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Abstract
In recent years, image recognition technology based on deep learning has become a research hotspot in smart agriculture. 
Aiming at the problem of dataset insufficient in fine-grained fruit object detection, a class mixed fine-grained fruit image 
object detection dataset ZFruit is constructed covering clean, natural and complex backgrounds. At the same time, in view 
of the current fruit image detection and recognition algorithm with high complexity, large parameters, and difficulty in 
high precision and lightweight detection of fine-grained fruits in different environments, this paper proposes a lightweight 
fruit recognition network model DGCC-Fruit based on YOLOv5. Firstly, a GC-based low-cost feature extraction network 
is proposed by integrating the GhostBottleneck module and the coordinate attention mechanism (CA), which enhances the 
fine-grained feature extraction capability; secondly, a new feature fusion network is constructed by introducing CARAFE 
content-aware upsampling operator to make full use of deep semantic information to improve the detection performance of 
fine-grained fruit images; finally, the model is further optimized by the knowledge distillation strategy. Taking the smallest-
scale model as an example, the experimental results on the self-made dataset ZFruit and the public dataset VOC2007 
show that our DGCC​n-Fruit network has better performance than the original YOLOv5n (ZFruit: + 2.1% mAP@.5, + 1.9% 
mAP@.5:.95; VOC2007: + 5.4% mAP@.5, + 5.5% mAP@.5:.95), with a reduction of about 14% in the parameters and 11% 
in the model size.
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Introduction

Fruit, as one of major agricultural products in the world, is 
loved by people because of its rich nutritional value, and 
sweet and sour taste. Since 1990, the global production and 
output value of major fruits have shown a relatively obvious 
growth trend. At present, fruit production in most develop-
ing countries is dominated by small farmers. Compared with 

the large-scale and specialized processing processes of the 
fruit industry in developed countries, the automation level 
of picking and post-harvest processing is low, and the fruit 
products lack market competitiveness. China is the largest 
fruit producer and consumer in the world [1]. However, due 
to the complex growing environment and the high similarity 
between different fruits, the robot's recognition and position-
ing accuracy is low, which affects the efficiency of fruit pick-
ing and post-harvest processing [2, 3]. As a result, its export 
trade volume is only half of the world average.

Fruit detection and recognition is a very critical part in 
smart agriculture. Many researchers have launched related 
studies, including traditional and deep learning methods. 
The traditional methods [4–6] need to manually design fea-
tures according to the different detected fruits, which has a 
cumbersome process and poor adaptability to fruit color, 
illumination change and occlusion under complex condi-
tions. The deep learning methods use CNNs to automatically 
extract features with more robust and accurate performance, 
and have become a research hotspot. According to differ-
ent design ideas, it can be divided into the following two 
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categories: candidate regions-based, such as R-CNN [7], 
SPPNet [8], Fast-RCNN [9] and Faster-RCNN [10]; regres-
sion-based, such as YOLO [11], SSD [12] and RetinaNet 
[13]. Bargoti et al. [14] proposed a fruit detection system 
based on Faster-RCNN by studying transfer learning and 
data enhancement, which can better detect three types of 
fruits in orchard environment. Borianne et al. [15] also used 
Faster-RCNN to explore the effect of "detection and recog-
nition" fruits under some special heterogeneous conditions, 
with limitations in detecting mango fruits and recognizing 
varieties simultaneously. The methods based on candidate 
regions have greatly improved the accuracy of fruit detection 
tasks, but there are still limitations in detecting fruits and 
recognizing varieties simultaneously, and the staged training 
causes additional time overhead, so the detection speed has 
some gaps from real-time.

The subsequently proposed regression-based methods do 
not have a candidate region stage, and the object location and 
category information can be obtained by regression directly 
on the input image through CNNs, which can achieve real-
time detection speed and gradually become the mainstream, 
among which the most representative is the YOLO series. In 
addition, since large CNNs are difficult to achieve efficient 
mobile deployment, researchers are paying attention to the 
lightweight research of algorithm models, trying to obtain 
higher detection accuracy while designing lightweight 
networks. Zhou et al. [16] used two lightweight networks, 
MobileNetV2 and InceptionV3, to develope a KiwiDetector 
APP based on SSD, and used 8-bit quantization method to 
compress the model to improve the detection speed. Tian 
et al. [17] proposed an improved YOLOv3 model using 
DenseNet, which can effectively improve the detection of 
apples under occlusion. Koirala et al. [18] compared six 
object detection algorithms, and finally constructed a Man-
goYOLO network based on YOLOv2-tiny and YOLOv3, 
which performs well in real-time detection of mango fruits. 
Chen et al. [19] proposed an improved YOLOv4 method 
by introducing ResNet to avoid gradient disappearance, and 
using the Mish loss function and Mosaic method to enhance 
small object recognition, which outperforms Faster R-CNN, 
YOLOv3 and the original YOLOv4 for rapid detection of 
citrus species and locations. Yang et al. [20] proposed a 
BCo-YOLOv5 network based on YOLOv5s and BCAM 
attention mechanism, which realized effective detection of 
citrus, apples and grapes in orchards. Wang et al. [21] pro-
posed a SM-YOLOv5 detection model by using the light-
weight network MobileNetV3-Large as backbone and adding 
a small object detection layer for object detection of tomato 
picking robots in plant factories. Li et al. [22] proposed an 
improved YOLOv5 method for apple recognition in natural 
environments by using a depthwise separable convolution to 
achieve lightweight and adopting a visual attention mecha-
nism to solve non-attentional preferences and parameter 

redundancy. Zhang et  al. [23] proposed a YoloV5-Gap 
method by modifying Conv layer to Focus layer, changing 
C3 structure layer to better extract global feature informa-
tion, increasing network jump connection, and dynamically 
controlling the degree of nonlinearity using an adaptive acti-
vation function, which outperforms the YOLOv4, YOLOv5 
and YOLOv7 for fast and accurate of grape detection in an 
orchard environment. Lai et al. [24] proposed an improved 
YOLOv7 method by adopting SimAM attention mechanism 
to improve feature extraction ability, improving maximum 
pool convolution structure to reduce downsampling feature 
loss, and using Soft-NMS algorithm to improve detection 
effect when blocked or overlapped, which realized efficient 
detection of pineapple in complex field environments.

To sum up, many researchers have solved some problems 
in the field of fruit detection and recognition, but the cur-
rent research mainly focuses on some specific categories of 
fruits, and there are few studies on subcategories. However, 
fine-grained fruit detection and recognition technology has 
broad application prospects in orchard smart management, 
smart catering, smart retail and other fields. The only few 
fine-grained fruit detection studies have problems such as 
low accuracy and few dataset categories, mainly due to the 
following two reasons: first, due to the complex growing 
environment, the great similarity between different varie-
ties of fruits, and the high variability of fruit appearance 
owing to lighting, occlusion and other reasons, the network 
is required to capture subtle discriminative local features; 
second, the labeling of detection datasets is more cumber-
some with expert knowledge than classification datasets, so 
the existing research on fine-grained fruits mainly focuses 
on classification datasets, and lacks relevant detection data-
sets. To this end, in this paper, a fine-grained fruit image 
dataset ZFruit containing different scenes is constructed, 
on which a more efficient and lightweight fine-grained fruit 
recognition model DGCC-Fruit is designed. Aiming at the 
defects of high complexity, large parameters, and difficulty 
in lightweight detection, our DGCC-Fruit improves image 
detection and recognition accuracy, and provides new ideas 
for the research of deep learning in fruit image recognition. 
The main contributions of this paper are as follows:

(1)	 In order to solve the lack of public datasets for fine-
grained fruit detection and recognition research, a sin-
gle-multi-class mixed fine-grained fruit image object 
detection dataset ZFruit with clean, natural and com-
plex backgrounds is constructed.

(2)	 Aiming at the difficulty of existing networks in extract-
ing discriminative features from similar fine-grained 
fruits and the large number of parameters in industri-
alization, a GC-based feature extraction network is pro-
posed to focus on the key features of fine-grained fruit 
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images to improve the model detection performance in 
a cost-effective way.

(3)	 Aiming at the low detection accuracy of the existing 
model for fine-grained fruit images, a feature fusion 
network based on CARAFE is proposed, which makes 
full use of the deep semantic information to more effec-
tively retain the fine-grained fruit features, and the 
knowledge distillation strategy is used to improve the 
model detection accuracy.

Methodology

This paper constructs a fine-grained fruit image object detec-
tion dataset ZFruit, improves YOLOv5 algorithm, and pro-
poses a new lightweight fruit recognition network to accu-
rately predict fine-grained fruit in different environments. 
Firstly, a GC-based key feature extraction network is pro-
posed by integrating the GhostBottleneck and CA module 
to improve the detection performance at a lower cost; sec-
ondly, a CARAFE-based feature fusion network is proposed 
by introducing CARAFE content-aware upsampling opera-
tor to better utilize the semantic information of the feature 
maps and retain the fine-grained fruit features; finally, the 
knowledge distillation strategy is used to further optimize 
the model. The structure of our model DGCC-Fruit is shown 

in Fig. 1. In order to adapt to different application require-
ments, the model introduces the Bottleneck series scaling 
factor depth_multiple in the C3 layer and the channel num-
bers scaling factor width_multiple to control the network 
depth and width respectively. Five different scale models 
are constructed, and the specific configurations are shown 
in Table 1.

Feature extraction network based on GC

The feature extraction network based on YOLOv5 consists 
of three modules: CBS, C3 and SPPF. It mainly uses ordi-
nary convolution operations for feature extraction, lacking 
special attention to important features, making it difficult to 
extract discriminative features from similar features of fine-
grained fruits, and with large parameters. GhostBottleneck 
module can reduce redundant feature computation in feature 
maps by 1 × 1 convolution and 5 × 5 depthwise convolution, 
and CA attention mechanism can focus on fine-grained fruit 

Fig. 1   DGCC-Fruit network structure

Table 1   Configurations of different scale models

Model scale x l m s n

depth_multiple 1.33 1.00 0.67 0.33 0.33
width_multiple 1.25 1.00 0.75 0.50 0.25
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key features with high weight, so as to obtain more effec-
tive location and category information. Therefore, this paper 
optimizes the network in a low-cost way by embedding the 
GC module (GhostBottleneck + CA) to improve the detec-
tion performance for fine-grained fruit. The final network 
structure is shown in Fig. 2.

CBS module: CBS is a standard convolution module, 
including the convolution (Conv) layer, batch normaliza-
tion (BN) layer, and SiLU activation function. Among them, 
Conv(kernel = 6, stride = 2, padding = 2) is used in the CBS 
of the first layer of the network to replace the Focus layer in 
the previous version to facilitate model export and improve 
computational efficiency; the BN layer is used to speed up 
the training and convergence of the network, preventing gra-
dient disappearance and overfitting; SiLU activation func-
tion can be regarded as a smoother ReLU activation function 
to increase the nonlinear expression ability of the model.

C3 module: C3 is the main module for learning residual 
features, including three CBS modules and multiple Bot-
tleneck modules. This module can reduce the repetition of 
gradient information in the optimization process of CNNs, 
and improve the feature extraction ability of the network 
while reducing the amount of calculation.

SPPF module: SPPF is a fast spatial pyramid pooling 
module, which consists of two CBS modules and three 

concatenated max-pooling layers with the same kernel size. 
This module increases the receptive field of the network, 
integrates local features with global features, and enriches 
the expressive ability of feature maps, which is conducive to 
the detection of objects with large differences in size. It has 
lower calculation and faster running speed than SPP.

GhostBottleneck module: Similar to the basic residual 
block in ResNet, it mainly consists of two stacked Ghost-
Conv and depthwise convolution (DWConv), with the 
structure shown in Fig. 3. Compared with the ordinary con-
volution downsampling operation, this module can greatly 
reduce the parameters while ensuring the network recogni-
tion effect.

GhostConv is mainly derived from Ghost Module in the 
lightweight network GhostNet [25]. Due to the large redun-
dant features in the feature map, Ghost Module applies a 
series of cheap linear transformations to obtain similar fea-
tures in the original feature map, and generates feature maps 
with fewer parameters to reduce the computational cost of 
CNNs. The GhostConv in the GhostBottleneck module is a 
Ghost Module with a 5 × 5 linear kernel. It is mainly divided 
into two steps. First, a set of 1 × 1 convolutions are used to 
reduce the number of channels and generate some inherent 
feature maps to avoid the high parameters caused by the 
subsequent high number of channels. Then, a 5 × 5 DWConv 

Fig. 2   Feature extraction network based on GC
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is used to enhance the number of features and channels by 
using a series of simple linear operations, so as to restore the 
number of channels for final stitching.

Different from ordinary convolution, DWconv performs 
convolution operation on each channel of the input layer 
independently. The number of output feature maps is the 
same as the number of input channels with lower parameters 
and computational costs. The downsampling operation in the 
GhostBottleneck module is implemented by a DWconv with 
stride 2, which lacks interaction on the channel. Therefore, 
after the DWconv of the lower branch, a 1 × 1 convolution is 
used to exchange channel information and change the num-
ber of channels to match the upper branch. Drawing on the 
idea of MobileNetV2 [26], this module only uses the SiLU 
activation function in the first GhostConv to avoid informa-
tion loss caused by nonlinear activation functions. It was 
also pointed out in Xception [27] that it is better not to use 
the activation function after DWconv.

CA module: CA [28] is a lightweight and efficient atten-
tion mechanism, which mainly consists of two average pool-
ing layers and three convolutional layers, with the structure 

shown in Fig. 4. The module can simultaneously capture 
cross-channel and direction-aware information to more accu-
rately locate and recognize the region of interest, suppress 
background interference, and enhance the feature extraction 
ability of fine-grained fruit in different environments.

In the fine-grained fruit task, it is difficult to achieve cor-
rect localization and recognition due to the high similar-
ity of different categories of fruits, and different angles and 
background interference of the same category. The attention 
mechanism makes the network selectively pay attention to 
key features by focusing on basic features and suppressing 
unnecessary features, which can effectively improve the 
network representation ability. Currently, the SE [29] atten-
tion mechanism commonly used in lightweight networks 
only considers internal channel information and ignores the 
importance of positional information. And the CBAM [30] 
attention mechanism introduces local positional information 
by global pooling on channels, which cannot obtain the long-
range dependent information. The CA attention mechanism 
solves the above problems by embedding positional informa-
tion into the channel attention, so that the network can obtain 

Fig. 3   GhostBottleneck module

Fig. 4   CA module
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long-range dependent information while avoiding excessive 
computation. Therefore, this paper integrates the CA module 
in the feature extraction network to make the network focus 
on the distinctive and important features of the fine-grained 
fruit to more accurately locate and recognize.

First, in order to avoid the loss of positional information 
caused by the traditional two-dimensional global pooling, 
for each channel xc of the input X with dimension (C, H, W), 
according to formula (1), the two-dimensional global pool-
ing is decomposed into a pair of one-dimensional feature 
encodings by the pooling kernels of (H, 1) and (1, W), and 
the output of the c-th channel with height h and width w is 
shown in formula (2) and (3). They aggregate features along 
two spatial directions to generate a pair of direction-aware 
feature maps that allow the attention module to capture long-
range dependencies along one spatial direction and preserve 
precise positional information along the other.

Then the pair of one-dimensional feature encodings is 
spliced along the spatial dimension, and transformed through 
the 1 × 1 convolution transformation function F1 , as shown in 
formula (4). Among them, δ is the H-Swish activation func-
tion,  f  is the intermediate feature map encoded by spatial 
information in the horizontal and vertical directions, and r 
is the reduction rate of the number of channels to reduce the 
complexity and computational overhead of the model.

Then f  is decomposed into two independent tensors 
f h and f w along the spatial dimension, and f h and f w are 
transformed into tensors with the same number of channels 
through the 1 × 1 convolution transformation functions Fh 
and Fw respectively, as shown in formula (5) (6). Among 
them,  � is the sigmoid activation function, and gh and gw 
are the attention weights of the input feature map on the 
height and width.

(1)zc =
1

H ×W

H
∑
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W
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j=1

xc(i, j)

(2)zh
c
(h) =

1

W
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1

H

H−1
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]))
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(

f h
))
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C

r
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)
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r
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Finally, a feature map with attention weights on the height 
and width directions is obtained by multiplicative weight-
ing calculation on the original feature map, that is, the final 
output yc(i, j) of the CA attention mechanism, as shown in 
formula (7).

Feature fusion network based on CARAFE

The feature fusion network based on YOLOv5 adopts the 
structure of FPN and PAN, where FPN conveys strong 
semantic features from top to bottom, and PAN conveys 
strong localization features from bottom to top. The Fusion 
of the extracted semantic and localization features enables 
the network to obtain richer feature information. Since the 
current network cannot fully utilize the multi-scale spa-
tial features of fruit, the upsampling in the model cannot 
be adaptively generated, resulting in poor performance on 
fine-grained fruit detection. The CARAFE [31] operator can 
generate upsampling kernel adaptively according to input 
by operations such as convolution, PixelShuffle and feature 
reassembly, which is both lightweight and efficient. There-
fore, in this paper, the content-aware upsampling operator 
CARAFE is introduced in the feature fusion stage to com-
bine with the GC-based feature extraction network to better 
utilize the multi-scale spatial information of fine-grained 
fruit, and adaptively generate upsampling kernels based on 
different fine-grained fruit input features to improve detec-
tion accuracy. The final network structure is shown in Fig. 5.

The purpose of upsampling is to expand the image reso-
lution. At present, two methods of interpolation and trans-
posed convolution are commonly used for upsampling. 
The interpolation method directly predicts unknown pixels 
based on known pixels, which only considers the sub-pixel 
neighborhood and cannot obtain sufficient semantic infor-
mation. The transposed convolution allows the network to 
automatically learn the weights of the convolution kernel by 
introducing parameters to better restore the image resolution. 
However, the application of the same upsampling kernel on 
the entire image limits its responsiveness to local changes 
and brings a lot of parameters. The CARAFE upsampling 
operator is introduced for adaptively obtaining high-quality 
upsampling. It can not only make full use of the deep net-
work to extract the semantic information of fine-grained fruit 
feature maps, but also aggregate feature information in a 
larger receptive field with fewer parameters and calculations, 
with the structure shown in Fig. 6.

CARAFE consists of two key modules: kernel prediction 
and content-aware reassembly. The former is responsible for 
the prediction of the upsampling kernel. First, the channel of 
the fruit image input feature map X (H, W, C) is compressed 

(7)yc(i, j) = xc(i, j) × gh
c
(i) × gw

c
(j)
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into Cm through 1 × 1 convolution to reduce the amount of 
calculation; then the feature map obtained is encoded by 
kencoder × kencoder convolution to obtain a feature map of size 
(H, W, �2k2

up
 ), where σ is the multiple of upsampling and kup 

is the size of the upsampling kernel; then the feature map is 
expanded in the spatial dimension according to the channel 
dimension to obtain a new feature map of size ( �H , �W , 
k2
up

 ); finally, the softmax operation is used for normalization, 
so that the sum of the predicted upsampling kernel weights 
is 1. The latter is responsible for the reassembly of features. 
It mainly obtains the upsampling features of the correspond-
ing pixels through multiplicative weighting calculation. For 
any pixel X′

l
 on the output feature map X′ of the fruit image, 

it can be obtained by the weighted summation of the kup 
neighborhood pixels of Xl in the input feature map X and 

the upsampling kernel W ′

l
 in the prediction module. By intro-

ducing the CARAFE content-aware upsampling operator, 
the feature fusion network can better integrate multi-scale 
fine-grained fruit features and promote the transmission of 
contextual semantic information to enhance the ability of 
feature expression.

Model optimization based on knowledge distillation

Knowledge distillation was first proposed and applied 
to classification tasks [32]. It adopts the Teacher-Student 
learning strategy to achieve model compression, uses the 
soft labels trained by the strong teacher model to assist 
the student model training, and transfers the dark knowl-
edge in the complex model to the simple model to improve 

Fig. 5   Feature fusion network based on CARAFE

Fig. 6   The network structure of CARAFE
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performance. In model compression, pruning and quantiza-
tion can reduce the model accuracy, while knowledge distil-
lation has been proved to be an effective solution for model 
compression, which can improve detection accuracy without 
increasing model size. Therefore, we optimize the model 
through the method and transfer the knowledge of the larg-
est fine-grained fruit recognition model to the small-scale 
models, so the models have better detection performance 
with lightweight.

Our proposed DGCC-Fruit network is a single-stage net-
work architecture based on regression, without background 
filtering, so it needs to directly process candidate regions 
containing large backgrounds. In the process of knowledge 
distillation, if numerous backgrounds are passed to the 
student network, it will cause the network to continuously 
regress the coordinates of the backgrounds, and the model 
will be difficult to converge. In addition, if the teacher net-
work is too complex, the performance of the student network 
will decline without sufficient learning ability. Therefore, 
this paper draws on the idea of objectness scaled distillation 
[33] to solve the category imbalance caused by background 
candidate regions and the idea of teacher assistant knowl-
edge distillation [34] to solve the low efficiency when the 
gap between teacher and student networks is too large.

Through the objectness scaled distillation, the objectness 
output of DGCC-Fruit is used to limit the distillation loss. 
Only the candidate boxes with high objectness values from 
the teacher network can learn the class probabilities and 
bounding box coordinates, and then contribute to the final 
loss function of the student network. The final prediction 
output of the DGCC-Fruit network is the objectness values, 
class probabilities and bounding box coordinates. The total 
loss Ltotal can be decomposed into three parts: objectness 
loss fobj , classification loss fcl and regression loss fbb , as 
shown in formula (8).

where ôi, p̂i, b̂i represent the objectness, class probability and 
bounding box coordinates of the student network respec-
tively, and ogt

i
, p

gt

i
, b

gt

i
 represent the values derived from the 

ground truth.
When performing knowledge distillation on the network, 

the loss function consists of two parts, one is the detection 
loss generated by the student model and the ground truth, 
and the other is the distillation loss generated by the student 
model and the teacher model. After distillation, the object-
ness loss is f Comb

obj
 , the classification loss is f Comb

cl
 , the regres-

sion loss is f Comb
bb

 , and the total loss function is LDGCC−Fruit , 
as shown in formulas (9)–(12).

(8)Ltotal = fobj
(

o
gt

i
, ôi

)

+ fcl
(

p
gt

i
, p̂i

)

+ fbb

(

b
gt

i
, b̂i

)

,

where oT
i
, pT

i
, bT

i
 represent the objectness, class probability 

and bounding box coordinates of the teacher network respec-
tively; �D is the balance coefficient of distillation loss, which 
is 1 by default; ôT

i
 is the objectness score of the teacher net-

work, which is used as a weight to suppress the learning of 
the background box by the student network.

Through teacher assistant knowledge distillation, a bet-
ter knowledge distillation effect can be achieved by using 
medium-sized teaching assistant models for multi-step 
knowledge distillation operations to bridge the gap between 
teachers and students. When the gap between the teacher and 
student networks is too large, the student network can learn 
through the soft labels of the teaching assistant more effec-
tively than the teacher model. In this paper, the improved 
model without knowledge distillation optimization is named 
GCC-Fruit, and the corresponding models of different scales 
are named GCCx�l�m�s�n-Fruit. As the largest fruit recogni-
tion model, GCCx-Fruit can achieve the best results in the 
experiment, but it has large parameters and model size.

Therefore, this study uses GCCx-Fruit as the teacher 
model and DGCCl�m�s�n-Fruit as the student model. By 
learning the knowledge of GCCx-Fruit, the small-scale fruit 
models have better detection performance. When DGCCl

-Fruit is a student model, since it is only twice as different 
from GCCx-Fruit, the teacher assistant model is not used 
to assist distillation. However, the difference between the 
subsequent model and GCCx-Fruit is too large, the previous 
model is needed to assist distillation. For example, when 
DGCCm-Fruit is a student model, DGCCl-Fruit is used as a 
teacher assistant model to assist distillation; when DGCCs

-Fruit is a student model, DGCCl-Fruit and DGCCm-Fruit 
are used as teacher assistant models to assist distillation, and 
so on. In this experiment, the student model is trained from 
the pretrained model to reduce the overhead of distillation 
training, as shown in Fig. 7.

(9)
f Comb
obj

(

o
gt

i
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, ôT

i

)

= fbb(b
gt

i
, b̂i) + ôT
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Experiments

Datasets

The self-made dataset in this paper was collected at the kiwi 
experimental station of Northwest Agriculture and Forestry 
University in Meixian County, Shaanxi Province, Kengzi 
experimental base of Shenzhen Agricultural Science and 
Technology Promotion Center, Nansha headquarters of 
Guangzhou Academy of Agricultural Sciences and other 
bases. Firstly, the fruit varieties were identified by profes-
sionals, and then the fruit images were collected by ordi-
nary cameras. After the collection, these data was labeled 
by LabelImg software with fruits marked by the minimum 
circumscribed rectangle, and annotation files in txt format 
were generated, which contains the fruit categories, x and y 
coordinates of the center point and their width w and height 
h relative to the image. The dataset ZFruit produced in this 
paper contains five fruit categories and thirty-one fine-
grained sub-categories fruits (ten kinds of kiwifruit, twelve 
kinds of tomatoes, four kinds of watermelons, three kinds of 
pomelos, and two kinds of navel oranges), covering single-
class and multi-class mixed fruit image data in clean, natural 
and complex backgrounds, with a total of 41,799 images, 
including 154,569 fruit objects, and are divided into training 
set and test set according to the ratio of 7:3. On this basis, 
the dataset is augmented during training through homogene-
ous enhancements such as HSV, rotation, translation, scal-
ing, and flipping transformation, as well as heterogeneous 
enhancements such as Mosaic, Mixup, and Copy-Paste. Part 
of the dataset is shown in Fig. 8, an example of data annota-
tion is shown in Fig. 9, the detailed information of the data-
set is shown in Fig. 10(a), and the data enhancement effect 
is shown in Fig. 11. In addition, this study also selected the 

object detection public dataset Pascal VOC 2007 to test the 
generality of the model. The dataset covers 20 categories 
with a total of 9,963 images, including 5,011 training images 
and 4,952 testing images, containing 30,638 sample objects, 
and the detailed information is shown in Fig. 10(b).

Experimental setting

The experimental environment is shown in Table 2. Dur-
ing the experiment, the stochastic gradient descent method 
(SGD) is used to optimize the training network, and the War-
mup and cosine annealing algorithms are used to dynami-
cally adjust the learning rate. The parameter settings of the 
training part are shown in Table 3.

Evaluation metric

In order to comprehensively and objectively evaluate the 
performance of the DGCC-Fruit on fine-grained fruit rec-
ognition, four indicators including Average Precision (AP), 
mean Average Precision (mAP), parameter quantity and 
model size are selected for model evaluation. The specific 
calculation formulas are shown in formulas (13)–(16).

(13)Precision =
TP

TP + FP

(14)Recall =
TP

TP + FN

(15)AP = ∫
1

0

PdR

Fig. 7   Experimental process of knowledge distillation
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Among them, TP refers to the number of objects that the 
fruit is in the image and is correctly detected; FP refers to 
the number of objects that the fruit is not in the image but is 

(16)mAP =
1

n

∑n

i=0
APi

incorrectly detected; FN refers to the number of objects that 
the fruit is in the image but is incorrectly detected. AP is the 
area under the Precision–Recall (P–R) curve, n is the total 
number of categories of detected objects, i is the number of 
the current category, and mAP is the mean value of AP for 
all categories. In this paper, mAP@0.5 means mAP when 

Fig. 8   Part of the dataset

Fig. 9   Example of data annotation
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the IoU is 0.5, and mAP@0.5:0.95 represents the average 
mAP over different IoU thresholds (from 0.5 to 0.95 in steps 
of 0.05). The same is true for AP@0.5 and AP@0.5:0.95. 

IoU is the degree of overlap between the model prediction 
box and the ground truth, that is, intersection over union.

Fig. 10   Ranking of the distribution of the number of samples in the ZFruit (a) and VOC2007 (b) dataset
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Experimental results

In order to rigorously verify the advantages of the proposed 
model, this paper firstly conducted the comparison of pro-
posed method, including the performance comparison data 
analysis, visualization comparison of the detection accu-
racy of each category of fine-grained fruit and the detection 
results, and then conducted the detection performance data 

analysis and visualization comparison of different specifi-
cation models of the benchmark network and mainstream 
models on both the homemade dataset ZFruit and the public 
dataset PASCAL VOC 2007, which proved the effectiveness 
of the proposed model.

Comparison of proposed method

To test the effectiveness of the proposed model, taking 
YOLOv5n as an example, a comparative experiment of the 
improved method proposed in this paper was conducted on 
the self-made dataset ZFruit, and the results are shown in 
Table 4, and the bolded part indicates the performance of 
the final proposed model DGCC​n-Fruit.

It can be seen from the experimental results that com-
pared with the original model, the feature extraction integrat-
ing CA module can increase mAP@0.5 and mAP@0.5:0.95 
by 0.9% and 0.5% respectively, under the condition that 
the number of parameters and model size are increased by 
0.6% and 0.3% respectively. Then, the introduction of the 
CARAFE operator for feature fusion can increase mAP@0.5 
and mAP@0.5:0.95 by 1.5% and 1.3% respectively, when 
the number of parameters and model size are increased by 
about 2.7%. It is obvious that both methods bring a slight 
increase in the number of parameters and model size while 
effectively improving the detection accuracy of the model 
for fine-grained fruit images. Therefore, the GhostBottle-
neck module is combined to maintain a lightweight network, 
which can increase mAP@0.5 and mAP@0.5:0.95 by 1.8% 
and 1.6% respectively when the number of parameters and 
model size are reduced by about 14% and 11% respectively. 

Fig. 11   Data enhancement effect

Table 2   Configuration of the experimental environment

Experimental environment Configuration information

OS Ubuntu 16.04 LTS
CPU Intel XeonSilver 4210 CPU @ 2.20 GHz
GPU GeForce RTX 2080 Ti 11 GB*4
Memory 125 GB
ML lib Pytorch
Programming language Python3.8
GPU acceleration env CUDA10.1 and cuDNN7.6.5

Table 3   The setting of training parameters

Name Setting information

Input size of the image 640 × 640
Initial learning rate 0.01
Momentum 0.937
Weight decay coefficient 0.005
Batch 16
Epoch 300 (ZFruit); 600 (VOC)
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On this basis, the final model DGCCn-Fruit is obtained 
by knowledge distillation strategy, which can increase 
mAP@0.5 and mAP@0.5:0.95 by 2.1% and 1.9% respec-
tively, with the same variation in the number of parameters 
and model size as the former. The experimental results show 
that DGCCn-Fruit can effectively improve the detection per-
formance of fine-grained fruits while greatly reducing the 
number of network parameters and model size, which veri-
fies the effectiveness of the model.

The comparison of the detection accuracy of each cat-
egory of fruit before and after the model improvement is 
shown in Fig. 12. The improved model has a better detection 
effect on 31 categories of fruit objects, and the detection 
accuracy of almost all categories has been improved. The 
experimental results further show the effectiveness of the 
improved strategy in this paper.

In order to further verify the advantages of the proposed 
algorithm, fruits in different scenarios were selected to test, 

Table 4   Comparison of 
different methods

CA CARAFE Ghost-
Bottle-
neck

Distill mAP@0.5 (%) mAP@0.5:0.95 
(%)

Params (M) Weights (MB)

89.5 79.3 1.80 3.78
✓ 90.4 79.8 1.81 3.79
✓ ✓ 91.0 80.6 1.85 3.88
✓ ✓ ✓ 91.3 80.9 1.55 3.37
✓ ✓ ✓ ✓ 91.6 81.2 1.55 3.37

Fig. 12   Comparison of detection accuracy of each category of fruit before and after improvement
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including poor lighting conditions, multi-scale objects, close 
overlapping or occlusion of objects, and mixed categories. 
We compared the model detection effects before and after 
improvement, and the experimental results are shown in 
Fig. 13.

As can be seen from Fig. 13, when the fruits are in poor 
light conditions, the algorithm models before and after the 
improvement can correctly predict the position and category, 
but the detection accuracy of our algorithm is higher; when 
there are multi-scale fruit objects, due to the great similarity 
between fine-grained fruit varieties, YOLOv5n has a false 
detection between Huajing5 tomato and 312 egg tomato, but 
our algorithm can correctly recognize; when the fruit objects 
are closely overlapped, YOLOv5n has missed the detection 
of small objects at the overlap, our algorithm can predict bet-
ter; when the fruit objects are occluded, the detection boxes 
of YOLOv5n are significantly larger than the ground truth, 
but our algorithm is more accurate in positioning; when 
there are multiple fruit objects mixed, both algorithms can 
predict different fruit objects, but DGCCn-Fruit has higher 
detection accuracy. It shows that by integrating the GC mod-
ule for feature extraction, introducing the CARAFE opera-
tor for feature fusion, and using the knowledge distillation 
for model optimization, our algorithm better improves the 
localization and recognition accuracy of the model for fine-
grained fruits in different scenarios.

Proposed method versus other models

In order to objectively evaluate the algorithm in this paper, 
we conducted the improvement of YOLOv5 models of dif-
ferent scales and compared them with other mainstream 
algorithms (two-stage Faster-RCNN, single-stage SSD, 
YOLOv4 and the latest U version of YOLOv3, YOLOX 
series and YOLOv7-tiny) on the self-made fine-grained 
fruit dataset ZFruit. The experimental results are shown in 
Table 5. For clearer presentation, the italicized part of the 
table indicates the performance of the improved model opti-
mized without knowledge distillation, and the bolded part 
indicates the performance of the final proposed model. The 
visual comparison is shown in Fig. 14.

According to the experimental results, our improved strat-
egy has good performance in the detection and recognition 
of fine-grained fruit images for YOLOv5 models of different 
scales. Compared with the original model, it greatly reduces 
the number of network parameters and model volume while 
improving the average detection accuracy mAP@0.5 and 
mAP@0.5:0.95. According to the comparison between the 
DGCC-Fruit series models and other mainstream algo-
rithms, the proposed model has better detection accuracy 
with smaller network parameters and model volume. Among 
them, DGCCn-Fruit has the smallest parameter quantity and 
model volume, but its accuracy far exceeds that of advanced 
network models such as Faster-RCNN, SSD, YOLOX-nano, 
YOLOX-tiny, YOLOv4-tiny, YOLOv3-tiny, YOLOX-s and 
YOLOv7-tiny. In terms of model size, DGCCn-Fruit is only 
3.37 MB, which is about 1/33 of Faster-RCNN, 1/60 of SSD, 

Fig. 13   Comparison of model detection results before and after improvement
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1/2 of YOLOX-nano, 1/11 of YOLOX-tiny, 1/7 of YOLOv4-
tiny, 1/5 of YOLOv3-tiny, 1/20 of YOLOX-s and 1/3 of 
YOLOv7-tiny. When we compare the larger-scale DGCC-
Fruit, we can see that compared with the YOLOv3, DGCCs

-Fruit can reduce the number of parameters by about 90%, 
while mAP@0.5 and mAP@0.5:0.95 are increased by 1.3% 
and 0.6% respectively; compared with YOLOv4, DGCCm

-Fruit can reduce the number of parameters by about 71%, 
while mAP@0.5 and mAP@0.5:0.95 are increased by 2.1% 
and 2.2% respectively. It shows that compared with the origi-
nal model and the current mainstream detection algorithm 
models, our DGCC-Fruit not only has better detection per-
formance but also has smaller parameters and model vol-
ume, which greatly reduces the storage cost and is more 
suitable for small embedded terminals.

In addition, to further verify the effectiveness of the pro-
posed model, Frame Per Second (FPS) is used as a real-
time evaluation to compare with the existing model, and 
the comparison results are shown in Fig. 15. DGCCn-Fruit 
compared to Faster-RCNN, SSD, YOLOX-nano, YOLOX-
tiny, YOLOv4-tiny, YOLOX-s and Yolov7-tiny, and DGCCm

-Fruit compared to YOLOv4, they still have certain advan-
tages in inference speed, but DGCCn-Fruit compared to 
YOLOv3-tiny and DGCCs-Fruit compared to YOLOv3, they 

are slightly lower in inference speed. Overall, the proposed 
model meets the requirements of real-time applications.

Combined with the above comparison, it can be found 
that DGCCn�s�m�l-Fruit models of different scales improve 
the detection accuracy by gradually increasing the depth and 
width of the network, but also with the increase of comput-
ing cost, memory space and reasoning time. DGCCn-Fruit 
model is the smallest and the detection accuracy is relatively 
low, but it is fast and suitable for the application scenarios 
with limited computing power and storage space or high 
requirements for detection speed. DGCCl-Fruit model has 
the highest detection accuracy, but it is slow and suitable 
for the scenarios with large computing power and storage 
space or high requirement for accuracy. DGCCs�m-Fruit 
achieves a balance between speed and accuracy, and is suit-
able for applications with high requirements on both speed 
and accuracy.

Generality comparison

In order to test the generality of the proposed model and its 
ability to deal with other complex scenarios, we conducted 
the improvement of YOLOv5 models of different scales and 
compared them with other mainstream algorithms on the 

Table 5   Comparison results 
with other models

Model (backbone) Input mAP@0.5 (%) mAP@0.5:0.95 (%) Params (M) Weights 
(MB)

YOLOv5x (CSPDarknet) 640 93.7 85.8 86.38 165.48
GCC

x
-Fruit 640 94.3 86.6 79.44 152.34

YOLOv5l 640 93.4 85.7 46.30 88.85
GCC

l
-Fruit 640 93.8 86.0 41.85 80.52

����
�
-Fruit 640 95.1 87.2 41.85 80.52

YOLOv5m 640 92.9 84.7 20.99 40.48
GCC

m
-Fruit 640 93.9 85.8 18.51 35.87

����
�
-Fruit 640 94.9 86.6 18.51 35.87

YOLOv5s 640 92.4 83.1 7.10 13.90
GCC

s
-Fruit 640 93.0 83.8 6.02 11.93

����
�
-Fruit 640 93.6 84.3 6.02 11.93

YOLOv5n 640 89.5 79.3 1.80 3.78
GCC

n
-Fruit 640 91.3 80.9 1.55 3.37

����
�
-Fruit 640 91.6 81.2 1.55 3.37

YOLOv4 (CSPDarknet) 640 92.8 84.4 64.10 245.00
YOLOv3 (Darknet53) 640 92.3 83.7 61.69 118.11
YOLOv7-tiny 640 91.3 80.9 6.09 11.86
YOLOX-s (CSPDarknet) 640 82.6 74.7 8.95 68.58
YOLOv3-tiny 640 85.2 72.9 8.74 16.76
YOLOv4-tiny 640 81.1 71.3 5.94 22.74
YOLOX-tiny 416 78.0 68.9 5.04 38.77
YOLOX-nano 416 73.2 62.5 0.90 7.29
SSD (VGG16) 300 77.2 61.7 27.76 211.81
Faster-RCNN (Resnet50) 640 80.0 60.0 41.22 109.30
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object detection public dataset Pascal VOC 2007. The exper-
imental results are shown in Table 6, and the italicized and 
bolded parts of the table indicate the same meaning as the 
previous table. The visual comparison is shown in Fig. 16.

According to the experimental results, the improvement 
strategy proposed in this paper has a good performance on 
the object detection public dataset Pascal VOC 2007 for the 
improvement of YOLOv5 models of different scales and 
its comparison with other mainstream algorithms, which 

greatly reduces the number of network parameters and 
model volume while improving the average detection accu-
racy mAP@0.5 and mAP@0.5:0.95. Among them, DGCCn

-Fruit has the smallest parameter quantity and model vol-
ume. Compared with the original model, the number of 
parameters is reduced by about 15%, and the model volume 
is reduced by about 11%. At the same time, mAP@0.5 and 
mAP@0.5:0.95 are increased by 5.4% and 5.5% respectively. 
The detection accuracy far exceeds that of advanced network 
models such as YOLOX-tiny, YOLOX-nano, YOLOv4-
tiny, and YOLOv3-tiny. When we compare the larger-scale 
DGCC-Fruit, we can see that DGCCs-Fruit compared with 
YOLOv7-tiny, YOLOX-s, Faster-RCNN and SSD, and 
DGCCm-Fruit compared with YOLOv4 and YOLOv3, both 
of which have better detection accuracy when the network 
parameters and model volume are lower. The experimen-
tal results show that compared with the original algorithm 
model and the current mainstream detection algorithm mod-
els, the DGCC-Fruit model proposed in this paper also has 
better performance and advantages on public dataset Pascal 
VOC 2007, and has better generality.

Fig. 14   Comparison of experimental results

Fig. 15   Comparison of inference speed
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Discussion

In this paper, YOLOv5 is improved in three models of fea-
ture extraction, feature fusion, and model optimization to 
make it more suitable for application in fine-grained fruit 
detection and recognition. In first model, to enhance the 
ability in extracting fine-grained fruit features and reduc-
ing background interference, we integrated the CA attention 
mechanism in feature extraction stage to improve the dis-
crimination of similar features. Through the decomposition 
and aggregation of input feature map in spatial directions 
of width and height, the position information is embedded 
into the channel attention to capture the cross-channel and 
direction-aware information at the same time, which can 
help to locate and recognize key areas more accurately in 
different environments. Then in feature fusion, compared 
with the original interpolation upsampling, the introduced 
CARAFE upsampling operator can generate the upsampling 
kernel adaptively based on the input fine-grained features to 
make full use of the deep network to extract the semantic 
information of fine-grained fruit features, and then the mul-
tiplicative weighting calculation is used to better integrate 
the multi-scale fine-grained fruit features and enhance the 
characterization ability. Last, in model optimization, aiming 

at the increasing parameters caused by the previous two 
methods, GhostBottleneck module is introduced by using 
1 × 1 convolution, depthwise convolution, and a series of 
cheap linear transformations to obtain similar features at a 
small cost, which greatly reduces the parameters number, 
model size of CNNs and maintain lightweight. To further 
improve the detection accuracy while maintaining light-
weight, knowledge distillation strategy is adopted to obtain 
knowledge from complex models, and effectively improve 
the detection performance without increasing the model size.

In order to adapt to different application requirements 
and to verify the effectiveness of the proposed method, we 
conducted experiments on different scale models based on 
the homemade ZFruit and VOC2007 datasets, and com-
pared them with the current mainstream algorithms. It can 
be observed that the improvement on the homemade ZFruit 
dataset is smaller than public dataset due to the similarity 
restriction of fine-grained fruit features, the light model 
may have a slight degradation on inference speed due to 
the model branch structure. In addition, the richness of the 
dataset scenarios also affects the applicability of the model. 
Overall, the experimental results show that DGCC-Fruit 
can greatly reduce the parameters number and model size 
while improving feature extraction capability, has better 

Table 6   Experimental results of 
generality comparison

Model (backbone) Input mAP@0.5 (%) mAP@0.5:0.95 
(%)

Params (M) Weights (MB)

YOLOv5x (CSPDarknet) 640 76.8 54.3 86.30 165.28
GCC

x
-Fruit 640 77.4 54.9 79.36 152.15

YOLOv5l 640 74.9 51.8 46.21 88.70
GCC

l
-Fruit 640 75.3 52.1 41.79 80.37

����
�
-Fruit 640 78.5 55.1 41.79 80.37

YOLOv5m 640 72.6 48.6 20.93 40.36
GCC

m
-Fruit 640 73.4 49.1 18.47 35.76

����
�
-Fruit 640 77.2 53.3 18.47 35.76

YOLOv5s 640 67.5 41.0 7.06 13.81
GCC

s
-Fruit 640 70.1 44.2 5.99 11.85

����
�
-Fruit 640 73.8 48.4 5.99 11.85

YOLOv5n 640 62.7 35.3 1.79 3.72
GCC

n
-Fruit 640 64.2 37.7 1.53 3.31

����
�
-Fruit 640 68.1 40.8 1.53 3.31

YOLOv4 (CSPDarknet) 640 74.3 51.7 64.04 244.77
YOLOv3 (Darknet53) 640 74.5 49.0 61.63 117.94
YOLOv7-tiny 640 70.6 44.4 6.06 11.79
YOLOX-s (CSPDarknet) 640 70.3 44.1 8.95 68.58
Faster-RCNN (Resnet50) 640 72.4 38.4 41.22 108.87
SSD (VGG16) 300 69.2 38.3 27.76 200.09
YOLOX-tiny 416 61.4 35.1 5.04 38.75
YOLOX-nano 416 52.4 29.9 0.90 7.27
YOLOv4-tiny 640 53.6 25.9 5.92 22.64
YOLOv3-tiny 640 48.2 21.4 8.71 16.70
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localization and recognition performance for fine-grained 
fruits, meet the real-time application with certain generaliz-
ability, which can further promote the precise management 
of smart orchard, intelligent sorting and selling of fruits in 
supermarket, daily science popularization, identification, 
and intellectual property protection of seed industry.

Conclusion

By taking the self-made fine-grained fruit dataset ZFruit as 
the main research object, and the YOLOv5 network as the 
basic network, we construct a lightweight and fine-grained 
fruit recognition model DGCC-Fruit. The experimental 
results show that DGCC-Fruit has significantly reduced 
model parameters, increased the feature extraction ability, 
improved the localization and recognition performance of 
fine-grained fruit objects in different environments, and has 
better accuracy and robustness. Although our framework sets 
a new state of the art for fine-grained fruit image detection 
and recognition with high portability, performs better than 
the current advanced object detection algorithms on the self-
made ZFruit and VOC2007 datasets, due to the small model 
size, the detection accuracy of DGCCn-Fruit is slightly lower 
than that of large networks such as YOLOv4 and YOLOv3. 

In future research, we can add fruit types and sub-catego-
ries to expand the dataset to improve the generality of the 
model. We can also better balance the speed and accuracy by 
improving the feature fusion network, loss function, pruning, 
quantization, etc., and deploy our model on real scenarios.
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