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Abstract
Roasted ground coffees are targets of concern regarding intentional adulteration with cheaper foreign materials because, 
in this form, it may be difficult to detect due to the small particle size and the dark color. Therefore, a significant interest 
is developing fast, sensitive, and accurate methodologies to quantify adulterants in roasted coffees. This study investigated 
the potential of using near-infrared spectroscopy (NIR) to quantity robusta coffee and chicory in roasted arabica coffee. 
The adulterated arabica coffee samples were composed of robusta coffee or chicory ranging from 2.5 to 30% in increments 
of 2.5%. Four regression approaches were applied: gradient boosting regression (GBR), multiple linear regression (MLR), 
k-nearest neighbor regression (KNNR), and partial least squares regression (PLSR). The first three regression models were 
performed on the features extracted from linear discriminant analysis (LDA) or principal component analysis (PCA). Addi-
tionally, two classification methods were applied (LDA and KNN). The regression models derived based on LDA-extracted 
features presented better performances than PCA ones. The best regression models for the quantification of robusta coffee 
were GBR (pRMSEP of 13.70% and R2 of 0.839) derived based on PCA-extracted features and MLR (pRMSEP of 1.11% 
and R2 of 0.998) derived based on LDA-extracted features. For the chicory quantification, the same models derived under 
the same settings as mentioned above also presented the best performances (GBR, pRMSEP = 9.37%, R2 = 0.924; MLR, 
pRMSEP = 1.54%, R2 = 0.997). The PLSR prediction errors for the quantification of arabica coffee and chicory were 9.90% 
and 8.09%, respectively. For the classification methods, the LDA model performed well compared to KNN. Generally, some 
models proved to be effective in quantifying robusta and chicory in roasted arabica coffee. The results of this study indicate 
that NIR spectroscopy could be a promising method in the coffee industry and other legal sectors for routine applications 
involving quality control of coffee.
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Introduction

Desirable sensory properties, stimulant effects of caffeine, 
and several health benefits are among the factors contribut-
ing to the popularity of coffee beverages globally [1]. Global 
coffee consumption amounted to approximately 9.98 million 
tonnes during the 2020/2021 period, a 1.29% increase com-
pared to 2019/2020 [2]. Because of the continuous increase 
in coffee’s demand and ultimately its price on the global 
market, industrial coffee producers may interfere with the 
quality of the product for economic gains. Adulteration of 
coffee may involve interfering with the quality of beans (geo-
graphical origin, defective beans, and species) or the addi-
tion of lower-value products such as cereals, coffee husks, 
and chicory among others [3]. Roasted and ground coffee is 
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particularly vulnerable to such malpractices since adulter-
ants with similar physical characteristics as those of coffee 
can be mixed and may not be easily recognized. Reports on 
different forms of adulteration in commercial coffees as part 
of economically motivated adulteration exist [4, 5].

Even though this practice generates higher profits for 
traders, it results in products’ loss in quality (taste, aroma, 
and nutritional value) and may imply danger to consumers’ 
health. Due to these factors, quality control of commercial 
coffee is essential for ensuring the authenticity of the prod-
uct on the market and the safety of consumers. Since it is 
impossible to detect adulterated coffees with a simple visual 
inspection, different analytical methods have been devel-
oped. Núñez et al. [6] combined the HPLC method with che-
mometrics to quantify common adulterants added to coffee. 
Song et al. [7] also employed a similar technique to identify 
adulterated coffee samples based on different chemical indi-
ces (monosaccharides, nicotinic acid, and trigonelline). The 
feasibility of DNA-based approaches to detect and quantify 
adulterants in coffee has also been investigated [8–10]. In 
these techniques, the identification of adulterants is based 
on polymerase chain reaction (PCR) amplification of DNA 
regions exhibiting genetic variations that exist between the 
coffee and the adulterants. Souto et al. [11] and Rahman 
et al. [12] proposed a technique based on ultraviolet–visible 
spectroscopy in combination with chemometrics to identify 
adulterants in ground-roasted coffees. Other methods based 
on electrospray ionization mass spectrometry, the use of 
digital images and capillary electrophoresis-tandem mass 
spectrometry have also been proposed [13–15].

Although these methods are effective, they have been 
criticized for their requirement of high technical expertise, 
lengthy analytical time, being expensive, and being envi-
ronmentally unfriendly considering the chemicals needed. 
Spectroscopic techniques such as NIR coupled with chem-
ometrics offer a great replacement for the aforementioned 
methods for detecting and quantifying adulterants in foods 
[16, 17]. This is because of their rapidity, ease of use, and 
reliability. They allow for direct analysis of the solid sam-
ples with no or minimal sample preparation. Chakravartula 
et al. [18] employed NIR spectroscopy and a convolutional 
neural network to quantify chicory, barley, and maize in 
arabica coffee. Correia et al. [19] studied the feasibility of 
NIR spectroscopy combined with PLSR to quantify robusta 
coffee, corn, peels, and sticks in arabica coffee. Harohally 
and Thomas, [20] and Boadu et al. [21] employed a simi-
lar approach to quantify chicory and coffee husks in coffee, 
respectively. Forchetti and Poppi [22] proposed a method-
ology for the quantification of adulterants in coffee based 
on the combination of near-infrared hyperspectral imaging 
and multivariate curve resolution with errors lower than 4%. 
In most published work on the quantification of adulterants 
in coffee, one or two chemometric methods, mainly PLSR 

have been used to develop the models. Considering coffee 
fraud is one of the emerging concerns in the global coffee 
market, more investigations on methods for the quantifica-
tion of adulterants in coffee are necessary. To the best of 
our knowledge, the integration of feature extraction (using 
PCA and LDA methods) and regression techniques into NIR 
spectroscopy for the quantification of adulterants in roasted 
arabica coffee has not been exploited.

This work aims to use NIR spectroscopy to quantify 
robusta coffee and chicory added as adulterants in roasted 
arabica coffee using different regression and classifica-
tion methods. This is a further step of our previous study, 
which demonstrated the feasibility of NIR complemented 
by an autoencoder in detecting adulterants in roasted coffee 
[23]. Arabica and robusta coffee are among the coffee spe-
cies that have major commercial and economic importance. 
However, arabica coffees are considered to be of higher qual-
ity due to their sensorial properties thus making them expen-
sive [24]. Because of these price differences, mislabeling or 
fraudulence for economic gain is possible. Chicory, on the 
other hand, is used as a coffee substitute due to its flavor 
attributes. Nonetheless, on some occasions, it is also used 
as a non-declared adulterant due to its low-cost compared 
to coffee [25].

In the present study, we applied four different regression 
approaches: GBR, MLR, KNNR, and PLSR to select the 
best-performing method for practical applications. Two clas-
sification techniques were also applied (LDA and KNN). 
Specific objectives were to (1) calibrate predictive models 
by using different combinations of dimensionality reduction 
approaches (PCA and LDA) and regression and classifica-
tion methods and (2) compare and select the most effective 
methods for the quantification of robusta coffee and chicory 
in roasted arabica coffee.

Materials and methods

Preparation of samples

Green coffee beans of arabica and robusta species were 
acquired from Buxtrade GmbH, An den Geestbergen 1, 
21614 Buxtehude, Germany, and Hochland Kaffee Hun-
zelmann GmbH und Co. KG, Germany, respectively. 
Raw chicory root was sourced from Detrade UG, Bruch-
strasse 14d, 28816 Stuhr, Germany. The coffee samples 
were roasted in a Gene Café CBR-101 coffee roaster 
(Gene Café, Korea) at 240 °C with varying duration to 
three roast levels: light (10 min), medium (15 min), and 
dark (20 min). Chicory root was roasted using the same 
roaster at the same temperatures but for 4, 5, and 6 min. 
Shorter times were necessary to achieve a similar color 
to that of arabica coffee because of its small size and low 
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moisture content. Subsequently, samples were ground with 
an electric grinder (Melitta Calibra EU 1027-01 Mill 160 
W, Germany) on a fine grind setting. Adulterated samples 
were then prepared by mixing arabica coffee with robusta 
coffee or chicory in different mass percentages. Specifi-
cally, appropriate amounts of arabica coffee grinds were 
weighed and chicory or robusta coffee added at different 
concentrations. Mechanical mixing using a 3D mixer (Tur-
bula Willy A. Bachofen, Switzerland) for 5 min followed 
this. Each adulterant was added at 0, 2.5, 5, 7.5, 10, 12.5, 
15, 17.5, 20, 22.5, 25, 27.5, and 30% (w/w) concentra-
tion levels. The light-roasted arabica coffee was mixed 
with adulterants (chicory or robusta coffee) roasted at the 
equivalent roast level. The same was applied to medium 
and dark-roasted samples. All adulteration levels were 
prepared in triplicate resulting in 117 samples for each 
adulterant (3 roast levels × 13 adulteration levels × 3 rep-
licates). The prepared samples were stored in opaque zip 
lock bags at − 21 °C awaiting analysis. NIR spectra of 
the samples were acquired, followed by model calibra-
tion and testing. Figure 1 presents a summary of sample 
preparation, NIR spectra acquisition, and modeling for 
the quantification of robusta coffee and chicory in roasted 
arabica coffee.

NIR measurements

NIR analysis of adulterated and pure arabica coffee was 
performed using a Fourier Transform NIR spectrometer 
(Bruker Optics, Ettlingen, Germany) associated with 
OPUS software (Version 7, Bruker Optics, Ettlingen, Ger-
many) for instrumental control and spectra acquisition. 
The spectra were collected in diffuse reflectance mode. 
Each sample was thoroughly mixed before transferring 
enough amounts to the sample holder. During measure-
ment, the sample holder was kept in rotation to collect 
representative spectra of the sample. Each spectrum was 

recorded as an average of 64 scans. Spectral data were col-
lected over the wavenumber range of 12,500–3600 cm−1 
and a resolution of 4 cm−1. Twenty spectra per sample 
were acquired for each sample triplicate.

Features extraction

This study investigated different regression methods to 
quantify adulterants (robusta coffee and chicory) in roasted 
arabica coffee using Python (version 3.9, scikit-learn pack-
age). Before applying regression models, raw spectra were 
subjected to PCA or LDA analysis, to reduce the number of 
dimensions in the spectra (4615 wavelengths) by transform-
ing highly correlated wavelengths into a manageable set of 
features that could sufficiently explain the variance in the 
original data set. LDA finds a feature space that maximizes 
separability between the adulteration levels in target values 
while PCA focuses on finding the direction of maximum vari-
ance in the spectra [26].

LDA can be explained in the two following steps. In the first 
step, between-adulteration levels (Sb) and within-adulteration 
level variance (Sw) are computed from the spectra by using 
Eqs. (1) and (2), respectively. The following step involves 
increasing the between-adulteration levels variance and 
lowering the within-adulteration level variance that forms a 
lower-dimensional space. For LDA analysis, the singular value 
decomposition technique was employed to find the most dis-
criminative transformation of independent variables (wave-
lengths) in lower dimensional features [27–29].

where c is the number of total adulteration levels, ni is the 
sample size of adulteration level i , xi is the sample mean of 

(1)Sb =

c
∑

i=1

ni
(

xi − x
)(

xi − x
)T

(2)Sw =

c
∑

i=1

(

ni − 1
)

Si =

c
∑

i=1

ni
∑

j=1

(

xi,j − xi
)(

xi,j − xi
)T

Fig. 1   Sample preparation, NIR spectra acquisition, and modelling for the quantification of robusta coffee and chicory in roasted arabica coffee
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adulteration level i , x is the overall mean, Si is the scatter 
matrix for adulteration level i , xi,j is the jth sample of adul-
teration level i , and T indicates the transpose of the matrices.

LDA is ideally suited to handling object classification 
problems, and categorical target values are expected [28]. In 
this investigation, each adulteration level in the calibration 
set was regarded as a separate category—sorted by ascend-
ing order of adulteration levels, such as category 1 for 0% 
adulteration level, and category 2 for 2.5% adulteration level. 
By using these categories, the spectra from the calibration 
set were transformed into LDA features space. In the follow-
ing stage, the LDA features were used to train a regression 
model to learn the actual adulteration levels. The following 
two steps were considered to test the performance of the 
model. First, an unknown adulteration level spectrum was 
transformed into LDA features space using the transforma-
tion matrix derived from the LDA of calibration spectra. 
The LDA features of the unknown adulteration level are 
combined with regression parameters in the second stage to 
calculate the predicted adulteration level.

The optimal number of principal components/linear 
discriminants was determined by evaluating the prediction 
performance of the models and by considering the total 
explained variance. Different numbers of components/dis-
criminants were tested and those that gave the best predic-
tion results were chosen. For the quantification of chicory 
adulterated samples, two linear discriminants and six princi-
pal components were considered for developing the regres-
sion models. Conversely, two linear discriminants and ten 
principal components were considered to derive models for 
the quantification of robusta coffee adulterated samples. The 
term LDA and PCA followed by a regression model will 
be used to refer to models calibrated using LDA or PCA 
features, respectively. For example, the LDA-multiple linear 
regression model means that a multiple linear regression 
model was calibrated using LDA features.

Calibration and test sets

Twenty spectra per sample were acquired for each sample 
triplicate (meaning sixty spectra for each pure and adulter-
ated arabica coffee sample). Thus, at every roast level for 
each adulterant, 780 spectra were obtained (13 adultera-
tion levels × 60 spectra). Subsequently, spectra for the three 
roast levels (light, medium, and dark) for each adulterant 
were mixed resulting in two types of adulterated samples: 
one containing arabica coffee adulterated with chicory and 
another containing arabica coffee adulterated with robusta 
coffee. After feature extraction using LDA and PCA meth-
ods, the total data set was divided into calibration and test 
sets for regression modeling. The spectra of adulterated ara-
bica coffee samples with 0%, 5%, 10%, 15%, 20%, 25%, and 
30% of robusta coffee or chicory were used as calibration set 

and the rest as test set (2.5%, 7.5%, 12.5%, 17.5%, 22.5%, 
and 27.5%). In this orientation, the objective is to validate 
the performance of models with unseen/unknown spectra of 
particular adulteration levels that are absent in the calibra-
tion set. The calibration set was used to calibrate predictive 
models while the test set was used to assess the performance 
of the models. Modeling using extracted features did not 
apply to the PLSR method (Fig. 1), however, the separation 
of data into calibration and test sets was done in the same 
way. For the classification modeling, two replicates were 
used as a calibration set, and the third replicate as a test 
set. The modeling was performed using raw spectra data. 
For the spectra presented in this study (Fig. 2), NIR data 
were pre-processed using the standard normal variate (SNV) 
method to remove scattering effects for better visualization 
and comparison [30].

Modeling

Partial least squares regression

PLSR models were calibrated by using NIR spectra as X
-matrix (independent variables) and adulteration concentra-
tions as y-vectors (dependent variables). The optimal num-
ber of latent variables in the PLSR models was estimated by 
a cross-validation procedure with 10 data splits. Precisely, 
the number of latent variables, which provided the lowest 
root mean square error of cross-validation, were selected 
to ensure good generalizability of the models [31]. Eight 
and five latent variables were considered for developing the 
regression models for the quantification of robusta coffee 
and chicory in arabica coffee, respectively.

Fig. 2   The average SNV transformed spectra of chicory, arabica, and 
robusta coffee
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Multiple linear regression

Multiple linear regression is a mathematical technique used 
to model the relationship between multiple independent pre-
dictor variables (X) and a single dependent outcome variable 
(y) . Approximation of y was done by a linear combination 
of extracted features using PCA or LDA. The regression 
coefficients were estimated by minimizing the error between 
predicted and observed response values by using the least 
square method [32]. The mathematical expression for the 
LDA-multiple linear regression model is shown in the fol-
lowing equation.

where p0, p1, and p2 are the regression coefficients, LD1 and 
LD2 are the first linear discriminant and second linear dis-
criminant, respectively, obtained from LDA of spectra, and 
ypred is the predicted adulteration level (%) of an adulterant 
in arabica coffee.

Gradient boosting regression

Gradient boosting regression is an ensemble method with the 
advantage of capturing the non-linear relationship between 
the target variable and features, which minimizes the loss 
function by iteratively adding a new weak model at each 
step. The algorithm starts by initializing the model with a 
first guess, which is a decision tree that greatly decreases the 
loss function (mean square error). Then at each subsequent 
step, a new model is fitted to the existing residual and added 
to the previous model to update the residual. Fitting con-
secutive models to the residuals improve the performance of 
the model [33]. An optimization process is employed to fit a 
model against the residuals. The addition of a new model is 
continued until no further improvement in calibration error 
is observed. Better results are achieved if, at each iterative 
step, the contribution of the added model is shrunk using a 
shrinkage parameter α, called the learning rate. This param-
eter can take a value between 0 and 1 and the smaller it is, 
the more accurate the model [33]. In this study, α was set at 
0.4, which was tuned based on the lowest calibration error.

K‑nearest neighbor regression

The k-nearest neighbor method is a non-parametric classical 
algorithm that predicts a class of an object based on a simi-
larity metric i.e. distance. It uses different distance metrics 
to calculate the distance between the target values in the 
multi-dimensional feature space. Based on the selected met-
ric, the k-nearest neighbor algorithm searches the training 
data set for the k samples, which are nearest to the sample 

(3)ypred = p0 + (p1 × LD1) + (p2 × LD2)

to be classified. The minimum distance is calculated and the 
new sample is assigned to the corresponding group [26]. In 
the case of KNNR, the target variable is numerical. From 
unknown independent variables, the KNNR model tries to 
find the k-nearest neighbors who are close to each other in 
the feature space and predict the target value based on the 
known target values of the neighbors provided in the calibra-
tion set [34]. In this study, the KNNR model was calibrated 
using features derived by PCA or LDA, with k = 5 serving as 
the number of neighbors and the Euclidean distance metric 
used to quantify distances.

Classification methods

In order to classify arabica coffee samples adulterated with 
different concentrations of adulterants, classification strate-
gies based on LDA and KNN were adopted. The aim of 
the classification methods is to build predictive models for 
qualitative responses; each of the possible values of the 
responses is considered a class or category [35]. For the 
KNN, the parameter k was equal to three. The LDA models 
were developed using two linear discriminants.

Evaluation of model performance

The performance of the calibrated models was evaluated 
based on their accuracy in quantifying the adulterants in 
a test set. Statistical parameters used to compare the mod-
els’ performance included: the root mean square error of 
prediction (RMSEP), percentage root mean square error of 
prediction (pRMSEP), the range error ratio of prediction 
(RER), the ratio of prediction to deviation (RPD), and the 
coefficient of determination (R2). Low RMSEP and high R2 
indicate better performance of the model. Values of RER 
and RPD greater than 10 and 3, respectively, indicate good 
predictive capability of the model [31, 34]. For the classifi-
cation models, their performance were evaluated based on 
the sensitivity and specificity as calculated by Basri et al. 
[36]. The other parameters were calculated using the follow-
ing equations [34, 35].

(4)RMSEP =

�

∑n

i=1

�

yi − ŷi
�2

n

(5)pRMSEP[%] =
RMSEP

m
× 100

(6)R2 = 1 −

∑n

i=1

�

yi − ŷi
�2

∑n

i=1

�

yi − y
�2
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where yi and ŷi are the actual and predicted adulteration con-
centrations [%] in sample i, respectively, n is the total num-
ber of samples in the test set, m is the range of adulteration 
concentration [%] calculated from the difference between 
maximum and minimum concentration in the test set, SD is 
the standard deviation, y is the mean of all actual adultera-
tion concentrations in the test set.

Results and discussion

Overview of the spectra

The average SNV transformed spectra for arabica coffee, 
chicory, and robusta coffee are shown in Fig. 2. The main 
difference in the absorption band among the three samples 
is in the region 5600–6000  cm−1. This spectral band is 
related to the first overtones of C–H stretching attributed 
to long-chain fatty acids [37]. For chicory, a curve trend in 
this region is different from that of arabica and robusta cof-
fee clearly indicating differences in chemical composition 
between coffee and chicory. The same band is also char-
acterized by the first overtone and combinations of C–H 
vibrations in CH3 groups which is related to caffeine [38]. 
This could explain the observed high spectral intensities in 
robusta coffee since it has considerably higher caffeine con-
tent than arabica coffee [39]. Additionally, chicory is caf-
feine free and this could explain the difference in the curve 
trend in this region [40].

The same trend can be seen at the absorption band 
between 4000 and 4300  cm−1 mainly associated with 
lipids, caffeine, and chlorogenic acids [38, 39] (Fig. 2). The 
observed absorption differences could be explained by the 
variances in the content of the above-mentioned compounds 
in the samples. Robusta coffee has higher caffeine and chlo-
rogenic acid contents compared to arabica coffee and thus, 
higher absorption intensities in this region [39]. Absorption 
bands around 7000, 5000, 4800, and 3900 cm−1 are mainly 
associated with water, proteins, carbohydrates, chlorogenic 
acids, and lipids [39–41] (Fig. 2). In general, the spectra of 
chicory, arabica, and robusta coffee show differences in their 
absorption band intensities.

(7)RPD =
SD

RMSEP

(8)RER =
m

RMSEP
,

Features extraction

Before model calibration, two well-known dimensionality 
reduction techniques i.e. LDA and PCA were applied to the 
spectra. The scatter plots showing scores of the first two 
components/discriminants of PCA and LDA for the arabica 
coffee adulterated with robusta coffee and chicory are pre-
sented in Fig. 3. PCA (Fig. 3a, c) showed less separability 
between the levels of adulteration in projected scores com-
pared to LDA (Fig. 3b, d).

The two LDA discriminants discriminated adulteration 
levels in the feature space more accurately giving thirteen 
groups (Fig. 3b, d) compared to PCA where intermixing 
of adulteration levels occurred (Fig. 3a, c). This could be 
explained by the fact that LDA identifies the feature sub-
space that maximizes the separability of adulteration levels 
and minimizes the variance within the adulteration levels. 
While PCA concentrates on identifying the direction of max-
imum variance regardless of the adulteration levels [26]. 
This may imply that a model trained with LDA-extracted 
features may perform better than PCA-extracted features.

The loading plots in Fig. 4 provide information on the 
wavenumbers that contribute to the differentiation between 
the samples. Examining PCA loadings (Fig. 4a, c), the main 
wavenumber region responsible for the separation of arabica 
coffee with different adulterant concentrations (Fig. 3a, c) 
are between 7500 and 11,000 cm−1 as exhibited by high 
loading values. This region is related to the second and third 
overtone of C–H vibrations in CH3 groups attributed to car-
bohydrates, lipids, caffeine, fatty acids, amino acids, and 
phenolic acids [19, 38, 42]. For LDA loadings (Fig. 4b, d), 
the NIR region of high influence as shown with high loading 
values is between 3500 and 7000 cm−1. The first overtone 
and combinations of C–H vibrations in CH3 groups, first 
overtones of O–H and N–H characterize this region cor-
responding to proteins, water, chlorogenic acids, caffeine, 
carbohydrates, and trigonelline [36, 43]. The NIR region of 
important influence is different for PCA and LDA and this 
could imply differences in the performance of the models 
calibrated using the extracted features of the two techniques.

Calibration models

Different regression models were constructed to quan-
tify the contents of robusta coffee in roasted arabica cof-
fee (Table 1). The chemical composition of the two spe-
cies exhibits differences mainly in caffeine, phenolic acids, 
lipids, and sugars [44–46]. However, during the roasting 
process, changes in the content of these compounds due to 
degradation could lead to difficulties in quantifying a par-
ticular species in a blend. Regression models constructed 
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from LDA-extracted features presented the best results with 
pRMSEP and R2 of between 1.11–9.33% and 0.925–0.998, 
respectively (Table 1). Among these models, the multiple 
linear regression model recorded the lowest prediction error 
(pRMSEP = 1.11%) and the highest R2 (0.998) indicating 
its efficiency in quantifying robusta coffee in arabica coffee 
(Fig. 5). The model also presented satisfactory RER (89.84) 
and RPD (30.70) values (Table 1).

Although regression models derived based on the PCA-
extracted features required a greater number of components 
(ten) than those based on the LDA-extracted features (two), 
they did not present good quantification capabilities as high-
lighted by the high pRMSEP (above 13%) and the low R2 
(below 0.9) (Table 1). Moreover, the RER and RPD values 
are below 10 and 3, respectively. According to the literature, 
the values of R2 greater than 0.9, RER greater than 10 and 
the RPD greater than 3 indicate a calibration model with 
good performance [47]. As already mentioned, PCA did not 
clearly separate all the adulteration levels in the features 

space (Fig. 3a, c) as observed with LDA and thus, this could 
explain the poor performance of the models calibrated based 
on these features.

The accuracies of the models in quantifying specific adul-
teration levels were also evaluated to provide information 
on which adulteration level was predicted with low or high 
errors by the models. The multiple linear and the k-nearest 
neighbor regression models calibrated with PCA features 
presented the lowest prediction accuracies (pRMSEP > 5%) 
for 2.5% and 7.5% adulteration levels, respectively (Table 2). 
The models calibrated with LDA-extracted features exhib-
ited the highest prediction accuracies for the specific adul-
teration levels compared to PCA-extracted features; with the 
LDA-multiple linear regression model recording the low-
est RMSEP of below 0.5% for all the adulteration levels 
(Table 2).

The PLSR model did not show good reliability in pre-
dicting the quantity of adulterant robusta coffee in arabica 
coffee samples as indicated by high pRMSEP (9.90%) and 

Fig. 3   PCA and LDA score plots of the samples’ raw spectra. Plots 3a (PCA) and 3b (LDA) are for the arabica coffee adulterated with robusta 
coffee while plots 3c (PCA) and 3d (LDA) are for the arabica coffee adulterated with chicory
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relatively low R2 (0.916) (Table 1). On the contrary, Correia 
et al. [19] developed robust PLSR models that could quan-
tify robusta coffee in arabica coffee with pRMSEP values 
between 2.8–6.6% and R2 values of between 0.957–0.993. 
Better accuracies of the developed models could have been 
because of spectral data preprocessing (Savitzky–Golay), 
which, was not the case in this study where modeling was 
performed using raw spectra data. Regarding the quantifica-
tion of individual adulteration levels, the pRMSEP ranged 
between 2.08 and 2.84% (Table 2). The best prediction was 
a 7.5% adulteration level with the lowest error of 2.08% 
(Table 2).

Predictive models for quantifying chicory in the ara-
bica coffee presented considerably better results com-
pared to those for robusta coffee quantification (Table 1). 
The results could be attributed to the greater differences 

between the samples in terms of their chemical composi-
tion, facilitating their efficient quantification by the mod-
els. The spectral feature differences between arabica and 
chicory can be seen in Fig. 2. Chicory does not contain 
caffeine, one of coffee beans’ main compounds [40]. Con-
sidering PCA and LDA features, models calibrated based 
on LDA-extracted features exhibited good quantification 
ability of chicory in arabica coffee with low pRMSEP 
(Table 1). The multiple linear regression model (based 
on LDA-extracted features), showed the lowest pRMSEP 
(1.54%) and the highest R2 (0.997) (Table 1), confirming 
its reliability in quantifying chicory in unidentified ara-
bica coffee samples. The achieved RER and RPD values 
of 64.98 and 22.20, respectively, were also satisfactory. 
Figure 6 shows high accuracy in the prediction of chicory 

Fig. 4   PCA and LDA loading plots of the samples’ raw spectra. Plots 4a (PCA) and 4b (LDA) are for the arabica coffee adulterated with robusta 
coffee while plots 4c (PCA) and 4d (LDA) are for the arabica coffee adulterated with chicory
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content mixed in arabica coffee as determined by the 
LDA-multiple linear regression model. The models based 
on PCA-extracted features included six components as 
opposed to those based on LDA-extracted features where 
two discriminants were used. Among all the constructed 
models, the PCA-gradient boosting regression model had 
the lowest pRMSEP (9.37%) and the highest R2 (0.924) 
values (Table 1).

The PLSR model for quantifying chicory in arabica 
coffee exhibited better performance as compared to that 
developed for quantifying robusta coffee although fewer 
latent variables (five) were used. The model presented a 
pRMSEP of 8.09%, an R2 of 0.943, RER values of 12.35, 

and RPD values of 4.22 (Table 1). According to Leoni 
et al. [48], models with RER values between seven and 
twenty are adequate for quality screening while those 
with RER values above twenty could be applied for qual-
ity control. On the other hand, models with RPD values 
greater than three could be applied for screening applica-
tions and greater than five for quality control applications. 
Chakravartula et al. [18] proposed PLSR models for the 
quantification of chicory in arabica coffee with excellent 
performances as highlighted by R2 values of above 0.98. It 
is important to note that in this work, the PLSR modeling 
was performed using raw spectra data as opposed to the 
above-mentioned study where the spectra were subjected 
to different pre-processing methods prior to modeling.

Models were also examined for their ability to quan-
tify individual adulteration levels of the chicory in roasted 
arabica coffee. For models calibrated using PCA-extracted 
features, the k-nearest neighbor regression model exhib-
ited the highest pRMSEP for most adulteration levels 
(Table 2). Compared to models based on PCA-extracted 
features, those calibrated using LDA-extracted features 
recorded the best capabilities to quantify individual adul-
teration levels with the multiple linear regression model 
presenting the lowest pRMSEP ranging between 0.14 and 
0.79% (Table 2).

The presented results can be compared with other stud-
ies that have used NIR spectroscopy to quantify adulter-
ants in roasted coffee. For example, Chakravartula et al. 
[18] described the application of PLSR and convolutional 
neural network for the quantification of chicory, barley, and 
maize in roasted arabica coffee and obtained R2 values of 

Table 1   Performance 
comparison of regression 
models on the test set for the 
quantification of robusta coffee 
and chicory used to adulterate 
arabica coffee

Adulterant Model Compo-
nents/fac-
tors

RMSEP pRMSEP (%) R2 RPD RER

Robusta coffee PCA-multiple linear 10 4.19 16.74 0.759 2.04 5.97
PCA-gradient boosting 10 3.42 13.70 0.839 2.49 7.30
PCA-k-nearest neighbor 10 4.07 16.29 0.772 2.10 6.14
LDA-multiple linear 2 0.28 1.11 0.998 30.70 89.84
LDA-gradient boosting 2 2.33 9.33 0.925 3.66 10.72
LDA-k-nearest neighbor 2 2.31 9.22 0.927 3.71 10.84
PLSR 8 2.47 9.90 0.916 3.45 10.10
PCA-multiple linear 6 2.45 9.80 0.917 3.49 10.20
PCA-gradient boosting 6 2.34 9.37 0.924 3.63 10.63
PCA-k-nearest neighbor 6 2.89 11.55 0.885 2.96 8.66

Chicory LDA-multiple linear 2 0.38 1.54 0.997 22.20 64.98
LDA-gradient boosting 2 1.98 7.91 0.946 4.26 12.47
LDA-k-nearest neighbor 2 2.32 9.28 0.926 3.68 10.77
PLSR 5 2.02 8.09 0.943 4.22 12.35

pRMSEP = 1.11 %

R
2

= 0.998

Fig. 5   The actual and predicted concentrations of robusta coffee (%) 
used to adulterate arabica coffee as determined by the LDA—multi-
ple linear regression model
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above 0.98. Correia et al. [19] also described the application 
of PLSR modeling for the quantification of robusta coffee, 
corn, peels, and sticks in roasted arabica coffee attaining R2 
values of between 0.859 and 0.993. Harohally and Thomas, 
[20] and Boadu et al. [21] employed a similar approach 
to quantify chicory and coffee husks in coffee, respec-
tively, presenting models with good performance abilities 
(R2 > 0.97). In all the studies, PLSR models presented bet-
ter accuracies in the quantification of adulterants in coffee 
in terms of R2 values compared to the ones reported in this 
study. The reason could be that the spectra were subjected 
to different pre-processing methods to reduce non-linearity 
and scattering effects prior to modeling which was not the 
case in this study. However, other models i.e. GBR, MLR, 

and KNNR performed fairly well with the raw spectra data 
depending on the extracted features used to develop them. 
For instance, multiple linear regression models derived 
based on LDA-extracted features presented R2 values of 
0.99. In literature, these models have not been explored 
concerning the quantification of adulterants in coffee and 
yet they have great potential as exhibited by their reasonably 
good performance even on the raw spectra.

The confusion matrices shown in Figs. 7 and 8 demonstrate 
the effect of different adulterant concentrations (robusta cof-
fee) on the classification performance by the KNN and LDA 
models. Only the results for the arabica coffee adulterated with 
the robusta coffee are presented in this paper since almost 
similar findings were observed with samples adulterated with 
chicory. In the case of the KNN model (Fig. 7), a high per-
centage of all the classes were misclassified. According to the 
figure, the 22.5% class achieved the best classification where 
66.7% of its samples were correctly classified. The rest were 
misclassified as those containing 20% robusta coffee. For the 
remaining classes, 66.7% of the samples of each class were 
misclassified as 22.5% (Fig. 7). The poor performance of the 
model can also be observed by its low sensitivity in correctly 
classifying the classes (Table 3). Conversely, the LDA model 
made a perfect classification for all the classes with high sen-
sitivity (Fig. 8 and Table 3). The LDA algorithm considers 
class labels when finding the direction of maximum variance 
with the goal of maximizing the separation between classes 
[28]. Thus, this could explain the correct classification of all 
the classes by the model in the test set.

In summary, considerable differences in the models’ 
performances can be noted from the results. Regarding the 
dimensionality reduction methods used, LDA transformed 

Table 2   Performance 
comparison of regression 
models on the quantification of 
individual adulteration levels in 
roasted arabica coffee

Adulterant Model Compo-
nents/fac-
tors

RMSEP for individual adulteration levels

2.5% 7.5% 12.5% 17.5% 22.5% 27.5%

Robusta coffee PCA-multiple linear 10 5.24 4.23 4.17 3.51 4.21 3.52
PCA-gradient boosting 10 3.04 2.65 3.51 3.83 4.27 2.98
PCA-k-nearest neighbor 10 3.53 5.06 3.83 3.20 3.92 4.61
LDA-multiple linear 2 0.22 0.30 0.25 0.38 0.24 0.25
LDA-gradient boosting 2 1.93 2.50 2.50 2.50 1.98 2.50
LDA-k-nearest neighbor 2 2.50 2.40 2.12 2.33 2.34 2.12
PLSR 8 2.29 2.08 2.60 2.57 2.84 2.39
PCA-multiple linear 6 2.98 1.62 1.47 1.84 1.73 4.00
PCA-gradient boosting 6 1.69 1.92 2.28 2.10 2.77 3.01
PCA-k-nearest neighbor 6 2.92 3.03 2.48 2.17 3.53 3.01

Chicory LDA-multiple linear 2 0.21 0.14 0.21 0.16 0.36 0.79
LDA-gradient boosting 2 1.09 2.50 2.50 2.50 0.75 1.72
LDA-k-nearest neighbor 2 2.50 2.07 2.39 2.14 2.29 2.50
PLSR 5 2.31 1.64 1.33 1.61 1.23 3.27

pRMSEP = 1.54 %

R
2

= 0.997

Fig. 6   The actual and predicted concentrations of chicory (%) used 
to adulterate arabica coffee as determined by the LDA-multiple linear 
regression model
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the high dimensional spectra into lower dimensional features 
effectively, which could explain the better performance of the 
models from this approach compared to PCA. It seems to rea-
son that while LDA identifies the feature subspace that maxi-
mizes adulteration levels separability and minimizes variance 
within the adulteration levels, PCA concentrates on identifying 
the direction of maximum variance regardless of the adultera-
tion levels [26]. Thus with LDA, different adulteration levels 
were separated into feature space producing regression mod-
els suitable to quantify adulterants in unknown arabica cof-
fee samples from the unseen spectra (spectra unknown to the 
model). Overall, LDA significantly improved the performance 
of all regression models with only two components as com-
pared to PCA, which included six and ten components for the 
quantification of chicory and robusta coffee, respectively. For 
the classification methods, the LDA model performed better 
compared to KNN. Comparing regression and classification 
methods presented in this study, the regression technique has 
the advantage that one can predict adulteration concentrations, 

which are in between the trained values (2.5%, 7.5%, 12.5%, 
17.5%, 22.5%, and 27.5%).

Conclusion

This study evaluated the potential of NIR spectros-
copy coupled with features extraction (PCA and LDA) 
and  regression techniques for the quantification of 
robusta coffee and chicory in roasted arabica coffee. 
Two classification methods were also studied (LDA and 
KNN). Regression models derived based on the LDA-
extracted features presented better performances than 
those derived based on the PCA-extracted features. The 
LDA-multiple linear regression model showed the best 
prediction performances with pRMSEP of below 1.6% and 
R2 values of 0.99 for all the adulterants. Although other 
studied models presented high pRMSEP (7.91–16.74) and 
low R2 values (0.759–0.946), their accuracies could be 
improved by spectra pre-processing prior to modeling. For 
the classification methods, the LDA model performed well 
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Fig. 7   The confusion matrix for the KNN classification model on the test set of arabica coffee adulterated with robusta coffee (correct classifica-
tions are shown in gray)



448	 L. Munyendo et al.

1 3

0 % 100

%

2.5 % 100

%

5 % 100

%

7.5 % 100

%

10 % 100

%

12.5 % 100

%

15 % 100

%

17.5 % 100

%

20 % 100

%

22.5 % 100

%

25 % 100

Pr
ed

ic
te

d 
cl

as
s

%

27.5 % 100

%

30 % 100

%

0

%

2.5

%

5

%

7.5

%

10

%

12.5

%

15

%

17.5

%

20

%

22.5

%

25

%

27.5

%

30

%

True class
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Table 3   The sensitivity and 
specificity of the test set 
(arabica coffee adulterated with 
robusta coffee) for each class 
using the k-nearest neighbors 
and linear discriminant analysis 
classification models

Class (%) K-nearest neighbors Linear discriminant analysis

Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)

0 33.33 100 100 100
2.5 0 100 100 100
5 33.33 86.94 100 100
7.5 0 100 100 100
10 0 100 100 100
12.5 0 98.61 100 100
15 0 100 100 100
17.5 0 99.72 100 100
20 33.33 86.94 100 100
22.5 66.67 33.33 100 100
25 0 100 100 100
27.5 0 100 100 100
30 0 100 100 100
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compared to KNN. Further studies could be carried out to 
explore the performance of the classification and regres-
sion models explored in this study for the quantification 
of other possible coffee adulterants and their mixtures. 
Overall, some models proved to be effective in quantifying 
robusta and chicory in roasted arabica coffee. The results 
of this study indicate that NIR spectroscopy could be a 
promising method in the coffee industry and other legal 
sectors for routine applications involving quality control 
of coffee.
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