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Abstract
The paper discusses the effect of microwave assisted aqueous extraction conditions on the recovery and quantification of bio-
active compounds of Basella alba leaves. The experiment was carried out using the Box–Behnken design of response surface 
methodology (RSM) with microwave power (100–300 W), treatment time (5–15 min), and feed/solvent ratio (0.025–0.05 w/v) 
as independent variables. The response variables, total phenolic content (TPC), total flavonoid content (TFC), and antioxi-
dant activity (AA) were predicted individually using both RSM and artificial neural network-genetic algorithm (ANN-GA). 
Experimental values of TPC, TFC and AA (% of DPPH scavenging assay) ranged from 2.64 to 5.46 mg GAE  g−1, 7.38 to 
15.71 mg QE  g−1 and 0.12 to 0.32 mg GAEAC  g−1 respectively. The predicted values of TPC, TFC, and AA for the optimized 
conditions extracted using RSM are 6.21 mg GAE  g−1, 14.29 mg QE  g−1, and 0.25 mg GAEAC  g−1, respectively, whereas 
using ANN-GA were 6.23 mg GAE  g−1, 11.2 mg QE  g−1, and 0.24 mg GAEAC  g−1, respectively. When compared to RSM, 
ANN-GA demonstrated a greater value of  R2 and lower values of other statistical parameters. Additionally, the predicted 
value of ANN-GA was more closely aligned with the experimental value. Therefore, ANN-GA can be considered the best 
model for the optimization and modeling of aqueous MAE of bioactive components from Basella alba leaves.

Keywords Phytochemicals · Antioxidant activity · Extraction · Basella alba · Malabar spinach

Introduction

Malabar spinach is a climbing plant from a monotypic genus 
in the Basellaceae family. It is cultivated as a leafy vegeta-
ble or pot herb in the regions of India and Indonesia. It is 
commonly known as Poi saag, Ceylon spinach, Indian spin-
ach, climbing spinach, and vine spinach [1–3]. The plant is 
also found in Bangladesh, China, Philippines, Africa, South 
America, and Thailand. Basella alba and Basella rubra were 
the two most commonly utilized varieties of this species. 
B. alba has a green stem, whereas B. rubra has a reddish-
purple stem. The plant is a rich source of minerals, vitamins, 

dietary fiber, phenolic compounds, and antioxidants [4–7]. 
B. alba has demonstrated androgenic activity, antioxidant 
activity, antiulcer activity, cytotoxic and antibacterial activ-
ity, central nervous system depressant activity, anti-inflam-
matory activity, wound healing properties, nephroprotective, 
and antioxidative properties [8, 9].

Even though the basella species are consumed as a leafy 
vegetable and used medicinally, proper scientific studies on 
its phytochemical composition and novel extraction meth-
ods have not been explored. Identification of suitable extrac-
tion conditions for the recovery of bioactive components 
is essential to maximize their health-improving benefits. 
The extraction techniques used for the recovery of bioac-
tive components are broadly categorized into conventional 
and non-conventional extraction methods. Maceration, 
Soxhlet extraction, and hydro-distillation are the commonly 
used conventional methods. The novel/non-conventional 
methods include ultrasound-assisted extraction (UAE), 
enzyme-assisted extraction (EAE), pulsed electric field 
(PEF) extraction, pressurized liquid extraction, microwave-
assisted extraction (MAE), and supercritical fluid extraction 
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[10, 11]. The main drawbacks of conventional methods are 
the long treatment time, need for high-purity solvents, low 
solvent recovery rate (which necessitates the use of a large 
quantity of solvent), and higher cost of extraction [12, 13].

MAE is gaining popularity due to the several benefits 
it provides, including enhanced extraction yields, reduced 
extraction time, and solvent usage. Physical parameters like 
solubility, dielectric constant (ε′), and dissipation factor 
must be considered to maximize the yield of MAE. Solvents 
with high dielectric constants (such as water) can absorb 
more microwave (MW) energy; hence, the polarity of the 
solvent is critical in MAE. Polar solvents are often consid-
ered to be superior to non-polar solvents [14]. MAE has 
recently been studied for extracting bioactive compounds 
from cashew apples [15], Allium sativum [16], fruit seeds 
[17], and pineapple peel [18, 19], and found that method is 
superior over other technologies in terms of higher yield and 
quality of the extract. Investigation into the MAE of B. alba 
has not yet been reported so far. Hence a research attempt 
has been made to study the effect of MAE conditions on the 
recovery of bioactive components from B. alba leaves and 
its optimization using RSM and ANN-GA techniques. In this 
study, a Box–Behnken design (BBD) was applied to evalu-
ate the effect of MAE conditions on the recovery of TPC, 
TFC, and AA. These findings will aid in the assessment of 
bioactive potential of B. alba and its utilization, particularly 
in the food and pharmaceutical sector.

Methodology

Raw materials

Fresh Basella alba leaves were purchased from the local 
market in Kharagpur, West Bengal, India for the experi-
ments. Cleaned leaves were blotted for surface water 
removal and dried in a laboratory model freeze dryer (IIC—
INSTIND, Kolkata) at a temperature of − 35 °C, vacuum 
pressure of 150 mbar, and condenser temperature of 20 °C 
for 24 h. The dried leaves are then ground to flour with a 
particle size of less than 425 µm using a mesh screen (BS 
36). The dried leaves were powdered and stored for further 
analysis.

Chemicals and reagents

Chemicals and reagents of analytical quality from Himedia 
Laboratories (Mumbai, India) and Merck Specialties Pri-
vate Limited (Mumbai, India) were used for the research. 
The chemicals and reagents include 2,2-diphenyl-1-picryl-
hydrazyl (DPPH), Folin–Ciocalteu (FC) reagent, sodium 
hydroxide, sodium carbonate, sodium nitrite, hydrochloric 
acid, aluminum chloride, ethanol, and methanol.

Microwave‑assisted extraction

The extraction of bioactive compounds from Basella leaf 
powder was performed using a combined extraction system 
(NuWav-Promaster, Nutech Analytical Technologies Pvt. 
Ltd., India) with a platinum temperature sensor. The experi-
ments were carried out at varying power levels of 100–300 
W and treatment time of 5–15 min. The solvent used was 
water. The feed-to-solvent ratio varied from 0.025 to 0.05. 
After extraction, the samples were centrifuged at 10,000 rpm 
for 10 min, followed by filtration through Whatman No. 4 fil-
ter paper. The extract thus obtained was collected in 10 mL 
plastic vials and stored in refrigerated conditions until fur-
ther analysis.

Experimental design

Based on previous studies [13], three-level BBD of RSM 
with five central points was used for the experiments. The 
independent variables selected for the study are MW power, 
extraction time, and feed/solvent ratio. The levels for the 
independent parameters in the study are presented in Table 1 
with their coded forms. The experiment contained 17 runs 
and the treatment combinations are presented in Table 2. 
The extract was prepared according to the design, and the 
dependent variables of the study, such as TPC, TFC, and 
AA, were determined using the protocols specified in the 
subsequent sessions. The influence of independent variables 
on the responses such was then modeled mathematically 
using RSM and ANN-GA technique.

Total phenolic content

TPC analysis was performed as per the method described 
by Kumar and Srinivasa Rao [20] with minor modifications. 
About 0.2 mL liquid extract was taken (diluted by 2.8 mL) 
and was mixed with 0.5 mL of Folin–Ciocalteu reagent. The 
mixed solution was incubated for 5 min and then mixed with 
2 mL of  Na2CO3 (7%, w/v) solution. The samples were kept 
in the dark for 30 min. The absorbance was then read at 
760 nm using a UV-V spectrophotometer (UV Plus, Mortras 
Scientific, India). Calculated TPC was expressed as mg of 
Gallic acid equivalent (GAE) per gram of sample.

Table 1  Independent variables involved in the design

Independent variable Nomenclature Units Values

(− 1) 0 (+ 1)

Microwave power A W 100 200 300
Time B min 5 10 15
Feed-to-solvent ratio C g  mL−1 0.05 0.033 0.025



289Microwave‑assisted aqueous extraction of bioactive components from Malabar spinach (Basella…

1 3

Ta
bl

e 
2 

 E
xp

er
im

en
ta

l d
es

ig
n,

 p
re

di
ct

ed
 a

nd
 a

ct
ua

l v
al

ue
s o

f r
es

po
ns

es
 o

f M
A

E 
of

 B
. a

lb
a 

le
av

es

Ru
n

M
W

 p
ow

er
 

(W
)

Ti
m

e 
(m

in
)

F:
S 

ra
tio

TP
C

 (m
g 

G
A

E 
 g−

1 )
TF

C
 (m

g 
Q

E 
 g−

1 )
A

A
 (m

g 
G

A
EA

C
  g

−
1 )

Ex
p.

 v
al

ue
R

SM
 p

re
d.

A
N

N
 p

re
d.

Ex
p.

 v
al

ue
R

SM
 p

re
d.

A
N

N
 p

re
d.

Ex
p.

 v
al

ue
R

SM
 p

re
d.

A
N

N
 p

re
d.

1
20

0
15

0.
05

4.
48

4.
04

4.
46

9.
15

7.
38

9.
13

0.
18

0.
16

0.
18

2
10

0
10

0.
02

5
4.

30
4.

90
4.

11
7.

38
14

.9
0

9.
06

0.
13

0.
16

0.
17

3
20

0
15

0.
02

5
4.

00
4.

46
2.

27
8.

54
9.

81
8.

53
0.

15
0.

17
0.

15
4

20
0

10
0.

03
3

2.
64

2.
75

2.
67

8.
41

8.
78

9.
17

0.
15

0.
16

0.
15

5
30

0
10

0.
05

5.
14

3.
78

5.
33

9.
56

10
.4

6
8.

65
0.

30
0.

13
0.

19
6

20
0

5
0.

02
5

3.
63

5.
43

3.
69

7.
49

9.
51

8.
99

0.
12

0.
31

0.
12

7
20

0
5

0.
05

5.
46

3.
64

5.
40

8.
52

7.
00

8.
05

0.
32

0.
13

0.
32

8
30

0
5

0.
03

3
4.

86
4.

80
4.

32
8.

18
7.

57
9.

03
0.

16
0.

23
0.

16
9

20
0

10
0.

03
3

2.
64

2.
75

2.
67

8.
41

8.
78

9.
17

0.
15

0.
16

0.
15

10
10

0
5

0.
03

3
4.

54
5.

08
4.

50
9.

53
10

.4
1

10
.5

2
0.

18
0.

18
0.

18
11

30
0

15
0.

03
3

4.
58

4.
78

4.
54

8.
92

8.
79

9.
95

0.
16

0.
19

0.
16

12
10

0
15

0.
03

3
4.

79
4.

54
4.

82
8.

51
9.

87
8.

32
0.

14
0.

10
0.

13
13

20
0

10
0.

03
3

2.
64

2.
75

2.
67

8.
41

8.
78

9.
17

0.
15

0.
16

0.
15

14
30

0
10

0.
02

5
3.

67
5.

23
3.

81
9.

66
8.

72
8.

50
0.

17
0.

30
0.

17
15

20
0

10
0.

03
3

2.
64

2.
75

2.
67

8.
41

8.
78

9.
17

0.
15

0.
16

0.
15

16
10

0
10

0.
05

4.
94

4.
14

7.
58

15
.7

1
8.

22
13

.7
1

0.
13

0.
14

0.
13

17
20

0
10

0.
03

3
2.

64
2.

75
2.

67
8.

41
8.

78
9.

17
0.

15
0.

16
0.

15



290 A. S. Shende et al.

1 3

Total flavonoid content

The determination of TFC was done according to Kumar and 
Srinivasa Rao [20] in a modified form. About 1 mL of liquid 
extract was taken and mixed with 5 mL of distilled water. 
From this, 2 mL of extract was taken followed by 0.15 mL 
of  NaNO2, and added with 2 mL of  AlCl3 solution. After 
3 min, 1 M NaOH was added and the mixture was incubated 
for 2 h. The spectrophotometric readings were measured at 
wavelength 510 nm which were further expressed as querce-
tin equivalent per gram of sample.

Antioxidant activity

For AA, the methodology was adopted from Rout et al. [13] 
with slight modifications was used. About 0.1 mL liquid 
extract was taken and mixed with 3.9 mL DPPH solutions. 
After keeping the sample for 30 min in the dark, the spectro-
photometric readings were taken at a wavelength of 517 nm. 
Pure methanol was used for zeroing. Gallic acid was used 
as the reference, and the results were reported as mg of gal-
lic acid equivalent antioxidant capacity (mg GAEAC  g−1 
sample).

RSM modeling and optimization

Process parameter combinations were modeled and opti-
mized using RSM. The empirical second-order polynomial 
regression model equation (Eq. 1) was used in the study 
to analyze the response variables and predict the optimal 
values.

where yj are the different responses, �
0
 , �i , �ii and �ij are the 

regression coefficients for the mean, linear, quadratic, and 
interaction terms, respectively, and xi & xj are the independ-
ent variables in coded values ranging from − 1 to + 1.

The analysis was carried out using commercial software 
(Design Expert 11, Stat-Ease Inc., Minneapolis, USA). To 
validate the model, the best MAE conditions were evaluated 
experimentally in triplicate. The optimization of the various 
process variables was done with the objective of maximizing 
the TPC, TFC, and AA. Each response was converted into a 
dimensionless desirability function  (di) with a scale of 0–1. 
The overall desirability function (G), which was formed by 
adding the individual desirability values of each response, 
represented the maximization of each response.

(1)yj = 𝛽
0
+

3
∑

i=1

𝛽ixi +

3
∑

i=1

𝛽iix
2

i
+
∑

3
∑

i<j=1

𝛽ijxixj

(2)G =
(

di × dii ×… dn
)1∕n

where  di is the desirability of the response variable and n is 
the number of responses in the study. Under optimal condi-
tions predicted by the model, the validity of the presently 
developed model was tested. The average results of the 
experiments were compared to the expected values of the 
generated model, and the efficacy of the established model 
was evaluated.

ANN modeling and GA optimization

ANN modeling was carried out using a neural network fit-
ting tool of MATLAB (version R2022a, The Math Works, 
Inc., USA). ANN model consists of input layer, hidden layer, 
and output layer. The input layer comprised of three neurons 
[microwave power (W), time (min), and feed-to-solvent ratio 
(w/v)]. The trial-and-error method was used to determine the 
number of neurons in the hidden layer and it was selected 
based on the highest  R2 and lowest MSE values. For the study, 
the number of neurons thus achieved was 10. The output layer 
contains a single neuron that represents the responses of the 
extraction process, such as TPC  (Y1 mg GAE  g−1), TFC 
 (Y2 mg QE  g−1), and AA  (Y3 mg GAEAC  g−1). The input and 
output layers of the proposed ANN model are shown in Fig. 1. 
For each response, the training was done individually. The 
input and output data points were coded for the ANN model 
development [15]. The transfer function for the hidden layer 
was a hyperbolic sigmoid function (tansig), and the transfer 
function for the output layer was a linear function (purelin). 
The data were trained using the Levenberg–Marquardt back-
propagation (trainlm) algorithm, with 15% of the total data 
used for validating, 15% for testing, and 70% for training. The 
network is trained until it has the highest  R2 and lowest MSE. 
After training, the predicted output was calculated using the 
weights and bias values represented by the following equation.

where  xi and  yi are the input and predicted coded output 
parameters;  WOH and  UIH are the weights between the hid-
den and output layers and the input and hidden layers;  TO 
and  TH are the bias values of the output and hidden layer 
neurons, respectively.

Genetic algorithm (GA) optimization was carried out 
using the Global optimization toolbox of MATLAB (ver-
sion R2022a, The Math Works, Inc., USA). The population 
type (double vector), size (200), and crossover fraction (0.8) 
were the primary parameters chosen for GA optimization. In 
addition, the creation function, fitness scaling function, selec-
tion function, crossover function, and mutation function were 
selected as feasible population, rank, roulette function, scat-
tered, and adaptive feasibility, respectively [21]. The fitness 

(3)yi = purelin
{

WOH × transig ×
(

UIH × xi + TH
)

+ TO
}
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function (f) was generated to maximize all output responses 
and is shown below.

where  Y1,  Y2, and  Y3 are the ANN-predicted actual values 
of responses, and the negative sign shows the maximization 
of the specified function (f) in GA.

Statistical analysis

The evaluation of the RSM and ANN models was con-
ducted by employing various statistical metrics, includ-
ing the coefficient of determination  (R2), average absolute 
deviation (AAD), mean square error (MSE), normal mean 
square error (NMSE), mean percentage error (MPE), root 
mean square error (RMSE), and normal root mean square 
error (NRMSE). These parameters were calculated using the 
respective equations associated with each evaluation crite-
rion. The model exhibiting the lowest values for the Average 
Absolute Deviation (AAD), Mean Squared Error (MSE), 
normalized Mean Squared Error (NMSE), Root Mean 
Squared Error (RMSE), Normalized Root Mean Squared 
Error (NRSME), and the highest value for the coefficient of 
determination  (R2) is deemed to be the most effective model 
for accurately representing the responses.

(4)f = −
(

Y
1
+ Y

2
+ Y

3

)

(5)R2 = 1 −

∑
�

Xp − Xa

�

∑
�

Xp − Xa

�2

(6)AAD =

∑

�Xp − Xa�

n

where  xp is the predicted data,  xa is the experimental data, 
 xm is the mean experimental data, and n is the number of 
experiments.

Results and discussion

RSM modeling

The independent variables chosen for this study were power, 
treatment time, and feed-to-solvent ratio. These variables 
were investigated to determine their impact on the levels of 
three bioactive compounds TPC, TFC, and AA in the leaves 

(7)MSE =

∑
�

Xp − Xa

�2

n

(8)NMSE =
MSE

Xm

(9)MPE =
100

n

∑

|

Xp − Xa

Xp

|

(10)RMSE =

�

∑
�

Xp − Xa

�2

n

(11)NMRSE =
RMSE

Xm

Fig. 1  The input and output layers of the proposed ANN model
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of B. alba using MAE. The predicted and experimental val-
ues of all the dependent parameters were recorded and are 
presented in Table 2. The effect of process parameters on 
response variables is shown in Fig. 2. The multiple linear 
regression equations developed were evaluated using statisti-
cal parameters like   R2, predicted  R2, and adjusted  R2. All 
regression models showed higher  R2 value above 0.9 and the 
lack of fit was insignificant.

The equations presented below represents the second-
order polynomial regression models showing the relation-
ship between dependent and independent variables of the 
study.

Fig. 2  RSM plots showing the effect of independent variables on TPC (a–c), TFC (d–f), and AA (g–i)
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where A, B, and C are the coded form of the independent 
variables, microwave power, treatment time, and feed-to-
solvent ratio, respectively.

Effect of process variables on total phenolic content

The variation in TPC during different treatment combina-
tions of the MAE process is presented in Table 2. The 
maximum value of TPC (5.46 mg GAE  g−1) was observed 
at 200 W for 5 min and the minimum value (2.64 mg 
GAE  g−1) at 200 W for 10 min. Initially TPC value gradu-
ally decreased with the power (up to 200 W) and as the 
power level increased further to 300 W, it showed an 
increasing trend. It is also evidenced in RSM plots that 
TPC gradually decreased initially to 4.5–5 mg GAE  g−1 
value up to 200 W after which it increased to 3.5–4 mg 
GAE  g−1 up to 300 W. In a study on Pistacia lentiscus 
leaves, Dahmoune et al. [22] also reported an increase in 
phenols recovery initially due to increased heat and mass 
transfer phenomena up to a certain power level (300 W), 
and subsequently they also observed degradation of phe-
nolics due to thermal effects at increasing densities. In 
another study, Song et al. [23] reported that the phenolics 
contents increased when treated at higher power for a short 
time in Ipomoea batatas leaves. As the ratio of feed to sol-
vent is decreased, an increase in the TPC  was observed. In 
addition, the TPC values tend to increase over time, indi-
cating a positive correlation between prolonged exposure 
time and TPC levels.

(12)

TPC =2.75 − (0.007 × A) − (0.14 × B) + (0.55 × C)

+ (0.13 × A × B) + (0.17 × A × C)

− (0.34 × B × C) +
(

1.08 × A
2
)

+
(

0.96 × B
2
)

+
(

0.67 × C
2
)

(13)

TFC =8.78 − (0.98 × A) + (0.17 × B) + (1.23 × C)

+ (0.44 × A × B) − (2.104 × A × C)

− (0.018 × B × C) + (1.26 × A × A)

− (0.89 × B × B) + (0.53 × C × C)

(14)

AA =80.16 + (0.03 × A) − (0.03 × B)

+ (0.04 × C) + (0.01 × A × B)

+ (0.03 × A × C) − (0.04 × B × C)

+ (0.001 × A × A) + (0.01 × B × B)

+ (0.02 × C × C)

Effect of process variables on total flavonoid 
content

The maximum value of TFC (9.65 mg QE  g−1) was obtained 
at 300 W for 10 min and the minimum (7.37 mg QE  g−1) was 
obtained at 100 W for 10 min. As evident from the RSM 
plots, the TFC value decreased with an increase in power 
level and treatment duration. The observed phenomenon of a 
decrease in TFC is due to flavonoid decomposition at higher 
temperatures [24]. Similar results have been observed by 
Pan et al. [25] and Jokić et al. [26]. At higher temperatures, 
glycosidic linkages in flavonoid molecules hydrolyze, gen-
erating unstable intermediate compounds like aglycones, 
semiquinoids, etc. that easily oxidize to generate brown, 
high molecular weight compounds [27, 28].

Effect of process variables on antioxidant activity

The antioxidant activity (AA) is calculated in terms of gal-
lic acid equivalent (GAE). The AA of MAE samples were 
higher than the control samples. The highest value of AA 
(0.12 mg GAEAC  g−1) was observed for 200 W treated 
samples for 5 min. AA increased with power and time and 
decreased with the feed-to-solvent ratio as it is mentioned in 
Fig. 2. Similar results were reported in the MAE of Buddleia 
officinalis where the antioxidant value is gradually increas-
ing with the power and time [25].

Table 3  Model equation coefficients and statistical parameters of the 
design

Coefficient TPC TFC AA

β0 2.75 8.78 0.16
β1 0.01 − 0.98 0.03
β2 − 0.14 0.17 − 0.03
β3 0.55 1.23 0.04
β1 β2 − 0.13 0.44 0.01
β1 β3 0.17 − 2.10 0.04
β2 β3 − 0.34 − 0.02 − 0.04
β1

2 1.08 1.26 0.00
β2

2 0.96 − 0.89 0.01
β3

2 0.68 0.53 0.02
Model (F-value) 139.14 6.29 9.29
R2 0.99 0.89 0.92
Adj.  R2 0.99 0.75 0.82
C.V. (%) 2.84 10.24 13.50
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RSM optimization

RSM was used to maximize the bioactive recovery of TPC, 
TFC, and AA form B. alba leaves. The regression coeffi-
cients as well as other statistical parameters like F-values, 
coefficient of determination  (R2), adjusted  R2, and coeffi-
cient of variation (CV) are summarized in Table 3. Besides, 
additional statistical parameters AAD, MSE, NMSE, RSME, 
NRSME, and MPE were shown in Table 4. High  R2 con-
firmed shows good accuracy of the model. The high degree 
of correlation is confirmed between the predicted and the 
experimental values as the adjusted  R2 values are nearly 
identical to the  R2 values. Additionally, the CV in every 
instance was less than 5%, confirming the model’s great 
reproducibility and good precision. According to Abdul-
lah et al. [21], for a model to be considered preferable, its 
 R2 value must be greater than 0.80. From Table 3, the  R2 
and adjusted  R2 values of TPC, TFC, and AA were 0.99 mg 
GAE  g−1, 0.89 mg QE  g−1, and 0.92 mg GAEAC  g−1, dem-
onstrating the acceptable fit of the developed model. Fur-
thermore, the lowest values of the other statistical param-
eters (Table 4) confirm the model’s acceptability. The lack 
of fit of all three responses was equally non-significant.

ANN modeling

Model fitting

The TPC, TFC, and AA were estimated using the help of 
the Levenberg–Marquardt (LM) algorithm within an ANN 
framework. The selection of the optimal model was based 
on the criteria of minimizing the MSE and maximizing  R2 
value. The selected model for TPC, TFC, and AA, which 
was obtained at epochs 5, 4, and 8, respectively, demon-
strates a final architecture. This architecture consists of 
an input layer with three neurons, a hidden layer with 10 
neurons, and an output layer with one neuron for each 
response. The visual representation of this architecture 
can be observed in Fig. 1. To achieve the most rigorous 
validation, the 17 datasets were partitioned into three dis-
tinct sets during the experimental runs. In the context of 

TPC, the training dataset consisted of experimental runs 
3, 4, 6, 7, 9, 10, 11, 12, 13, 14, and 17. The  R2 values of 
the training, validation, and testing were 0.9865, 0.9715, 
and 0.9929, and the MSE value of these runs were 0.0302, 
0.0796, and 0.1421, respectively. Similarly, for TFC, the 
experimental runs 1, 2, 3, 4, 6, 7, 8, 11, 13, 14, 16, and 
17 were used for training 11 observations for validation, 
and 3 observations for testing, respectively. The corre-
sponding  R2 values for training, validation, and testing 
were 0.9983, 0.9808, and 0.9431, and MSE values were 
0.0018, 0.0433, and 2.7121, respectively. In the same 
manner, the experimental runs 2, 3, 4, 6, 7, 8, 11, 12, 
14, 15, and 17 were used for training 11 observations for 
validation 3 observations for testing, respectively used for 
the modeling of the antioxidant activity. The correspond-
ing  R2 for training, validation, and testing were 0.9913, 
0.9725, and 0.8682, and MSE values were 0.001, 0.001, 
and 0.0079, respectively. The confirmation of ability of the 
developed artificial neural network (ANN) model to pre-
dict unknown data is evidenced by the observed decrease 
in mean squared error (MSE) and increase in R-squared 
 (R2) values. Figure 3 shows the performance and error 
histogram of the model that has been developed. The opti-
mization of the Artificial Neural Network (ANN) was con-
ducted through the assessment of the output with the input 
data. The utilization of weights was employed to minimize 
the error function during the optimization procedure. The 
weights and bias values of the final model are presented 
in Eqs. 15–26. The post-training performance and error 
histogram of the responses are presented in Fig. 3.

Table 4  Summary of all 
statistical parameters (AAD, 
MSE, RSME, NMSE, NRSME, 
MPE, and  R2) of variable 
parameters

Coefficient TPC TFC AA

RSM ANN RSM ANN RSM ANN

AAD 0.057 0.034 0.196 0.299 0.006 0.004
MSE 0.747 0.03 7.598 1.009 0.007 0.00
RMSE 0.864 0.780 2.756 1.004 0.086 0.028
NMSE 0.187 0.153 0.843 0.111 0.044 0.004
NRMSE 0.217 0.196 0.305 1.002 0.509 0.167
MPE 2.152 0.748 3.210 1.448 6.451 2.473
R2 0.990 0.990 0.889 0.998 0.922 0.991
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Fig. 3  Post-training performance and error histogram of TPC (a, d), TFC (b, e), and AA (c, f) of generated artificial neural network model
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where U denotes bias values, W denotes the values of the 
weights, TH is the threshold value between the input and 
hidden layer, and TO is the threshold value between the hid-
den and output layer. Suffixes a, b, and c to represents the 
TPC, TFC, and AA, respectively.

GA optimization

The optimization process involved the use of a genetic algo-
rithm (GA) to maximize the extraction efficiency of TPC, 
TFC, and AA. The independent parameters, namely MW 
power, treatment time, and feed-to-solvent ratio were sub-
jected to optimization through the GA methodology. The 
optimization process was pursued until achieving signifi-
cantly reduced values of the MSE and RSME between the 
mean and individual fitness values. The optimization cycle 
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(20)
TOa = |0.4834| TOb = |−0.5895| TOc = |−0.2907|,

Table 5  Optimized of extraction 
conditions for maximum 
bioactive recovery from B. alba 
leaves

Methods Optimized conditions TPC (mg GAE  g−1) TFC (mg QE  g−1) AA (mg GAEAC 
 g−1)

A B C Predicted Actual Predicted Actual Predicted Actual

RSM 100 5 0.05 6.21 5.77 14.29 12.03 0.25 0.20
ANN 100 8.162 0.039 6.23 6.01 11.2 11.06 0.24 0.23
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was repeatedly pursued following the introduction of muta-
tion. If the desired solution was not achieved, the entire pop-
ulation was once again employed for reproduction, crosso-
ver, and mutation in subsequent cycles. By the application 
of GA, the optimum conditions for the MAE of bioactive 
components from B. alba were obtained in 142 iterations 
and are given as follows: MW power of 100 W, treatment 
time of 8.162 min, and feed-to-solvent ratio of 0.039. The 
predicted values of the response variables generated using 
the developed ANN model were presented in Table 5. The 
obtained optimal process parameters were evaluated experi-
mentally and measured responses were found to be, 6.01 mg 
GAE  g−1 TPC, 11.06 mg QE  g−1 TFC, 0.23 mg GAEAC 
 g−1 AA. These experimental values aligned well with the 
predicted values, demonstrating the developed ANN-GA 
model’s good prediction and optimisation abilities.

Conclusion

In this study, the microwave-assisted aqueous extraction of 
bioactive components from B. alba was investigated. The 
effect of MAE conditions on the response variables (TPC, 
TFC and AA) was analyzed, predicted, and optimized by 
RSM and ANN-GA technique. The predicted values of TPC, 
TFC, and AA extracted using RSM are 6.21 mg GAE  g−1, 
14.29 mg QE  g−1, and 0.25 mg GAEAC  g−1, respectively, 
whereas using ANN-GA were 6.23 mg GAE  g−1, 11.2 mg 
QE  g−1, and 0.24 mg GAEAC  g−1, respectively. Both the 
generated ANN and RSM models were highly predictive. 
However, the ANN model outperformed the RSM model, 
with a higher  R2 and lower AAD, MSE, NSME, RSME, 
NRSME, and MPE values. Thus, it can be inferred that the 
ANN-GA model is an efficient quantitative tool for optimiz-
ing the process parameters for the MAE of B. alba.

Data Availability Not applicable.
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