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Abstract
In this study, the potential of near-infrared spectroscopy (NIRS) and hyperspectral imaging (HSI) techniques as non-destruc-
tive methods to determine the internal quality attributes of mangoes during ripening were evaluated and compared. A total 
of 188 mango fruits (cv. Nam Dokmai subcv. Si Thong) were determined for firmness, total soluble solids (TSS), titratable 
acidity (TA), pH, β-carotene content, and ripening index (RPI) for 8 days. The effect of the position (shoulder, cheek, and tip) 
of fruit on the changes of fruit quality during ripening and the accuracy of prediction models were also investigated. Fruit 
spectra were acquired by NIR spectrometer at full wavelength NIR region (800–2500 nm) and HSI system at vis/NIR region 
(450–998 nm). Partial least square regression was used to develop calibration models using original and pre-treated spectra 
from both devices. In addition, multiple linear regression (MLR) models were built from specific wavelengths obtained 
from multifactorial analysis. Non-significant differences of all fruit quality attributes were found between positions at the 
initial ripening stage while the slightly lower TA and β-carotene content were observed at the shoulder position compared to 
other sections at the end of the ripening stage. However, the fruit position showed only a slight influence on the prediction 
performance of the calibration models. NIRS calibration models provided only slightly better prediction performances than 
HSI calibration models. According to the results, both NIRS and HSI showed potential for quality control in mango sorting.
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Introduction

Mango (Mangifera indica) is a tropical fruit with a world-
wide production of 54.8 million tons in 2020 [1]. Mango is 
a climacteric fruit that is normally harvested at the mature, 
unripe stage and further ripened for a few days before 

consumption. Mango is highly perishable and the eating 
qualities of mango during the ripening period change very 
quickly. Therefore, monitoring the internal quality develop-
ment is important [2]. In general, determinations of internal 
quality of fruits are performed using various destructive 
testing methods which inevitably cause fruits loss during 
assessment and therefore complete assessment inspection 
cannot be conducted. Recently, several non-destructive test-
ing methods have been receiving much attention for detect-
ing the internal quality attributes of mango including image 
analysis [3], acoustic method [4], and near-infrared spectros-
copy (NIRS) and hyperspectral imaging (HSI).

NIRS and HSI are rapid and non-destructive techniques 
for determining the internal quality attributes of fruits based 
on the absorption of an electromagnetic wave in the wave-
length region of 700–2500 nm [5, 6]. Determination of inter-
nal quality attributes of different cultivars of mangoes during 
ripening using NIRS and HSI has been reported [2]. Handheld 
instruments with a short NIR wavelength (700–1100 nm) were 
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frequently studied because of their low cost and convenience 
for in field applications [7, 8]. For example, Rungpichayapi-
chet, Mahayothee, Nagle, Khuwijitjaru and Müller [8] devel-
oped NIRS models (700–1100 nm) to determine total soluble 
solids (TSS), titratable acidity (TA), firmness, and the ripening 
index using data collected from three years for ‘Nam Dok Mai’ 
mango. However, long-wavelength NIRS, which is mostly 
available in benchtop NIR spectrometers usually provided bet-
ter prediction from the absorption peaks of various chemical 
components such as organic acids and sugars [9]. On the other 
hand, studies on HSI analysis of mango during ripening are 
quite limited. Most HSI studies focused on in field monitoring, 
especially for dry matter content [10, 11]. Rungpichayapichet 
et al. [12] mapped the changes in firmness, TSS, and TA dur-
ing the ripening of mangoes using an HSI instrument in the 
wavelength range of 400–1000 nm.

A comparison of NIRS and HSI on the prediction of 
internal quality attributes of fruit, however, has been rarely 
investigated. Therefore, in the present study, NIRS and HSI 
were employed to determine the quality attributes of ‘Nam 
Dok Mai’ mango, which is a substantial high-price export 
variety of fresh mango  from Thailand. The NIRS instru-
ment was a benchtop type that measured the full wavelength 
(800–2500 nm), while the HSI measured visible and short 
NIR wavelength (450–998 nm).

Materials and methods

Mango samples

A total of 188 mature mango fruits (Mangifera indica cv. 
Nam Dokmai, subcv. Si Thong) with all-yellow peel har-
vested from four growing areas (Lopburi, Udonthani, Phitsa-
nulok, and Sakeaw provinces, Thailand) were used in this 
study. Fruits were harvested during the season, from Feb-
ruary to May with the fruit mass ranging 250–350 g and a 
specific gravity greater than 1.00. Samples were washed with 
water and then soaked in 200 ppm peroxyacetic acid solution 
with fruit to solution ratio at 1:2 (w/v) to reduce the surface 
microorganisms. After that, the fruits were air-dried and kept 
in a basket to ripen under ambient conditions (29.7 ±  0.7 °C 
and 66.3 ±  4.4% relative humidity) for 8 days, with the 
arrival day set as the first day of ripening. On each ripening 
day, six fruits were randomly selected for NIRS and HSI 
measurements as well as the reference analyses.

Non‑destructive measurement

NIR spectral measurement

A Fourier transform near-infrared (FT-NIR) spectrometer 
(MPA, Bruker Optik, Leipzig, Germany) was used to acquire 
fruit spectra in reflectance mode in the wavelength range 

of 800–2500 nm by averaging 32 scans at 16  cm−1 resolu-
tion. Spectra were collected at 25 °C from three different 
fruit sections assigned as shoulder, cheek, and tip as shown 
in Fig. 1. Average spectra from each position and average 
spectra from all sections were used for calibration model 
development. Spectral reference was automatically collected 
before each measurement.

Hyperspectral image acquisition

An HSI instrument and image acquisition in this study was 
set up and operated as described in our previous study [12]. 
Spectral data in the wavelength region between 450–998 nm 
were extracted from hyperspectral image files using Hyper 
See software (BurgerMetrics SIA, Riga, Latvia). From  
a total of 910 × 900 pixels image, nine region of interest 
(ROI) areas of 5 × 5 pixels were randomly marked in each 
fruit section (Fig. 1). Therefore, a reflectance spectrum for 
each fruit section was averaged from 225 pixels and was 
used for calibration model development.

Chemometrics and calibration procedure

Chemometrics and calibration model development using 
spectral data from both devices were performed using The 
Unscrambler software (version 9.7, Camo, Oslo, Norway). 
Spectral outliers were identified using principal component 
analysis (PCA) subject to Hotelling’s T-squared distribu-
tion [8]. Five different spectral pretreatment techniques 
namely Savitzky–Golay smoothing (SG), Savitzky–Golay 
first derivative (D1), Savitzky–Golay second derivative (D2) 
using 17 points with second-order polynomial regression, 
standard normal variate (SNV) transformation, and multipli-
cative scatter correction (MSC) were performed to improve 
the predictability during the development of the calibration 
models.

Fig. 1  Reference analyses a, NIRS b, and HSI c measurement posi-
tions on ‘Nam Dok Mai’ mango fruit surface
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Calibration models were built using partial least square 
(PLS) regression. Samples were divided into calibration 
and validation (test) sets in the ratio 2:1 (Table 1). The 
physicochemical values were sorted and the samples were 
selected by specific intervals ‘Every 2 samples counting 
from 3’ using the Unscrambler program and the two high-
est and two lowest values were assigned to the calibration 
set. The performance of prediction models was evaluated 
using coefficient of determination ( R2

C
 ) and standard error 

of calibration (SEC) and validation was evaluated based on 
the coefficient of prediction ( R2

V
 ), standard error of predic-

tion (SEP), bias, and the ratio of the standard deviation of 
the test set to SEP (RPD).

Multiple linear regression (MLR) models were developed 
using specific wavelengths. Candidate variables were chosen 
from wavelengths which showed the relatively high absolute 
values in PLS regression coefficient plots and loading weight 
plot of the best fitting PLS model. Multifactorial analysis 
(backward elimination stepwise method) was used for select-
ing significant wavelengths. MLR calibration models were 
constructed using the same calibration and test set samples 
as PLS models.

Reference analyses

Firmness

Firmness was determined on the unpeeled fruit sample only 
at the center area of cheek position using a texture analyzer 
(TA-XT2i, Stable Micro Systems, Surrey, UK) because of 
the difficulty of measuring other positions with the instru-
ment. A puncture test was performed using a 2 mm diameter 
cylindrical probe at a speed of 0.5 mm  s−1 and a compres-
sion depth of 10 mm. The maximum force (N) was recorded 
and represented the firmness of the fruit [13].

Chemical properties

Fruits were peeled and cut into two halves. Each half was 
then divided into three sections (Fig. 1). Flesh from each 
section was cut into small pieces and homogenized (Ultra-
Turrax T25 basic, IKA, Staufen, Germany). pH value was 
determined using a pH meter (PHM210, Radiometer Ana-
lytical SAS, Villeurbanne, France) by placing the electrode 
probe into the puree. Extracted juice obtained from squeez-
ing 5 g of puree through filter cloth was used to measure 
TSS by a digital refractometer (PAL-1, Atago, Tokyo, Japan) 

Table 1  Descriptive statistics 
of ‘Nam Dok Mai’ mango 
fruit quality attributes used for 
calibration and validation sets in 
PLS modeling

a n = number of samples

Calibration set Validation set

na Mean Range na Mean Range

Firmness (N) 126 14.63 5.49–30.08 62 14.60 5.78–29.43
RPI 126 3.45 0.83–7.01 62 3.44 0.99–6.74
TSS (°Brix)
 Shoulder 126 15.0 6.5–20.7 62 15.0 8.1–20.4
 Cheek 126 14.4 7.6–20.4 62 14.4 6.9–21.9
 Tip 126 14.7 6.9–21.9 62 14.7 7.5–20.5
 Average 126 14.7 7.5–21.0 62 14.7 7.9–20.3

TA (%)
 Shoulder 126 0.66 0.04–2.73 62 0.65 0.04–2.63
 Cheek 126 0.74 0.04–3.03 62 0.74 0.05–2.86
 Tip 126 0.85 0.06–3.56 62 0.83 0.06–2.84
 Average 126 0.75 0.05–3.10 62 0.74 0.05–2.56

pH
 Shoulder 126 4.51 2.48–6.51 62 4.51 2.53–6.26
 Cheek 126 4.49 2.48–6.28 62 4.49 2.55–6.16
 Tip 126 4.43 2.41–6.36 62 4.43 2.48–6.19
 Average 126 4.47 2.46–6.30 62 4.48 2.53–6.15

β-carotene (mg 100  g−1)
 Shoulder 96 4.10 0.04–10.22 47 4.09 0.09–9.96
 Cheek 96 5.01 0.02–12.92 47 2.01 0.11–12.41
 Tip 96 4.96 0.00–13.11 47 4.93 0.00–11.95
 Average 96 4.65 0.02–12.00 47 4.64 0.10–11.35
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and the value was expressed as °Brix. TA was evaluated by 
alkaline titration with 0.1 N NaOH to a pH of 8.1 using a 
100 mL dilution prepared from 5 g of puree and reported as 
mass percentage (%) of citric acid [14]. All measurements 
were done in duplicate. In addition, ripening index (RPI) 
was calculated from firmness (F), TSS, and TA using Eq. (1) 
according to Mahayothee et al. [15] to represent the ripeness 
of the sample.

β‑Carotene content

β-Carotene was extracted from flesh via a procedure adapted 
from Pott et al. [16]. Approximately 5 g of homogenized 
flesh from each mango section was mixed with 40 mL of 
methanol (RCI Labscan, Bangkok, Thailand). The mixture 
was filtered through a sintered glass funnel. The residue was 
washed with methanol until colorless. The yellow-clear solu-
tion was liquid-liquid extracted with 20 mL of a mixture of 
acetone (RCI Labscan) and hexane (RCI Labscan) (1:1 v/v) 
in an amber glass separatory funnel. After separation, the 
hexane layer (upper phase) was firstly kept in a dark environ-
ment and the methanol layer (lower phase) was re-extracted 
with a mixture of acetone and hexane until colorless. Then 
the pooled hexane layer was washed with water to remove 
acetone and dried by adding 2 g of anhydrous sodium sulfate 
(CARLO ERBA Reagents, Milano, Italy) and 2 g of butyl-
hydroxytoluene (BHT) (ACROS organics, Geel, Belgium) 
was added as an antioxidant. Hexane was evaporated using a 
vacuum evaporator (RV10, IKA). The residue was dissolved 
in isopropanol (RCI Labscan) to a volume of 10 mL and 
used for HPLC analysis.

The extract (20 µL) was used for quantitative analy-
sis using an HPLC system (Shimadzu, Kyoto, Japan) as 
described by Rungpichayapichet et al. [17]. The separation 
was carried out on a reverse phase C-18 column (Inertsil 
ODS-3, 4.6 × 150 mm, GL Sciences, Kyoto, Japan). A mix-
ture of methanol and acetonitrile (RCI Labscan) (7:3 v/v) 
was used as a mobile phase at a flow rate of 1 mL  min−1. 
β-Carotene was detected at 450 nm using a diode array 
detector (SPD-M20A, Shimadzu) and a certified β-carotene 
(purity ≥ 95%, Sigma-Aldrich, St. Louis, MO, USA) was 
used to prepare a calibration curve. The β-carotene content 
was calculated and was expressed in mg 100  g−1 (dry basis). 
The measurement was repeated in duplicate.

Statistical analyses

Reference data were analyzed by analysis of variance 
(ANOVA) with a randomized complete block design using 
fruits as blocks and Duncan’s multiple range test was applied 

(1)RPI = ln(
100 ⋅ F ⋅ TA

TSS
)

to determine significant differences between quality attrib-
utes for each fruit section with a significance level of 0.05 
(SPSS version 17, Chicago, IL, USA). In addition, principal 
component analysis (PCA) was performed to visually exam-
ine the influence of fruit position on chemical properties i.e., 
TSS, TA, pH, and β-carotene content, using The Unscram-
bler software. The difference between actual and predicted 
values obtained from prediction models was analyzed by 
paired t-tests.

Results and discussion

Changes in internal quality attributes 
during ripening of mango

‘Nam Dok Mai’ mangoes used in this study were mature, 
unripe fruits sorted by their specific gravity higher than 1.00 
[18]. The mangoes were ripened naturally at ambient tem-
perature (29.7 ± 0.7  ̊C) without the addition of a ripening 
accelerator. Figure 2 shows the changes in important inter-
nal quality attributes, which are general ripeness indicators 
including TSS, TA, pH, and firmness. In addition, β-carotene 
content which is a major carotenoid found in mango flesh, 
was also determined. β-Carotene is a pro-vitamin A, which 
is present abundantly in mangoes. A typical ripening behav-
ior i.e., decrease in firmness and TA, and an increase in TSS, 
pH, and β-carotene content was observed. Changes in the 
fruit quality attributes particularly occurred during the first 5 
days of ripening and thereafter remained unchanged or only 
slightly changed to the end of the ripening period. Signifi-
cant decreases (more than 60%) were found in firmness and 
TA during the initial ripening period, while the highest TSS 
value was found on the fifth day of ripening. As reported 
in many studies, declining firmness relates to a process of 
change in the cell wall structure and composition by the 
action of enzymes e.g., polygalacturonase, pectin methy-
lesterase, and cellulase during ripening, while a decrease 
in TA is due to the degradation of acids in the respiration 
process. In addition, hydrolysis of starch into sugar during 
ripening results in a rise in  TSS [19, 20]. β-Carotene content 
continuously increased along the ripening period, sharply 
increased on the third day, and reached the maximum on the 
last day of ripening. A similar pattern was reported in previ-
ous studies [19, 21, 22]. Compared to other cultivars, Nam 
Dokmai subcv. Si Thong contains higher β-carotene content 
(0.6–8.5 mg 100  g−1) than Haden and Ataulfo (0.4–2.8 mg 
100  g−1) [2], and Tainong (1.9–3.3 mg 100  g−1) [20].

Figure 3 shows PCA scores plots of the first two principal 
components (PC1 and PC2) using chemical data (TA, TSS, 
and β-carotene content) from each mango section on days 
2, 4, 6, and 8 of the ripening. Clear boundaries were  not 
observed for data from each fruit section which indicated 
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proximity of chemical compositions between fruit sections. 
However, in the last phase of ripening (days 6 and 8), the 
shoulder position was slightly distinct   from other parts 
whereas cheek and tip positions were clustered together. 
This result was confirmed by ANOVA analysis (data not 
shown) that fruits at the shoulder position contained lower 
concentrations of β-carotene compared to cheek and tip 
positions on the last four days of ripening. In addition, the 
highest TA was found in the tip position but was not sig-
nificantly different from the other parts. In a previous study 
[22], however, significantly higher TA in tip than cheek and 
shoulder were observed. The results were in contrast to Nor-
dey et al. [23] who reported that for mango cv. Cogshall, 
the tip position had significantly less TA and higher TSS 

than cheek and shoulder positions. However, the authors also 
found a non-significant difference of ethylene, a ripening 
related hormone, between fruit positions [23]. Therefore, 
non-significant variation in these fruit quality attributes in 
this study may be explained by this reason.

Prediction models for physicochemical properties 
of mango

Postharvest changes in mango simultaneously occur in both 
external peel and internal pulp. These changes are regulated 
by ethylene content which generally accumulates in pulp 
closed to seed. For example, during ripening, increasing of 
intense yellow color can be observed in peel and pulp due 

Fig. 2  Internal quality attributes 
of ‘Nam Dok Mai’ mango fruit 
during ripening, including a 
firmness, b ripening index 
(RPI), c total soluble solids 
(TSS), d titratable acidity (TA), 
e pH, and f β-carotene content. 
Error bars indicate standard 
deviation. A similar letter above 
the bars indicates no significant 
difference (p > 0.05, Duncan’s 
test) between ripening days
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to the carotenoid synthesis and accumulation. Degradation 
of protopectin to pectin results in fruit pulp softening and 
peel hardness as well as respiratory water loss. Therefore, 
internal changes in pulp often reflect changes in external 
peel. Postharvest changes are related to the alteration of 
chemical compositions which mostly consist of C, H, O in 
their structures, therefore these will affect to the absorp-
tion energy and spectroscopic signal. Average original 
spectra of mango from each day of the ripening measured 
by NIRS (800–2500 nm) and HSI (450–998 nm) are illus-
trated together in Fig. 4a. In the visible wavelength region 
(450–700 nm), a strong absorption was found in the blue-
green light area (450–500 nm), which is associated with the 
presence of carotenoid compounds [24, 25]. The absence 
of absorption peak around 670–695 nm, which is related 
to the chlorophylls, might be attributed to the characteris-
tic all-yellow peel of this mango cultivar [26]. Broad band 
absorption peaks at 900–1050, 1100–1300, 1400–1600, 
and 1900–2000 nm were observed in the NIR region. These 
absorption bands are associated with the absorptions of 
C–H and O–H bonds in water and organic matters such as 
sugar, acids, and β-carotene [25, 27, 28]. As can be seen 
on the spectra, there were baseline shifts and overlapping 
peaks which might have affected the prediction performance, 
therefore the spectra were adjusted prior to calibration model 
development using several spectral pretreatment techniques.

Both original and pretreated spectra obtained from 
NIRS and HSI were used to develop calibration models for 

firmness, TSS, TA, pH, RPI, and β-carotene content. Several 
spectral pretreatment techniques including Savitzky-Golay 
smoothing (second polynomial order, 17 point), Savitzky-
Golay first derivative (second polynomial order, 17 point), 
Savitzky-Golay second derivative (second polynomial order, 
17 point), standard normal variate (SNV), and multiplicative 
scatter correction (MSC) were applied to adjust the spectral 
resolution (Fig. 4b–f).

NIRS prediction models

The best PLS regression results for the prediction of mango 
quality in each fruit section using NIR spectra are shown in 
Table 2. The best prediction ability for fruit quality attrib-
utes was obtained from the model developed from average 
fruit spectra, which were pretreated with D1, MSC and SNV. 
MSC and SNV techniques are known as the methods used 
to remove the effects of scattering and reduce baseline shift 
which can improve the spectral resolution [24, 28, 29]. How-
ever, TA was most accurately predicted by using the model 
developed from D2 pretreatment. The maximum RPD was 
found for RPI model at 3.16 with SEP of 0.54. However, less 
prediction ability was observed on the TSS model with R2

C
 , 

SEP and RPD ranging between 0.78 and 0.93, 1.22–1.69 
˚Brix and 1.83–2.64, respectively.

Regarding the fruit position, the calibration model 
developed from the tip position spectra showed a lower 

Fig. 3  PCA score plots of ‘Nam 
Dok Mai’ mango on different 
ripening days using chemical 
properties including TA, TSS, 
and β-carotene content from 
shoulder (blue dot), cheek 
(red  dot) and tip (green  dot) 
positions. Ellipsis indicates the 
95% confidence intervals (Color 
figure online)
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prediction error for all quality attributes. Based on the 
R
2
V

 and RPD values, the prediction model for pH shows 
the best predicting performance ( R2

V
 = 0.90, RPD = 3.11) 

followed by those for TA ( R2
V

 = 0.86, RPD = 2.70), and 
TSS ( R2

V
 = 0.83, RPD = 2.46). In this study, RPD values 

obtained from NIRS prediction models were in a range 
of 1.83–3.16. Munawar, Zulfahrizal, Meilina and Pawel-
zik [28] suggested that for quantitative prediction. Mod-
els with an RPD value between 2 and 2.5 are acceptable, 
while an RPD value between 2.5 and 3 or above indicates 
a good and excellent prediction accuracy. Therefore, the 
prediction models for all mango quality attributes devel-
oped from NIRS average spectra in this study are prom-
ising. Similar result was reported by Xu, Xu, Xie and 
Ying [30] that prediction models of soluble solids content 
(SSC) developed from the average spectra obtained from 

7 different positions of apple fruits provided the accurate 
prediction performance.

HSI prediction models

Table 3 shows the best PLS regression results for the pre-
diction of mango quality in each fruit section using HSI 
spectra. Similar to the NIRS regression results, calibration 
models developed from average spectra showed the best 
prediction performance in all fruit attributes except for pH, 
which the model developed from cheek spectra provided 
the best prediction ability. Overall, slightly lower accuracy 
of HSI prediction models as compared to NIRS prediction 
models, which might be because only absorbance data in 
visible and short-wavelength regions were measured. The 
best-fitting regression for firmness was achieved from SG 
pretreated spectra with R2

C
 , SEP, and RPD of 0.81, 2.62 N, 

Fig. 4  Average spectra of ‘Nam 
Dok Mai’ mango during ripen-
ing a original NIRS (solid line) 
and HSI (dash line) spectra, b 
SG-NIRS spectra, c D1-NIRS 
spectra, d D2-NIRS spectra, e 
MSC-NIRS spectra, and f SNV-
NIRS spectra
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and 2.75, respectively. Screening quantitative prediction 
performance (RPD between 1.5 and 1.9) was observed for 
the TSS calibration model. The results agreed with many 
researchers that HSI has lower prediction performance for 
TSS than other attributes, e.g. firmness [12, 31, 32]. This 
might be because HSI relies on the scattering effect and 
the visible range wavelength included in HSI measurement 
does not enhance the predicting ability for TSS [31]. A rel-
atively good prediction of β-carotene content was obtained 
from SNV pretreated spectra with R2

C
 , SEP, and RPD of 

0.84, 1.13 mg 100  g−1, and 2.80, respectively. The better 
prediction accuracy on β-carotene content using HSI spec-
tra compared to NIRS might be attributed to high absorp-
tion in the visible wavelength region around 450–500 nm.

Scatter plots of the best calibration results for predicting 
mango fruit attributes using NIRS and HSI techniques are 
illustrated in Figs. 5 and 6. Based on the paired t-test meth-
ods, for all calibration models, no significant differences 
(p > 0.05) between actual and predicted quality attributes 
were found from both techniques (data not shown).

MLR calibration models

To identify the relevant wavelengths that are important to 
estimate each mango quality parameter, loading weight 
value and PLS regression coefficient were computed and 
analyzed. Figure 7 shows an example of NIRS-PLS regres-
sion coefficient and loading weight plot, which represent 
relevant variables for TSS prediction. Significantly contrib-
uted variables were mainly located in the long-wavelength 
region (1100–2500 nm). A set of wavelengths represent-
ing the first overtone of O–H absorptions and C–H com-
binations (1350–1450 nm), the first overtone of C–H bond 
(1600–1800 nm) and the region between 2100 and 2400 nm 
that corresponded to water and carbohydrate absorption was 
observed as relevant wavelengths for TSS prediction. For 
firmness prediction models, the second overtone of the C=O 
bond (1800–1900 nm) and combinations of C–H + C–H 
absorption (2200–2400 nm) were found as relevant vari-
ables. The results were in agreement with Buyukcan and 
Kavdir [33] that the effective wavelength ranges for SSC 
of apricot were between 1333 and 1836 nm and between 
2173 and 2300 nm while the effective wavelength ranges for 
firmness were between 800 and 1836 nm and between 2173 

Table 2  NIRS-PLS regression 
results for ‘Nam Dok Mai’ 
mango fruit quality attributes in 
different sections

SG Savitzky-Golay smoothing, D1 Savitzky-Golay first derivative, D2 Savitzky-Golay second derivative, 
SNV standard normal variate, MSC multiplicative scatter correction, F number of factors

Pretreatment F RPD Calibration Validation

R
2
C

SEC R
2
V

SEP Bias

Firmness (N) D1 10 2.57 0.87 2.62 0.84 2.80 0.73
RPI D1 9 3.16 0.91 0.59 0.90 0.61 −0.01
TSS (°Brix)
 Shoulder MSC 8 2.23 0.78 1.5 0.80 1.4 0.1
 Cheek D1 10 1.83 0.89 1.1 0.69 1.7 0.3
 Tip MSC 10 2.46 0.87 1.3 0.83 1.4 0.1
 Average D2 9 2.64 0.93 0.9 0.85 1.2 -0.3

TA (%)
 Shoulder MSC 10 2.26 0.84 0.31 0.80 0.33 0.01
 Cheek None 10 2.12 0.83 0.35 0.77 0.39 -0.08
 Tip MSC 9 2.70 0.87 0.32 0.86 0.33 −0.04
 Average D2 9 3.07 0.90 0.26 0.89 0.26 0.07

pH
 Shoulder SNV 8 2.55 0.84 0.53 0.85 0.53 0.00
 Cheek SNV 9 3.02 0.87 0.47 0.89 0.43 −0.05
 Tip SNV 10 3.11 0.92 0.40 0.90 0.44 0.00
 Average D1 10 2.99 0.93 0.35 0.88 0.45 -0.12

β-carotene
(mg 100  g−1)
 Shoulder MSC 10 1.93 0.88 0.99 0.73 1.42 -0.03
 Cheek SNV 7 2.43 0.84 1.41 0.82 1.41 -0.29
 Tip MSC 10 2.34 0.86 1.35 0.80 1.48 -0.45
 Average MSC 10 2.65 0.89 1.08 0.86 1.19 0.10
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and 2355 nm. Similar to firmness and TSS models, a set of 
wavelengths around 1700 and 2200–2400 nm was observed 
in the β-carotene content prediction model.

From the regression coefficient plot and loading weight 
plot of the best fitting PLS prediction models, the relevant 
wavelengths were chosen as candidate wavelengths and eval-
uated for significant impact using the backward elimination 
stepwise method and the number of significant wavelengths 
used for NIRS-MLR model construction were defined as 
describe in our previous study [17]. Table 4 shows prediction 
performance of NIRS-MLR prediction models developed 
by significant wavelengths. Lower predictive accuracy was 
observed on MLR models compared to PLS model due to 
a smaller number of variables used for model construction. 
The minimum number of wavelengths was found for firm-
ness model at three wavelengths, 2310, 2344, and 2400 nm, 
whereas pH (1692, 1719, 1730, and 2396 nm) and β-carotene 
content prediction model (1721, 1735, 2212, and 2314 nm) 
required four significant wavelengths. Five significant vari-
ables (1350, 1392, 1878, 1931, and 1997 nm) were used 
for RPI prediction model while greater number of variables 
were chosen for TSS (7 wavelengths including 1402, 1418, 

1668, 1687, 1705, 1733, and 2031 nm) and TA prediction 
model (1145, 1161, 1673, 1688, 1708, 1735, and 1752 nm).

PLS regression coefficient plots of TA, pH, and 
β-carotene content prediction developed from average HSI 
spectra are illustrated in Fig. 8. Candidate variables were 
selected and evaluated by the backward elimination stepwise 
method. Prediction results of HSI-MLR models developed 
using significant wavelengths are listed in Table 5. For HSI-
MLR prediction models, the important wavelengths for TA 
determination were 514, 550, 646, 710, 886, and 890 nm. 
This set of wavelengths represented the fourth overtone 
(710 nm) and the third overtone (890 nm) of C-H bonds and 
carotenoids absorption. For pH prediction, four wavelengths 
(482, 514, 550, and 802 nm) were included in the MLR 
prediction model. These results agreed with the finding of 
other studies, which showed that the spectral regions at vis-
ible wavelengths are capable to predict TA and pH [34, 35]. 
However, the ability of visible wavelength to determine pH 
might be from the relation between the changes of pigments 
and internal fruit quality attributes during fruit ripening [36].

For β-carotene content prediction, important wave-
lengths were 466, 482, 518, 546, 578, 678, 922, and 
954 nm. As reported by Davey et al. [37], a wavelength 

Table 3  HSI-PLS regression 
results for ‘Nam Dok Mai’ 
mango fruit quality attributes in 
different sections

SG Savitzky-Golay smoothing, D1 Savitzky-Golay first derivative, D2 Savitzky-Golay second derivative, 
SNV standard normal variate, MSC multiplicative scatter correction, F number of factors

Pretreatment F RPD Calibration Validation

R
2
C

SEC R
2
V

SEP Bias

Firmness (N) SG 4 2.75 0.81 3.14 0.87 2.62 0.24
RPI None 4 3.17 0.90 0.63 0.90 0.61 -0.03
TSS (°Brix)
 Shoulder SG 6 1.60 0.56 2.1 0.59 2.0 0.4
 Cheek SG 10 1.47 0.72 1.7 0.52 2.1 0.4
 Tip MSC 4 1.52 0.57 2.4 0.56 2.3 0.3
 Average SG 9 1.78 0.58 2.1 0.69 1.8 0.0

TA (%)
 Shoulder D2 2 2.50 0.79 0.35 0.84 0.30 0.00
 Cheek MSC 8 2.34 0.88 0.29 0.81 0.35 -0.08
 Tip D2 2 2.51 0.85 0.35 0.84 0.36 -0.03
 Average D2 3 2.69 0.86 0.31 0.86 0.30 0.05

pH
 Shoulder D1 2 2.98 0.88 0.46 0.89 0.45 0.00
 Cheek SNV 7 3.65 0.93 0.35 0.92 0.36 0.10
 Tip SNV 5 3.02 0.90 0.44 0.88 0.45 0.13
 Average None 8 3.58 0.94 0.34 0.92 0.37 -0.01

β-carotene
(mg 100  g−1)
 Shoulder D2 3 2.09 0.81 1.20 0.77 1.31 0.11
 Cheek D2 2 2.35 0.84 1.41 0.82 1.46 -0.20
 Tip SG 6 2.36 0.82 1.54 0.82 1.49 -0.11
 Average SNV 4 2.80 0.84 1.30 0.87 1.13 0.10
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region between 400 and 600 nm is strongly absorbed by 
carotenoids, especially at 520 and 540 nm. Therefore, 
a greater number of wavelengths around 450–600 nm 
were found as the important wavelengths that enhance 
the predicting ability of the β-carotene content prediction 
model. Four significant wavelengths, 514, 554, 674, and 
914 nm, were responsible for firmness prediction while 
five variables were required for RPI (514, 524, 678, 858, 
and 990 nm) and TSS prediction models (506, 538, 671, 
762, and 898 nm).

Conclusion

This study was performed to explore the potential of 
NIRS and HSI as non-destructive techniques for internal 
quality attributes assessment of mangoes. Fruit position 
showed only a slight influence on the prediction perfor-
mance for both devices, and using the average fruit spectra 
gave the best prediction performance. The PLS models 
developed from NIRS spectra provided an acceptable 
and good  prediction ability for firmness (RPD = 2.57), 

Fig. 5  Prediction results for a 
firmness, b total soluble solids 
(TSS), c titratable acidity (TA) 
of ‘Nam Dok Mai’ mango using 
NIRS calibration models (green 
color) and HSI calibration 
models (blue color) (open circle 
calibration set, × validation set) 
(Color figure online)
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TSS (RPD = 1.83–2.64), TA (RPD = 2.12–3.07), pH 
(RPD = 2.55–3.11), RPI (RPD = 3.16), and β-carotene con-
tent (RPD = 1.93–2.65). Slightly lower prediction accuracy 
was found for the models obtained from HSI spectra with 
the RPD ranging between 1.47 and 3.58. Although the 
reduction of variable numbers in MLR prediction models 
resulted in slightly lower prediction ability of the models 
from both devices, acceptable prediction performances 

for general screening purposes were obtained. The over-
all results obtained in this study showed the feasibility 
of NIRS and HSI for quality control in mango sorting. 
However, this study was performed using mango from one 
cultivar therefore further study is still required involving 
analysis of more samples from different harvest years or 
other cultivars.

Fig. 6  Prediction results for a 
pH, b β-carotene content, and c 
RPI of ‘Nam Dok Mai’ mango 
using NIRS calibration models 
(green color) and HSI calibra-
tion models (blue color) (open 
circle calibration set, × valida-
tion set) (Color figure online)
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Fig. 7  Regression coefficient 
plot and loading weight plot for 
TSS prediction developed from 
average ‘Nam Dok Mai’ mango 
fruit spectra measured by NIRS

Table 4  NIRS-MLR prediction 
results for ‘Nam Dok Mai’ 
mango fruit quality attributes

SNV standard normal variate, MSC multiplicative scatter correction, N number of significant wavelengths

Pretreatment N RPD Calibration Validation

RC
2 SEC RV

2 SEP Bias

Firmness (N) None 3 1.71 0.66 4.25 0.66 4.20 − 0.05
RPI None 5 1.74 0.78 0.92 0.68 1.11 − 0.14
TSS (˚Brix) None 7 2.14 0.83 1.37 0.78 1.50 − 0.10
TA (%) None 7 2.29 0.75 0.41 0.81 0.35 0.07
pH SNV 4 2.07 0.80 0.61 0.77 0.66 − 0.02
β-carotene
(mg 100  g−1)

MSC 4 1.63 0.63 1.96 0.64 1.94 0.34

Table 5  HSI-MLR prediction 
results for ‘Nam Dok Mai’ 
mango fruit quality attributes

Pretreatment N RPD Calibration Validation

RC
2 SEC RV

2 SEP Bias

Firmness (N) None 4 2.69 0.82 3.10 0.86 2.68 0.03
RPI None 5 3.10 0.89 0.64 0.90 0.62 0.01
TSS (˚Brix) None 5 1.69 0.54 2.21 0.65 1.85 0.00
TA (%) None 6 2.33 0.85 0.32 0.83 0.34 0.04
pH None 4 3.08 0.91 0.39 0.90 0.43 0.02
β-carotene
(mg 100  g−1)

None 8 2.64 0.86 1.22 0.87 1.20 0.13
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