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Abstract
The crude protein content is critical to quality assessment when screening for nutrients, taste quality and commercial value. 
Thus, this study performed a non-destructive and rapid prediction of protein content in paddy based on line-scanning near-
infrared hyperspectral imaging (1001–2300 nm) technology. Partial least squares regression (PLSR), principal component 
regression (PCR) and multiple linear regression (MLR) predictive models were established to evaluate protein content 
(5.5037–8.2543 g 100  g−1) in 100 intact paddy, and the models achieved high performance. Spectral pre-processing with 
De-trending to a certain extent could enhance the smoothness of the spectrum and reduce spectral noise effectively. Succes-
sive projection algorithm (SPA) was used to extract characteristic wavelengths to simplify the models. A set of 18 feature 
variables were selected from the original wavelength, and the SPA-PLSR model has the best performance to predict protein 
content in paddy. In addition, the simplified performed model with a higher value of coefficient of determination  (R2) of 
 R2

C and  R2
P was 0.9078 and 0.8836, and the lower root mean square error (RMSE) of RMSEC and RMSEP was 0.0912 and 

0.1675, respectively. The distribution maps of each sample protein contents in each pixel were obtained using the prediction 
model. Therefore, experimental results indicated the feasibility and possibility of a rapid and non-destructive hyperspectral 
imaging technique to detect the chemical component in paddy.
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Introduction

Paddy was the main essential natural source of carbohydrate 
(70–75%) [1], protein (4–18%) [2], fat [3] (1.5–2.5%), vita-
min and mineral substance [4] for human nutrition, which 
has being significant staple food in the scale world. At pre-
sent, the conventional paddy planning area in China was up 
to 245 million tons, whereas the hybrid paddy accounts for 
200 million tons [2]. In particular, protein content in paddy 
determines the basis of pricing fluctuations and its com-
mercial products. Thus, protein content was an important 

indicator of the internal paddy quality. This indicator has 
obvious significance on price, nutrition, cooking quality and 
taste of paddy and was essential that influence the growth of 
the food industry [5]. Rapid detection of protein content in 
paddy could promote the effective implementation of com-
mercial and factory scale inspection, and the manufacturers 
could rapidly identify whether the characteristics of paddy 
meets their expectations. However, most of the traditional 
paddy protein content detection methods were destructive, 
cumbersome, time-consuming, inefficient and unable to 
achieve online detection [6]. Thus, a highly efficient, low-
cost, effective and accurate food industry quality evaluation 
system is demand to develop.

In this study, a non-invasive, pollution-free, high-through 
put technique based on the hyperspectral imaging (HSI) 
technology was developed to investigate the chemical prop-
erties of internal substances and intact cereal [7]. HSI was a 
burgeoning technology that supplied the capacity to measure 
features across a far-ranging of wavebands simultaneously, 
thereby showing a particular representation of seeds or 
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grains performance and internal material component inter-
actions. The physical and chemical information about paddy 
could be extracted on account of the ability of HSI to col-
lect both spectral and pictorial data [8]. Near-infrared (NIR) 
spectroscopy was connected to the molecular vibrations of 
hydrogen-containing functional groups with the specimen 
and is extensively used to predict major constituents of agri-
culture products. However, the conventional NIR spectrom-
eters merely acquire spectral information on a patch of a 
spot area of the sample. Spectral information of intact paddy 
seeds was incapable of acquired, which could weaken the 
reliability and accuracy of prediction. Therefore, obtaining 
precise spectral information representing the whole paddy 
is necessary to improve the correction and stability of the 
predicted substance content [9].

HSI integrates NIR spectroscopy and digital imaging 
technique to provide a message on the spatial distribution 
of testing substance. In addition, HSI acquired the spectral 
(λ) and spatial (x, y) information and combined them into 
a 3D data matrix. A data cube contains hundreds to thou-
sands of continuous images, narrow band spectrum, and 2D 
images of spectral message [10, 11]. In this work, chemi-
cal analysis method and NIR-HSI technology were com-
bined to explore the protein content in paddy from different 
aspects. At present, the application of NIR-HSI technology 
is becoming increasingly widespread in non-destructive and 
efficient testing of quality and safety of agricultural prod-
uct. For instance, NIR-HSI technology has shown a broad 
application prospects in fruits and vegetables [12, 13], agri-
cultural products [14], dairy products [15], meat [16] and 
other fields. Although NIR detection methods perform well 
in predicting protein content in paddy, applying the combi-
nation of HSI and NIR spectroscopy in the analysis of paddy 
protein content remains limited. NIR-HIS technology with 
the advantages of contactless and rapid, and it has feasible 
superiority for homogeneity evaluation of whole paddy and 
other grains.

Accordingly, this research aimed to (1) determine protein 
content in paddy using traditional chemical methods com-
bined with NIR-HSI technology; (2) evaluate the exploration 
performance of NIR-HSI technology based on three calibra-
tion models, namely, partial least squares regression (PLSR), 
principal component regression (PCA) and multiple linear 
regression (MLR); (3) select the characteristic variables 
from the NIR-HIS spectral region using successive projec-
tion algorithm (SPA) and interval variable iterative space 
shrinkage approach (iVISSA), iteratively retains informa-
tive variables (IRIV) and competitive adaptive reweighted 
sampling algorithm (CARS); (4) compare the selection vari-
able subsets and prediction performance of different feature 
wavelength extraction algorithms and (5) apply calibration 
models combined with image processing algorithm to visu-
alise the distribution of protein content in intact paddy.

Materials and methods

Paddy samples

A total of 100 varieties of paddy samples (52 kinds of japon-
ica paddy, 34 kinds of indica paddy and 14 kinds of gluti-
nous paddy) from different provinces (Shandong, Guizhou, 
Hubei, Jiangsu, Anhui, Hunan, Henan, Sichuan, etc.) in 
China were purchased. Then, the samples were ground to a 
uniform powder using a high-speed pulveriser (Deceleration 
Yili Industry and Trade Co. Ltd., model: QE-200., rotate 
speed: 28,000 r/min, power: 1200 w), placed in a sealed 
bag and stored under vacuum at room temperature. In each 
sample, 65 g of the original paddy samples (without ground) 
was randomly selected for HSI analyses. Each hyperspec-
tral image contained 288 spectral bands. The paddy of each 
variety was ground and weighed to 0.5000 g of powder, 
and their protein content was determined using the AOAC 
960.52 [17]. Stoichiometric methods were used to establish 
the relationship between the spectrum and actual protein 
content.

Hyperspectral imaging

In this research, the laboratory-based push broom NIR-HSI 
(901–2517 nm) system (Isuzu Optics Corp., Taiwan, China) 
was used, and the hyperspectral images of paddy samples 
were obtained under reflection mode [18]. The instruments 
line scanners that create a two-dimensional image of the 
sample by translating the sample on the objective table rela-
tive to the charge coupled device (CCD) camera. The light 
reflected by the samples could be acquired on the spatial 
spectral axes to obtain spatial and spectral information. 
The system includes a line scanning spectrometer (Specim, 
Spectral Imaging Ltd., Oulu, Finland), CCD camera (Andor, 
Ireland), two halogen lamps (Illumination Technologies Inc., 
New York, USA), a conveyor belt (Isuzu Optics Corp., Tai-
wan, China), a camera obscura (Schneider, German) and a 
computer (DELL, USA) for data acquisition and processing 
(Fig. 1).

Image and spectral processing

Figure  2 shows the schematic diagram of a corrected 
image of a hyperspectral image. In all of 288 white refer-
ence images and 288 black reference images were obtained 
to calibrate the captured images. The former was collected 
with a white board with a teflon surface having 99% reflec-
tance under the same conditions as the sample acquisition 
process, whereas the latter was collected when the halogen 
lamp was turned off and the lens cover was covered. Then, 
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the average values of the collected reference images were 
calculated; the samples were transmitted through the auto-
matic conveyor belt, and the processed image information 
was collected on the stage. The sample images were cali-
brated as reflectivity images using the following Eq. (1) to 
improve the accuracy of spectral information and reduce 
the influence of light source and dark noise [19]

where RT, Iraw and Idark, Iwhite represented the corrected and 
raw hyperspectral images and the mean black and white ref-
erence images, respectively.

After calibrating the image, a circle of 60 × 60 pixels 
was selected on the image, and each sample was repeated 
several times. Afterwards, the average was calculated to 
automatically obtain the region of interests (ROI). All 
spectra of pixels in the ROI were extracted to obtain the 
average spectrum of each sample for the following data 
processing.

Optimal wavelength selection

The collected NIR hyperspectral data include hundreds 
of continuous bands. The optimal wavelength selection 
algorithm could simplify data processing, improve the cal-
culation speed and the robustness of the model and remove 

(1)R
T
=

I
raw

− I
dark

I
white

− I
dark

irrelevant or redundant information bands of the sample 
[20]. In general, the selection of characteristic wavelengths 
was to select interval wavelengths from the full spectral 
region, and a high absolute coefficient was found in the 
established model [21]. Four spectral variable selection 
algorithms showed efficient performance, namely, SPA, 
IRIV, iVISSA and CARS, which were used to predict food 
quality by exploiting highly accurate calibration models.

In addition to non-information variables in the origi-
nal spectral set, there were also exist some collinear or 
redundant variables. The purpose of SPA algorithm was 
to select the least redundant variables to resolve collin-
earity issue. SPA was a forward wavelength selection 
algorithm that began with a wavelength and after that 
merged a new wavelength in each iteration until reached 
the specified amount of N wavelengths [22]. IRIV was a 
characteristic wavelength selection algorithm on the basis 
of binary matrix shuffling filter (BMSF) [23]. This algo-
rithm was used to split all wavelengths into strong infor-
mation, weak information, non-information and interfer-
ence wavelengths using model population analysis (MPA) 
and remove non-information and interference wavelengths 
with an iterative manner. Finally, the wavelength after 
backward elimination was selected as the characteristic 
wavelength [24]. The iVISSA was an extraction method in 
full wavelength range based on MPA and cross-validation 
of root mean square error (RMSECV). The algorithm com-
bines the effect of wavelength combination and wavelength 

Fig. 1  Schematic diagram of the 
hyperspectral imaging system
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space compression [25]. The iVISSA-SPA algorithm was 
a mixture characteristic wavelength selection method. 
Firstly, iVISSA was selected to acquire a set of poten-
tial feature wavelengths for protein content. Then, SPA 
was used to select the most efficient subset of variables 
from the potential characteristic wavelengths to evaluate 
the validity of these remaining wavelengths. For CARS 
algorithm, the frequency of Monte Carlo sampling runs 
was 200, and fivefold cross-validation was used to confirm 
the optimal characteristic wavelength. All characteristic 
wavelength extraction algorithms were implemented in 
MATLABR2018b (Math Works, Natick, USA).

Multivariate data analysis

Model establishing was one of the paramount steps in mul-
tivariate data analysis. This investigate was based on three 
algorithms for multivariate calculation, namely, PLSR, PCR 
and MLR. The results of the three algorithms were com-
pared to determine the best calibration model.

PLSR has been extensively applied in NIR-HSI technol-
ogy and shown commendable advantages for strongly col-
linear spectral data. In this study, the PLSR model was used 
to establish a linear regression algorithm between the paddy 
spectral matrix (X) and reference protein content (Y) [26]. 
The PCR was a data dimensionality reduction model, which 
was normally used in HSI processing. The PCR reduced 
the redundant information by conversing strongly correlated 
variables into principal component variables with non-cor-
relation [27]. Thus, for NIR hyperspectral images, the PCR 
model decreased the spectral dimension, where the number 
of principal components was seldom and the image vari-
ance was large. MLR was an alternative linear algorithm to 

analyse spectral information processing that built a model 
between multi-spectral variables and a sample variable by 
fitting a linear equation [26]. When the variables of the 
sample were greater than the spectral, the algorithms were 
considered suitable [28].

Visualisation of protein content distribution

The NIR-HSI technology could not only accurately detect 
the main nutrients in the samples, but also use image pro-
cessing technology to present the spatial distribution of 
nutrients in the samples and the concentration gradient 
of different substances [29]. NIR hyperspectral imaging 
aimed to reveal the hidden message in the images and then 
qualitatively or quantitatively predict the characteristics of 
the measured samples. In this study, the PLSR model was 
utilised to visualise and map each pixel of a hyperspectral 
image as a chemical image to forecast protein content in 
paddy at the pixel level. The principle was achieved by 
calculating the spectrum of each pixel in the images, and 
the regression equation was established based on the PLSR 
model [30]. The generated images were called a visual 
image of the chemical composition, normally expressed on 
a linear colour scale [31].

Results and discussions

Spectral analysis

Figure  3 illustrates the spectral curves of 100 differ-
ent paddy varieties after removing the wavelengths with 
excessive energy and distinct noise at the beginning and 

Fig. 2  Schematic of hyperspectral image calibration
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ending of the spectrum in the effective wavelength region 
of 1001–2300 nm (223 bands). The change in sample spec-
trum was primarily due to chemical components such as 
protein, starch, fat and moisture. In addition, the changes 
in spectral curves were mainly related to the overtones and 
combined vibrations of chemical molecular bonds, includ-
ing C–H, O–H, N–H, C–O and S–H [32, 33]. The absorp-
tion peak at approximately 1221 nm was primarily related 
to the second overtone stretching of the C–H bond. The 
prominent peak occurred at about 1477 nm was ascribed to 
the combined action of N–H first overtone stretch and O–H 
first overtone stretch, respectively [34]. The bands at near 
1762 nm were attributed to the C–H first overtone stretch-
ing. Another water-related absorption peak was observed at 
approximately 1941 nm, which was connected with O–H 
stretching and bending vibrations [35]. In addition, the char-
acteristic peak of the protein was deemed to be concentrated 
at approximately 2185 nm [36]. Therefore, it is feasible to 
use NIR-HSI technology to determine protein content in 
paddy. It was clear that in the entire spectral region, the 
spectral curve trends of each variety were similar, but the 
reflectance intensity was different, which indicated that the 
internal substances of different paddy were basically the 
same, but the content of a single compound was different.

Rationality of sample division

It is very important to obtain the accuracy and stability of 
the model through reasonable dividing the samples into cali-
bration set and prediction set. A high-performance sample 
set partitioning method could select calibration set samples 
to represent the statistical characteristics of the entire sample 
and the remaining samples [37]. The sample set partitioning 

based on joint x–y distance method (SPXY) algorithm could 
consider the spatial variability of x and y. SPXY algorithm 
has the advantage of covering a wide range of multi-dimen-
sional spaces compared with the sample x-variable-based 
partitioning method [38]. As depicted in Table 1, through 
the SPXY algorithm, the 100 samples were divided into the 
calibration set and prediction set in a 2:1 ratio, resulting in 
67 and 33 samples, respectively. The range of protein con-
tent in the calibration set (5.5037–8.2543 g 100  g−1) covers 
the prediction set (5.9102–8.1294 g 100  g−1), indicating that 
the division method was reasonable, which could improve 
the accuracy and robustness of the calibration model.

Modeling based on full wavelengths

In this research, a correction model was firstly established 
based on the full wavelength to remove irregularities and 
noise bands in the head and tail of the spectral region. PLSR 
and PCR calibration models were used to establish a quan-
titative relationship between the reflectance data matrix (X) 
acquired in the entire 223 wavelength range and protein con-
tent (Y) of the corresponding variables. An optimized model 
should have higher correlation coefficients and lower RMSE 
on the calibration and prediction sets.

Table 2 presents the statistical parameter results for the 
calibration set, cross-validation set and prediction set used 
to calculate the protein content model in paddy. In the PLSR 
and PCR models,  R2

C was 0.9289 and 0.9061, and RMSEC 
was 0.0800 and 0.0920, respectively in the calibration set. 
On the contrary, in the cross-validation set,  R2

CV was 0.7908 
and 0.7641, and RMSECV was 0.1411 and 0.1490. In the 
prediction set,  R2

P was 0.8629 and 0.8574, and RMSEP was 
0.1818 and 0.1854. The consequences demonstrated that 
the model estimate of the performance of PLSR and PCR 
algorithms was highly accurate. The NIR-HSI system can 
predict protein content in paddy with a full spectral range 
(1001–2300 nm) based on the reliability and stability of the 
acquired prediction model.

Characteristic wavelength selection and model 
establishing

This study had proven that the NIR-HSI system was suitable 
for predicting protein content in paddy with the whole wave-
length range. However, there were 223 wavelength variables 

Fig. 3  Spectra of paddy obtained from the ROI in NIR hyperspectral 
images

Table 1  Statistics of protein content in paddy

Sample set Sample Protein content (g 100  g−1)

Min Max Mean SD

Calibration set 67 5.5037 8.2543 7.2496 0.3026
Prediction set 33 5.9102 8.1294 7.0711 0.4085
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in the full NIR spectrum with an average interval of 6.28 nm 
for each wavelength, and the intervals were smaller. Small 
wavelength separations represented close or similar wave-
length bands that carried repetitive information associated 
with the protein [19]. The full hyperspectral data disposing 
process was complicated and time-consuming, and the speed 
of the established model was limited, which was difficult 
to convert into online detection. Therefore, extracting the 
characteristic wavelengths instead of the limited number 
of full wavelengths was necessary to establish the calibra-
tion model and obtain similar accuracy and stability. In the 
current research, SPA, IRIV, iVISSA-SPA and CARS algo-
rithms were applied to select the characteristic wavelengths 
that were strongly correlated with protein content.

Characteristic wavelength selection by SPA

The SPA algorithm can efficiently solve data redundancy and 
covariance reduction. The theory of the SPA used RMSE 
value to analyse the performance of the established model. 
The accuracy and stability of the model are high under 
low RMSE. Figure 4a shows the curve of the RMSE value 
obtained by the SPA with the increase of the selected vari-
ables. With the increase of the number of selected variables, 

the RMSE value began to drop sharply whereas it still exist a 
certain fluctuation until the number of selected variables was 
18 (marked with a red box). The RMSE (0.1680) reached 
the minimum value and then showed a gradual upward 
trend. However, the specific number of extracted variables 
was incapable clearly known. The congruent relationship 
between characteristic wavelengths and variable index was 
shown in Fig. 4b to clearly demonstrate the results of extract-
ing characteristic wavelengths by SPA. The position of the 
red box in the figure represents the characteristic variables 
of protein. Figure 4b shows 18 valid variables (1063, 1107, 
1158, 1296, 1396, 1421, 1477, 1507, 1732, 1797, 1826, 
1861, 2030, 2052, 2101, 2164, 2255 and 2300 nm) selected 
from 223 spectral variables, accounting for 8.07% of the 
total wavelengths. In this study, the optimal wavelengths 
selected based on the SPA contained the information most 
relevant to the protein.

Characteristic wavelength selection by iVISSA‑SPA

In this investigation, the iVISSA was a wavelength inter-
val spectral region selection method. The iVISSA selected 
77 characteristic wavelengths, accounting for 34.5% of 
the total number of wavelengths (Fig. 5a). The number of 

Table 2  Model performances 
for predicting protein content 
in paddy using hyperspectral 
imaging technology

Model No. of 
wave-
lengths

No. principal 
components

Calibration set Cross-validation Prediction set

R2
C RMSEC R2

CV RMSECV R2
P RMSEP

PLSR 223 12 0.9289 0.0800 0.7908 0.1411 0.8629 0.1818
PCR 223 19 0.9061 0.0920 0.7642 0.1490 0.8574 0.1854

Fig. 4  Selected characteristic wavelength by SPA (a RMSE growth pattern of variable, b sequence number of the selected characteristic wave-
length) (Color figure online)
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characteristic wavelengths selected using this approach was 
numerous, and the interval distance amongst wavelengths 
was micro and similar bands carry similar message. There-
fore, optimising effective variables for dimension decom-
position of obtained data is necessary to avoid redundant 
information amongst adjacent bands, thereby improving the 
operation speed and efficiency of the model. Although the 
model based on the characteristic variables selected by the 
iVISSA algorithm exhibits good performance, the wave-
length variables still need to be further optimised to adapt to 
future online detection technologies [39]. Therefore, on the 
basis of the iVISSA, the SPA was used to further screen the 
characteristic wavelengths [39–41], and a combination of the 

iVISSA–SPA was proposed to select the optimal characteris-
tic variables to determine protein content in paddy. Figure 5b 
depicted the RMSE curve of different varieties of paddy 
subsets of variables after combining the iVISSA–SPA. The 
red box represented the number of optimal variables (16), 
and the corresponding RMSE was small (0.1820). Figure 5c 
illustrated that the corresponding characteristic wavelengths 
of the variables and protein were 1001, 1063, 1095, 1408, 
1427, 1593, 1690, 1803, 1815, 2030, 2058, 2190, 2215, 
2251, 2265 and 2300 nm, accounting for 7.17% of the total 
wavelengths. The selected optimal variables contained 
almost the overall spectral region, reducing data redundancy 
and preserving key information.

Fig. 5  The iVISSA-SPA selected the characteristic wavelengths (a the iVISSA selected 77 characteristic wavelengths, b RMSE growth pattern 
of variable, c sequence number of selected characteristic wavelengths) (Color figure online)
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Characteristic wavelength selection by IRIV

The IRIV algorithm eliminated non-information variables 
and weak information variables through multiple iterations 
and retained effective information variables as characteristic 
wavelengths. After a few several rounds of iterations, the 
number of remainder variables correspondingly decreased. 
The refined evaluation of backward elimination strategies 
had good performance due to interaction amongst variables 
[23, 42, 43]. Figure 6a illustrated the process of the changes 
in the number of remaining wavelengths with the increase of 
iterations rounds. In the wavelength range of 1001–2300 nm, 
the IRIV algorithm was used to conduct a total of eight itera-
tions round. During the first three iterations round, the num-
ber of wavelengths decreased sharply from 223 to 43 on 
account of many irrelevant information wavelengths were 
eliminated and then decreased slowly in the subsequent 
round. This result was remained stable at the 7th iterations 
round, followed by backward elimination of eight variables. 
Figure 6b shown 20 selected variables at 1013, 1038, 1045, 
1408, 1678, 1684, 1690, 2014, 2030, 2036, 2052, 2058, 
2063, 2068, 2074, 2215, 2246, 2255, 2295 and 2300 nm, 
accounting for 8.97% of the total wavelength.

Characteristic wavelength selection by CARS

On the basis of the calibration set, the full spectrum data 
and protein content were associated for the important infor-
mation as the CARS algorithm to extract the feature vari-
ables. The number of Monte Carlo sampling runs was set 
to 200, and fivefold cross-validation was used to predict 
the performance of the model [10, 11]. Figure 7 shows the 
change related to selected wavelengths, RMSECV value and 

regression coefficient path with the increase of the num-
ber of sampling runs. Figure 7a clearly shows that in the 
initial stage, the variables with useless or redundant infor-
mation were quickly screened out, and then the number of 
variables reduced steadily. These two steps represented the 
rough and precise screening in the exponentially decreasing 
function (EDF) process, respectively. After enforced elimi-
nating variables based on the EDF, the algorithm further 
filters variables in a competitive manner. Figure 7b shows 
the fivefold RMSECV value decreasing at samplings runs 
1–100 because non-information variables were eliminated. 
Nevertheless, in the subsequent process, RMSECV started 
to increase due to the elimination of some relevant wave-
lengths. The selected optimal wavelengths correspond to the 
minimum fivefold RMSECV of 0.1221. Figure 7c shows the 
regression coefficient path of each variable under different 
sampling runs. At the blue * position, the number of sam-
pling runs was 100, and the minimum RMSECV value was 
the best subset. The CARS algorithm results show that 21 
characteristic wavelengths (1296, 1352, 1358, 1581, 1587, 
1593, 1678, 1690, 1696, 1732, 2014, 2019, 2052, 2058, 
2068,2074, 2195, 2215, 2246, 2260 and 2300 nm); Fig. 7d 
were selected from 223 wavelengths, accounting for 9.42% 
of the total wavelengths.

Model construction and comparison

This paper established the prediction model (PLSR, PCR 
and MLR) for protein content in paddy based on the full 
wavelength and selected characteristic wavelengths, respec-
tively. As indicates in Fig. 8, the modeling schemes of dif-
ferent algorithms could made great predictions for 100 
varieties of paddy. The selected characteristic wavelength 

Fig. 6  Results of selection by IRIV (a remained variables growth pattern with iterations rounds, b selected 20 characteristic wavelengths)
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algorithm has high performance on account of the ability to 
simplify the model by removing extraneous variables com-
pared with the full spectrum model. And further improves 
the stability and accuracy of the model. The PLSR model 
possessed higher capability and robustness than PCR and 
MLR prediction models when considering full spectrum 
and extracted feature spectrum. In the case of full-spectrum 
PLSR and PCR models,  R2

C,  R2
CV and  R2

P were 0.9289, 

0.9061; 0.7908, 0.7642 and 0.8629, 0.8574, respectively, 
and RMSEC, RMSECV and RMSEP were 0.0800, 0.0920; 
0.1411, 0.1490 and 0.1818, 0.1854, respectively. The com-
parison results shown that the PLSR model with 18 char-
acteristic wavelengths based on the SPA was the optimal 
model, which could be better predicting the protein con-
tent in paddy. The performance of SPA-PLSR was the 
best with  R2

C = 0.9087, RMSEC = 0.0912,  R2
CV = 0.8188, 

Fig. 7  Screening characteristic 
wavelengths by CARS: a the 
number of selected wave-
lengths in the change process 
diagram of CARS algorithm, b 
RMSECV value changes with 
sampling runs, c regression 
coefficient of variables and d 
selected 21 characteristic wave-
lengths (Color figure online)
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RMSECV = 0.1331,  R2
P = 0.8836, and RMSEP = 0.1675 

based on the prediction model. Although the prediction 
results of the PLSR model employing wavelengths selected 
by iVISSA-SPA, IRIV and CARS were not as great as that of 
SPA-PLSR, they were inside the acceptable limits. Figure 9 
was a scatter plot of predicted and actual protein content in 
paddy based on the SPA-PLSR, SPA-PCR and SPA-MLR 
model. The solid line represented the regression line for the 
ideal correlation between actual and predicted values of 
protein. The samples points were closely distributed near 
the regression line, demonstrating that the prediction per-
formance of the model was better. The model was based on 
extracting the characteristic wavelength, which could reduce 
complexity and improve accuracy. From the perspective of 
the accuracy of the prediction model and spectral infor-
mation, the characteristic wavelengths extraction method 
adopted in this research was stable and reliable.

Visualisation of the distribution of protein content

The HSI technology can simultaneously provide spectral and 
image information of the samples. The primary preponder-
ance of hyperspectral images was that each pixel contains 

ample spectral information, which could be regarded as a 
prediction dataset. The optimal model was selected by the 
characteristic wavelength algorithm to visualise protein con-
tent in paddy, and the pixel of the ROI in the hyperspectral 
image of samples was transformed to predict protein content. 
The established optimal SPA-PLSR model was transferred to 
each pixel of the image to construct a visualisation distribu-
tion map and predict protein content of all pixels in paddy 
samples. Protein content predicted by the optimal model was 
represented by a linear colour bar (Fig. 10). In the visuali-
sation pixels in hyperspectral images with similar spectral 
characteristics had an analogical colour value (protein con-
tent). In the visualisation distribution map, the red area rep-
resents high protein content, and the purple area represents 
low protein content. With the increase of protein content, 
the colour gradually changed from dark-blue to dark-red. 
Protein content of different paddy varieties could be clearly 
differentiated by colour, and the distribution was uneven. 
The HSI technology could achieve visualisation in the arbi-
trarily area of paddy, directly characterise the distribution 
of protein content in paddy and then aid the comprehensive 
evaluation of paddy quality.

Fig. 8  Prediction results of the calibration set (a, b), validation set (c, d) and prediction set (e, f) by different models using full spectra and 
selected spectra
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Conclusions

This study aims to investigate the application of HSI 
technology in the 1001–2300 nm spectral range to pre-
dict protein content of paddy and to compare the perfor-
mance of multiple regression models. In improving the 
prediction performance, PLSR, PCR and MLR regression 
models were constructed, whereas the comprehensive per-
formance of the PLSR model had a better performance. 
Compared with the full spectrum and iVISSA-SPA, IRIV 
and CARS algorithms, the PLSR model established by 
the SPA selected 17 characteristic wavelengths from 223 

wavelengths, indicating its high predictive ability. The 
optimal model constructed based on SPA-PLSR showed 
that  R2

P and RMSEP were 0.8836 and 0.1675, respec-
tively. In conclusion, it was feasible to predict protein con-
tent in paddy using the NIR-HSI technology, which is a 
non-destructive, rapid and accurate method. This research 
could provide ponderable reference for non-destructive 
and fast detection of chemical components such as pro-
tein in grains. Future work will select representative wave-
lengths by using varieties of paddy in different regions 
and years to improve the performance and stability of the 
model.

Fig. 9  Scatter plots of predicted protein content obtained by a SPA-PLSR, b SPA-PCR and c SPA-MLR
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