation to real-time detection and sorting of fruits in real 
operations due to hardware conditions. To facilitate the 
application of fruit detection networks to practical opera-
tions, this paper proposed a low-complexity and high-pre-
cision fruit detection network based on YOLOv5s. First, 
the lightweight module—C3Ghostv1 was constructed by 
introducing the lightweight convolution—GhostConv, and 
further the lightweight network structure based on Ghost-
Conv, C3Ghostv1 was proposed to reduce the model com-
plexity; second, the C3Ghostv2 module was introduced into 
the backbone to enable the deep convolution to extract rich 
overall target features in higher dimensions and improve the 
performance for detecting phenotypically similar fruit vari-
eties, which expands the input channels of residual struc-
ture in C3Ghostv1; Finally, Wise-Intersection over Union 
(IoU) loss function with dynamic non-monotonic focusing 
mechanism was introduced to improve the detection and 
generalization performance of the model for multi-target and 
fine-variety fruits in complex environments. The improved 
network structure is shown in Fig. 2.

(1) Network structure lightweighting

In the process of extracting fruit features from a neural 
network, many feature maps with high similarity are gener-
ated, which usually ensure a comprehensive understanding 
of the input data and have an important impact on the per-
formance of the network [29]. Compared to depthwise con-
volution, standard convolution,which is utilized to generate 
numerous similar and redundant feature maps in YOLOv5, 
requires more parameters and computation, resulting in diffi-
culty in deployment on edge devices. Therefore, a lightweight 
network based on GhostConv and C3Ghostv1 was proposed 
to generate fruit redundant feature maps, which reduced the 
model complexity by introducing depthwise convolution.

GhostConv Module As shown in Fig. 3, GhostConv first 
uses 1 × 1 standard convolution to generate part of the intrin-
sic feature maps, then uses 5 × 5 depthwise convolution to 
generate the “ghost” feature maps of the intrinsic feature 
maps, and finally superimposes the intrinsic feature maps 
and the “ghost” feature maps on the channels to obtain the 
output feature maps.

Table 3  Details of the self-made dataset

Fruit variety Number of pictures

Training set Test set Validation set

Ruiyang_apple 609 75 75
Ruixue_apple 650 75 75
Aifei_apple 495 75 75
Black Pearl_cherry 600 75 75
Red Light_cherry 600 75 75
Huang Mi_cherry 600 75 75
Lapins_cherry 650 75 75
Rainier_cherry 660 75 75
Tieton_cherry(dalian) 660 75 75
Tieton_cherry(yantai) 660 75 75
Pioneer_cherry 660 75 75
Futian_watermelon 600 75 75
Dafugui_watermelon 600 75 75
Xinfunong_watermelon 600 75 75
Chengyu_watermelon 600 75 75
Meizhou_pomelo 600 75 75
Liangping_pomelo 600 75 75
Liangjiang_pomelo 600 75 75
Sugar orange 600 75 75
Gannan_orange 600 75 75
Mixed varieties 4198 500 500

Table 4  YOLOv5 network with different scaling factor

Scaling factor YOLOv5n YOLOv5s YOLOv5m YOLOv5l

Depth_multiple 0.33 0.33 0.67 1.00
Width_multiple 0.25 0.50 0.75 1.00
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Fig. 2  Proposed network based on YOLOv5s

Fig. 3  Structure of GhostConv module
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Assuming that the input feature map size is h ⋅ w ⋅ c , the 
convolution kernel size is k ⋅ k , and the output is h′′ ⋅ w′′

⋅ c2 , 
the Computational volume S1 and params P1 of the standard 
convolution are shown in Eqs. 1 and 2, respectively.

In GhostConv, 1/2c2 intrinsic feature maps are obtained by 
standard convolution, and the same number of “ghost” fea-
ture maps are obtained by depthwise convolution. Assuming 
that the size of the convolution kernel for deep convolution 
is d ⋅ d , the computational volume S2 and parameters P2 are 
shown in Eqs. 3 and 4, respectively.

If k ≈ d, according to Eqs. 1–4, the theoretical acceleration 
ratio of standard convolution and GhostConv rs is shown in 
Eq. 5, and the parameter compression ratio rp is shown in 
Eq. 6.

As shown in Eqs. 5 and 6, the introduction of GhostConv in 
the network can theoretically save 1/2 of training time and 
reduce 1/2 of parameters, which facilitates the deployment 
of the model to accomplish the task of real-time fruit detec-
tion and fast sorting in real operations.

C3Ghostv1 Module As shown in Fig.  4, C3Ghostv1 
uses two branches to process the input fruit feature maps in 

(1)S1 = c2 ⋅ h
�
⋅ w��

⋅ c1 ⋅ k ⋅ k

(2)P1 = c2 ⋅ c1 ⋅ k ⋅ k

(3)S2 =
1

2
c2 ⋅ h

�
⋅ w�

⋅

(
c1 ⋅ k ⋅ k + d ⋅ d

)

(4)P2 =
1

2
c2 ⋅

(
c1 ⋅ k ⋅ k + d ⋅ d

)

(5)rs =
S1

S2
=

c1 ⋅ k ⋅ k

1

2
⋅ c1 ⋅ k ⋅ k +

1

2
d ⋅ d

≈ 2

(6)rp =
P1

P2

≈ 2

parallel. One branch uses standard convolution to halve the 
input feature channels and extract low-level fruit features. 
The other branch reduces the dimension of input feature 
channels with 1 × 1 standard convolution, and then extracts 
high-level abstract features of fruits through multiple Ghost-
Bottlenecks. As the basic residual unit, GhostBottleneck 
first processes the input fruit feature map with two stacked 
GhostConv modules, where the first GhostConv module 
does not use the SiLU activation function to avoid the loss 
of fruit information due to the nonlinear activation function 
[29]; then the result is associated with the input feature map 
through residual connections to obtain the output. By intro-
ducing GhostConv, GhostBottleneck can alleviate gradient 
vanishing caused by deepening the network at a lower cost, 
which is beneficial for the network to extract more complex 
fruit features to identify fruits with small phenotypic differ-
ences. Finally, the results of the two branches are stacked on 
the channel dimension.

C3Ghostv1 preserves the reuse of fruit features by adopt-
ing a hierarchical feature fusion strategy, while avoiding 
excessive repetitive gradient information by truncating the 
gradient flow, thus ensuring the model’s ability to learn dif-
ferent fruit features and reducing the network’s parameters 
and computation, accelerating the training and inference 
speed.

(2) Enhancement of network feature extraction capability

In depthwise convolution, the channel information of 
the input image is separated during the calculation process, 
making it impossible to obtain the associated information of 
different channels at the same spatial position and limiting 
the extracted features to the input feature dimensions [30]. 
Although the dimensionality reduction in C3Ghostv1 can 
alleviate the complexity of the network, a limited number of 
features extracted by the depthwise convolution at a lower 
dimension makes it difficult to extract rich overall fruits fea-
ture in backbone, which is not conducive to identifying fruits 
with high similarities.

Fig. 4  Structure of C3Ghostv1 module
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To improve the feature extraction capability of the net-
work, C3Ghostv2 module was designed in the backbone 
inspired by the idea of MobileNetv2 [30], which enabled 
depthwise convolution to capture rich overall features of 
different fruits at higher dimensions. As shown in Fig. 5, 
this module uses two parallel branches to process the input 
features. One branch uses 1*1 convolution to increase the 
channel dimension before the GhostBottleneck, doubling the 
number of channels. The other branch uses standard convo-
lution to extract shallow features. Finally, a 1*1 convolution 
is used to reduce the dimension of the combined feature 
map from both branches, ensuring that the input and output 
have the same number of channels. By expanding the input 
channels of GhostBottleneck, C3Ghostv2 enables depth-
wise convolution to extract more features and reduce feature 
loss, which facilitates the network to extract comprehensive 
information of different fruit varieties, thereby improving the 
detection performance of the model on different fruit variety 
and reducing false detection rates.

(3) Optimization of bounding box regression loss function

YOLOv5 constructs a loss function weighted by bounding 
box regression (BBR) loss, classification loss, and objectness 
loss, where the bounding box regression loss directly deter-
mines the localization performance of the model. YOLOv5 
adopts the Complete-IoU [31] bounding box loss function, 
which includes two penalty terms added to IoU loss [32]: 
normalized distance and aspect ratio between anchor boxes 
and target boxes. However, its lack of a focusing mechanism 
for accurate localization of ordinary-quality anchor boxes 
results in high-quality anchor boxes, ordinary-quality anchor 
boxes, and low-quality anchor boxes contributing equally to 
the loss, which limits the improvement of detection perfor-
mance for multi-object fruits in complex scenes. Therefore, 
Wise-IoU [33] bounding box loss function was introduced to 

effectively improve the model’s detection performance and 
generalization ability for fruits in complex scenes, which 
utilized a dynamic non-monotonic focusing mechanism to 
reduce the competitiveness of high-quality anchor boxes 
and mitigate the harmful gradients generated by low-quality 
anchor boxes.

As shown in Fig. 6, for the anchor box B =
[
x yw h

]
 , x and 

y correspond to the center coordinates of the bounding box, 
and w and h represent the width and height of the bounding 
box. Similarly, Bgt =

[
xgt ygt wgt hgt

]
 describes the properties 

of the target box.
First, Wise-IoU v1 constructs a two-layer attention-based 

bounding box loss as defined in Eq. 7.

Fig. 5  Structure of C3Ghostv2 module

Fig. 6  Schematic diagram of the anchor and target boxes. (x, y) is the 
coordinate of the center point of the anchor box. 

(
xgt, ygt

)
 is the coor-

dinates of the center point of the target box. Wi and Hi are the length 
and width of the overlapping rectangular area of the anchor box and 
the target box respectively. Wg and Hg are the length and width of the 
minimum enclosing box of the anchor box and the target box, respec-
tively
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Where RWIoU ∈ [1, e) is the penalty term for the distance 
between the center points of the anchor box and the tar-
get box, which significantly amplifies the IoU loss of the 
ordinary-quality anchor box, as shown in Eq. 8. LIoU ∈ [0, 1] 
is used to measure the overlap between the anchor box and 
the target box, which reduces the contribution of the penalty 
term of the high-quality anchor box to the loss, as shown in 
Eq. 9. Thus, the loss optimization focuses on the ordinary-
quality anchor box, which is beneficial for the localization 
of multi-target, hard-to-detect fruits under the interference 
of other objects in complex scenes.

Then, as shown in Eq. 10, Wise-IoU v3 utilizes outlier 
degree � to construct a non-monotonic focusing coefficient 
r, which is then applied to Wise-IoU v1.

� and � are hyperparameters, and outlier degree � describes 
the quality of anchor boxes. A small outlier degree means a 
high-quality anchor box, to which a small gradient gain r is 
assigned, so that the bounding box regression focuses on the 
ordinary-quality anchor box, further enhancing the locali-
zation of fruits in complex scenes. Additionally, a smaller 
gradient gain is assigned to anchor boxes with higher out-
lier degree, effectively preventing low-quality examples from 
generating significant harmful gradients, thus improving the 
model’s generalization performance.

Experiments and discussion

Experimental setup

The operating system used for all experiments in this paper 
was Ubuntu 16.04 LTS. The CPU model was Intel Xeon 
Silver 4210 with a clock frequency of 2.20 GHz and 64 GB 
of RAM. The GPU model was GeForce RTX 2080 Ti with 
11 GB of VRAM and 125 GB of memory. The model train-
ing environment was based on the PyTorch deep learning 

(7)LWIoUv1 = RWIoULIoU

(8)RWIoU = exp

⎛
⎜⎜⎜⎝

�
x − xgt

�2
+
�
y − ygt

�2
�
W2

g
+ H2

g

�∗

⎞
⎟⎟⎟⎠

(9)LIoU = 1 − IoU = 1 −
WiHi

wh + wgthgt −WiHi

(10)

LWIoUv3 = rLWIoUv1, r =
�

���−�

� =
L
∗

IoU

LIoU

∈ [0,+∞)

framework and utilized Python 3.8 as the programming lan-
guage. CUDA 10.2 and CUDNN 8.2.1 were used to acceler-
ate the GPU. To enable a fair comparison between the results 
of all the experimental configurations, the hyper-parameters 
for the YOLO-based models were standardized. The input 
images in the network were set to 640Ã-640 pixels, and the 
batch size was set to 32. Moreover, the models were trained 
for 150 epochs with an initial learning rate of 0.001 and a 
weight decay of 0.0005.

Evaluation metric

In this paper, precision, recall, and average precision (AP) 
were used as evaluation metrics for model detection accu-
racy. Precision is defined as the ratio of correctly predicted 
positive samples by the model to all the samples predicted 
as positive. Recall indicates the proportion of positive sam-
ples correctly identified as positive by the model out of all 
positive samples. It measures the ability of the model to 
correctly recognize positive samples. Average precision 
(AP) is defined as the area under the precision and recall 
curve at various detection thresholds. A higher AP value 
indicates better detection performance of the model. Mean 
average precision (mAP) is defined as the average AP across 
multiple object categories, measuring the model’s detection 
performance for all object categories. Precision, recall, aver-
age accuracy, mean average precision are computed using 
Eqs. 11–14:

Where true positive (TP) is the true classification result 
where fruits are correctly detected with IoU area over 0.5 
threshold. False positive (FP) refers to the falsely detected 
fruits, while missed detected fruits are denoted as false nega-
tive (FN)

In addition, the lightness of the network model was meas-
ured in terms of floating-point operations (FLOPs), the num-
ber of model parameters and model size. FLOPs refer to 
the amount of calculations during the forward propagation 

(11)Pr =
TP

TP + FP

(12)Rc =
TP

TP + FN

(13)AP =

1

∫
0

Pr (Rc)dRc

(14)mAP =
1

c

c∑
i=1

APi
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of the network and are used to evaluate the computational 
complexity of the model.

Experimental results

Comparative analysis of different YOLOv5 models 
on self‑made dataset

To select a suitable baseline model, YOLOv5 models of dif-
ferent depths and widths were trained on self-made fruit 
dataset, and the results are shown in Fig. 7. The training and 
validation loss charts show that complex network models 
have lower bounding box regression loss, objectness loss, 
and classification loss on the fruit training set. However, 
their objectness loss increases on the validation set in the 
later stages of training, such as YOLOv5m and YOLOv5l, 
implying that the models appear to be overfitted. Addition-
ally, the mAP charts for each model demonstrate that the 
complex models do not show significant improvement in 
fruit detection performance.

The model complexity is characterized by the FLOPs, 
parameters and model size. The more complex the model, 
the larger the FLOPs, number of parameters and model 
size. The detection performance and complexity of vari-
ous models are shown in Table 5. YOLOv5l exhibits the 
best detection performance for fruits, achieving an mAP 
of 93.3% at 0.5 IoU(mAP@.5), and an mAP of 84.8% at 
IoU = 0.5:0.95(mAP@.5:.95). However, it is worth that 
YOLOv5l is the most complex model among the options 
with model size of 93 MB, 46.21M parameters and 108 
GFLOPs, which is not conducive to deployment on the 
edge devices for real-time fruit detection and online sort-
ing. Moreover, Although YOLOv5n has the most simplified 
network architecture, its performance for fruit detection has 
a large gap compared with other models. The model size of 
YOLOv5s is 14.5 MB, the parameters are 7.06 M, and the 
floating-point operations are 16.1GFLOPs. Compared with 
YOLOv5l, the size of YOLOv5s is simplified by 84.41%, 
and the model computation is reduced by 85.10%. However, 
there is only a small decrease in detection performance, with 

Fig. 7  Training results of different models of YOLOv5. a–c Are the 
bounding box regression loss, objectness loss and classification loss 
on the training set, respectively. d–f Are the bounding box regres-
sion loss, objectness loss and classification loss on the validation set, 

respectively. g Denotes the mAP at 0.5 IoU, and h is the mean value 
of mAP for different IoU thresholds (from 0.5 to 0.95 with a step size 
of 0.05)
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a decrease of only 0.3% in mAP@0.5 and a decrease of 1.8% 
in mAP@0.5:0.95. In summary, YOLOv5s is more suitable 
for the detection of multiple varieties fruits in clean and 
complex backgrounds, so YOLO-v5s was used as the base-
line for improvement in this paper.

Results of ablation experiments

The variation of the loss of each improved model during the 
training process is shown in Fig. 8. Compared with the base-
line, the loss of the model on the training set as well as the 
validation set converged to a larger value after the introduc-
tion of C3Ghostv1, while the introduction of C3Ghostv2 in 
the backbone alleviated the increased loss values caused by 
the C3Ghostv1 module. In addition, the introduction of the 
Wise-IoU loss function in the baseline not only accelerated 
the convergence of the model on the validation set, but also 
reduced the loss of the model, indicating the effectiveness of 
the Wise-IoU loss function on model performance improve-
ment. The introduction of C3Ghostv1, C3Ghostv2, and the 
Wise-IoU loss function in YOLOv5s showed comparable 
losses to the baseline on the training set. However, it exhib-
ited superior performance on the validation set.

The mean average precision change of each improved 
model during the training process is shown in Fig. 9. The 
mAP0.5 and mAP0.5:0.95 of the model decreased after 

the introduction of C3Ghostv1, which were improved 
and slightly above the baseline after further introduction 
of C3Ghostv2 in backbone. Finally, the mAP was further 
enhanced by introducing the Wise-IoU bounding box loss 
function.

The results of ablation experiments on the test set are 
shown in Table 6. Compared with the baseline, the accu-
racy and recall of the model decreased by 0.3% and 0.4%, 
respectively, and both mAP@.5 and mAP@.5:.95 decrease 
by 0.4% after introducing C3Ghostv1. In addition, param-
eters decreased by 48%, the computation volume decreased 
by 49%, and the model size decreased by 46%. The above 
indicates that the C3Ghostv1 module reduces the detection 
performance although it can greatly reduce the model com-
plexity. After further introducing the C3Ghostv2 module in 
the backbone of the network, the accuracy and mAP@.5:.95 
both improved by 0.3% compared with the baseline model, 
which were 0.6% and 0.7% higher than the introduction 
of C3Ghostv1 alone. Furthermore, there was only a slight 
increase in parameters and model size. The above shows 
that expanding the input channels of deep convolution can 
enhance the network’s ability to extract features and improve 
the detection performance of the model without explosive 
increase in the model size and computational effort. After 
introducing Wise-IoU in the baseline, the complexity of the 
model remained unchanged, while precision and recall both 

Table 5  Detection performance 
and complexity parameters of 
different models of YOLOv5

Model Precision/% Recall/% mAP@.5/% mAP@.5:.95/% Size/MB Params/M GFLOPs

YOLOv5n 96.7 90.1 92.4 80.5 4.9 2.38 5.2
YOLOv5s 97.8 91 93 83 14.5 7.06 16.1
YOLOv5m 97.7 91.1 93.2 84.3 42.4 20.93 48.2
YOLOv5l 97.5 91.3 93.3 84.8 93 46.21 108

Fig. 8  Losses of different improved algorithms during training, loss is the sum of boxl_oss, obj_loss and cls_loss. a The loss variation of the 
training set during training. b The loss variation of the validation set during training



1349A detection algorithm based on improved YOLOv5 for coarse-fine variety fruits  

1 3

improved by 0.4%. Moreover, the mAP0.5 and mAP@.5:.95 
increased by 0.5% and 0.9% respectively. This indicates the 
effectiveness of the Wise-IoU loss function in multi-object 
fruit detection under complex backgrounds. The results 
show that introducing C3Ghostv1, C3Ghostv2, and the 
Wise-IoU loss function in the baseline achieves the best 
balance between detection performance as well as model 
complexity. Compared with the baseline, the accuracy, 
mAP@.5 and mAP@.5:.95 increased by 0.5%, 0.6% and 
1.2%, respectively. In addition, the parameters decreased by 
32%, the computational effort decreased by 1.2 GFLOPs, 
and the model size decreased by 33%.

Test image visualization

To investigate the reliability of the proposed model, the 
detection of photos in the test set was performed using 
the model. Figs. 10 and 11 show the detection results of 
several images in clean background and complex environ-
ment, respectively. The experimental results show that the 
proposed model can accurately identify the coarse-fine 

variety while detecting the fruit location, thereby achieving 
the task of fruit detection and recognition in a variety of 
environments.

Comparison of object detection algorithms 
on the self‑made dataset

To verify the effectiveness of the proposed model, several 
target detection algorithms, such as Faster R-CNN, Sin-
gle Shot MultiBox Detector (SSD), YOLOv6, YOLOv7, 
YOLOv8, etc., were trained on the self-made dataset, and 
the results are compared in Table 7. It can be observed that 
the proposed network has the best detection performance 
with mAP0.5 of 93.6% and mAP0.5:0.95 of 84.2%. Addi-
tionally, it has a relatively low complexity with a model size 
of only 9.9 MB and 4.71 M parameters, which is lower than 
most single-stage detection algorithms and significantly 
lower than two-stage object detection algorithm, such as 
Faster R-CNN. The results show that the proposed network 
achieves the reasonable balance between detection perfor-
mance and model complexity.

Fig. 9  Mean average accuracy variation of different improved algorithms during the training process.  a The  mean average precision at 0.5 
IoU(mAP@.5). b The mean average precision at IoU = 0.5:0.95(mAP@.5:.95)

Table 6  Results of ablation experiments

Model Precision/% Recall/% mAP@.5/% mAP@.5:.95/% Size/MB Params/M GFLOPs

YOLOv5s(baseline) 97.8 91 93 83 14.5 7.06 16.1
YOLOv5s+WIoU 98.2(+ 0.4) 91.4(+ 0.4) 93.5(+ 0.5) 83.9(+ 0.9) 14.5 7.06 15.9
YOLOv5s+C3Ghostv1 97.5(− 0.3) 89.7(− 0.3) 92.6(− 0.4) 82.6(− 0.4) 7.9(− 6.6) 3.7(− 3.36) 8.2(− 7.9)
YOLOv5s+C3Ghostv1,2 98.1(+ 0.3) 90.5(− 0.5) 93.2(+ 0.2) 83.3(+ 0.3) 9.9(− 4.6) 4.7(− 2.36) 14.9(− 1.2)
YOLOv5s+WIoU+C3Ghostv1,2 98.3(+ 0.5) 90.7(− 0.3) 93.6(+ 0.6) 84.2(+ 1.2) 9.9(− 4.6) 4.7(− 2.36) 14.9(− 1.2)
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Comparison of the results of different object detection 
algorithms on public dataset

As a standard dataset to measure the network’s ability to 
detect and classify images, PASCAL VOC 2007 provides 20 
kinds of images in different contexts and contains a training 
set, a validation set and a test set.The training and valida-
tion sets contain 5011 images and the test set contains 4952 
images. To verify the generalization performance of the pro-
posed model, as shown in Table 8, the model was compared 
with several other popular detection networks on the public 
dataset VOC2007. Each model was trained without pre-
training weights to eliminate the influence of pre-training 
weights on the results. It can be found that the two-stage 
detector Faster R-CNN has the best detection performance 
with mAP0.5 of 66.5%, but its network is the most complex 
with a model size of 297.83 MB, which is 30 times larger 
than the proposed network. The proposed algorithm has the 
best detection performance in single-stage detectors with 
mAP0.5 of 63.8% and mAP0.5:0.95 of 38.2%, and it has an 
advantage in model complexity with a model size of only 9.9 
MB and floating-point operations of 14.6 GFLOPs, which 
achieves an optimal balance between the detection perfor-
mance and model complexity.

Conclusion

To address the problems of excessive complexity of current 
fruit detection models and the inability to accurately detect 
fine variety fruits in complex scenes, this paper proposed a 
lightweight and high-precision fruit detection model based 
on a single-stage target detection network YOLOv5 with a 
self-made fruit dataset. The main findings are as follows: (1) 
Through image acquisition, manual annotation, dataset divi-
sion and enhancement, an object detection dataset containing 
20 varieties of fruits in clean and complex backgrounds was 
constructed, solving the current problem of missing public 
datasets for fine variety fruits detection. (2) By introducing 
deep convolution, a lightweight network structure based on 
GhostConv and C3Ghostv1 was proposed with 4.4 M param-
eters, size of 9.9 MB, and computational volume of 14.9 
GFLOPs, which solved the problem of excessive complexity 
of existing networks and provided support for model deploy-
ment in edge devices with limited space and computational 
resources. (3) By introducing C3Ghostv2 module and Wise-
IoU loss function, the mAP@.5 of the model reached 93.6% 
and mAP@.5:.95 reached 84.2%, which solved the prob-
lem of the existing network in low accuracy of coarse-fine 

Fig. 10  Detection in clean background
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variety fruits detection in complex environment and satisfied 
real-time detection, online grading and fast sorting of many 
kinds of fruits in precision agriculture.

Although the generalization performance has been 
validated on the public dataset PASCAL VOC2007, the 

proposed model has limitations in outdoor complex fields 
and detectable fruit varieties. In the future, the dataset 
can be expanded by adding multiple fruit varieties and 
complex field scenarios to improve the generalizability 
of the model.

Fig. 11  Detection in complex scenes

Table 7  Comparison of object detection algorithms on the self-made dataset

Bold values indicate the best results under the corresponding evaluation metrics

Model (backbone) Precision/% Recall/% mAP@.5/% mAP@.5:.95/% Size/MB Params/M GFLOPs

YOLOv5s 97.8 91 93 83 14.5 7.06 16.1
YOLOv5s (ShuffleNet V2) 96.4 88.9 92 80 8.1 3.84 8.1
YOLOv5s (MobileNet V3) 97.2 89.3 92.4 80.9 11.5 5.58 2.7
YOLOv6s − − 92.5 83 20.51 9.70 45.2
YOLOv7-tiny 96.1 89 91.8 78.3 12.4 6.06 13.3
YOLOv8n 97.2 89.8 92.6 84.1 6.5 3.16 8.9
SSD300 (VGG16) − − 89.1 77.5 200.59 26.28 −
Faster R-CNN (Resnet50) − − 90.5 78.1 297.83 39.02 −
Improved YOLOv5s 98.3 90.7 93.6 84.2 9.9 4.71 14.6
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Table 8  Comparison of object detection algorithms on public dataset

Bold values indicate the best results under the corresponding evaluation metrics

Model (backbone) Precision/% Recall/% mAP@.5/% mAP@.5:.95/% Size/MB Params/M GFLOPs

YOLOv5s 65.7 60.7 61.9 34.9 14.5 7.06 15.9
YOLOv5s (ShuffleNet V2) 59.0 53.1 53.2 28.1 8.1 3.84 8.1
YOLOv5s (MobileNet V3) 58.4 55.4 55.6 30.9 11.5 5.58 2.7
YOLOv6s − − 59.3 35.1 18.51 9.02 45.2
YOLOv7-tiny 63.9 63.1 63.5 37.1 12.4 6.07 13.3
YOLOv8n 65.8 60.1 62.8 38.5 6.5 3.15 8.7
SSD300 (VGG16) − − 63.6 32.3 200.59 26.28 −
Faster R-CNN (Resnet50) − − 66.5 33.7 297.83 39.02 −
Improved YOLOv5s 67.7 59.6 63.8 38.2 9.9 4.71 14.9

Appendix: variety information 
of the samples

Coarse-variety Fine-variety Place of pro-
duction

Variety informa-
tion

Apple Ruiyang Baishui 
Experimental 
Station in 
Shaanxi

Smooth appear-
ance, round 
or slightly 
flattened shape, 
bright red 
color, crisp and 
juicy, balanced 
sweet and sour 
taste, good stor-
age ability

Ruixue Baishui 
Experimental 
Station in 
Shaanxi

Round or slightly 
flattened shape, 
light yellow 
or pale green 
color, crisp 
and refreshing, 
mainly sweet 
in taste, good 
storage ability

Aifei Xunyi City, 
Gansu Prov-
ince

Slightly flattened 
shape, rose 
red color crisp 
and refreshing, 
purely sweet 
without acidity, 
good storage 
ability

Cherry Black Pearl Yantai City, 
Shangdong 
Province

Small to 
medium-sized 
fruit, color, 
sweet, juicy, 
flavorful 
taste, firm and 
crunchy texture

Coarse-variety Fine-variety Place of pro-
duction

Variety informa-
tion

Red Light Yantai City, 
Shangdong 
Province

Medium to 
large-sized 
fruit, bright red 
color, sweet 
taste, firm 
texture, crisp 
and refreshing 
mouthfeel

Huang Mi Yantai City, 
Shangdong 
Province

Medium to large-
sized fruit, 
bright yellow 
color, semi-
transparent, 
sweet and 
sour taste, soft 
texture, juicy 
flesh

Lapins Shaanxi Prov-
ince

Medium to 
large-sized 
fruit, deep 
red color with 
purple spots, 
mostly sweet 
with minimal 
acidity, firm 
texture

Rainier Shaanxi Prov-
ince

Medium-sized 
fruit, heart 
shaped, yellow 
with a reddish 
tinge, crunchy 
sweet flavor

Tieton Yantai City, 
Shangdong 
Province

Medium to 
large-sized 
fruit, deep red 
color, abundant 
and juicy flesh, 
sweet taste
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Coarse-variety Fine-variety Place of pro-
duction

Variety informa-
tion

Tieton Dalian City, 
LiaoNing 
Province

Large-sized fruit, 
deep red color, 
abundant and 
juicy flesh, 
sweet taste

Pioneer Yantai City, 
Shangdong 
Province

Medium to large-
sized fruit, 
deep red or 
dark red-purple 
color, rich 
sweet taste, 
crisp and juicy, 
strong disease 
resistance

Watermelon Futian FutianTown, 
Fujian Prov-
ince

Large-sized fruit, 
outer skin is a 
vibrant green 
color with 
stripes, flesh 
is a bright red 
color, juicy and 
refreshing in 
taste

Dafugui Guangxi Prov-
ince

Oval-shaped, 
deep green in 
color, indistinct 
stripes, red-
fleshed, high 
sweetness

Xinfunong Guangxi Prov-
ince

Round-shaped, 
green skin with 
dark green 
stripes, red 
flesh, crispy 
texture, seed-
less

Chengyu Hunan Province Small-sized, 
high-spherical 
fruit, green skin 
with dark green 
stripes, orange-
yellow flesh, 
with seeds

Pomelo Meizhou Meizhou City, 
Guangdong 
Province

Gourd-shaped, 
smooth and yel-
low skin, sweet 
and refreshing 
flesh, with a 
honey-like taste

Liangping Chongqing City Flat-round 
shape, golden 
color, thin and 
smooth skin, 
translucent and 
pale yellow 
flesh

Coarse-variety Fine-variety Place of pro-
duction

Variety informa-
tion

Liangjiang Chongqing City Flat-round 
shape, golden 
color, thin and 
smooth skin, 
translucent and 
pale yellow 
flesh

Orange Gannan Orange Ganzhou City, 
Jiangxi Prov-
ince

Flat-round 
or ellipti-
cal in shape, 
orange-yellow 
or orange-red 
skin, light yel-
low flesh, sweet 
and sour taste

Honey Man-
darin

Hunan Province Nearly round 
shape, orange-
red color, 
smooth skin, 
sweet, crispy, 
juicy, seedless
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