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Abstract
Internal fungal infection and pest invasion are defects commonly found in dried longan fruits, which cannot be visualized 
easily without peeling. The present work was aimed to develop a non-destructive method for discriminating defective dried 
longan fruits via measuring the transverse relaxation times  (T2) by Low-Field Nuclear Magnetic Resonance (LF-NMR) that 
characterized the bound water in the fruits, with 274 in total and defects versus normal at 107:167. A decreasing tendency 
of transverse relaxation amplitude in defective samples was observed, consistent to the change of proton density distribution 
by Magnetic Resonance Imaging (MRI) with weakened signal in moldy/wormy flesh shown compared with normal ones. 
Both Principal Component Analysis (PCA) and Deep Learning Neural Network (DLNN) models were applied to analyze 
the  T2 relaxation time for predicting the defective fruits. The DLNN model yielded a satisfactory performance and achieved 
accuracy, recall and F-score marks up to 89 %, 82 % and 86 % for 10-fold cross validation, respectively, compared with 
approximately 80 %, 60 % and 74 % by PCA cluster. This study highlighted a novel non-destructive approach for discriminat-
ing defective dried longan fruits of high efficiency featured by high recall, precision and accuracy using DLNN modeling 
based on LF-NMR.

Keywords Dried longan fruit · Low field nuclear magnetic resonance · Non-destructive measurement · Deep learning 
neural networks · T2 relaxometry

Introduction

Longan (Dimocarpus longan Lour.) is an important sub-
tropical fruit in the family of Sapindaceae [1], which has 
been used in traditional oriental medicine and possesses 

several physiological activities besides being a widely wel-
comed preserved fruits as snacks and used in many tradi-
tional dishes [2]. The biggest Dimocarpus longan production 
industry over the world is in China, with more than 2000 
years history of cultivation [3]. Owing to its enrichment of 
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nutrients, sweet flavor and healthy benefit, longan fruit has 
acquired increasing popularity and great commercial value 
both domestically and globally [1, 2]. However, longan 
fruit has a short shelf life at room temperature due to its fast 
pericarp browning, fungal infection, and pest attack [4, 5]. 
Additionally, the post-harvest preservation of longan fruits 
is facing big challenge, as the high temperature and humidity 
during the harvest season accelerates its decay and favors the 
growth of pathogenic fungi, especially in Southwest China. 
Dried longan fruit, comparing to fresh one, has wider market 
share due to its longer shelf life and special chewy texture. 
The detection of defective dried longan fruit that is included 
in the Agricultural Trade Regulation in China is rather diffi-
cult, because the moldy and wormy flesh is hidden under the 
perfect and intact peel that cannot be easily visualized from 
outside. Thus, it has become a thorny problem for industries 
to control the quality of this fruit. Besides, the invisible infe-
rior longan fruits also make it difficult to be graded, causing 
a great loss of credit and profits of dealers. Therefore, a 
non-destructive quality evaluation of dried longan fruit is in 
urgent need and of great commercial prospects.

Non-destructive technology can potentially revolution-
ize fruit industrial practices. For example, the early in-
field assessment of ripeness and prediction of the harvest 
date and yield, screening out inferiors before selling not 
only enables the consumers to get the tastiest and freshest 
fruit, but also maximizes suppliers’ profits by grading 
the fruits [6, 7]. The principle of relaxation nuclear mag-
netic resonance signals is to analyze in the time domain 
experimental signal-decay curves by fitting model func-
tions in order to extract the relaxation times. Differences 
in relaxation times and proton density between tissues/
phases/samples make it possible to distinguish defective 
fruits from normal ones. Low field was defined as the 
range of magnetic field strengths corresponding to  B0 
= 10 mT to 1 T for H [8]. Low-field nuclear magnetic 
resonance (LF-NMR) technologies have been widely 
applied in food quality control. For instance, LF-NMR 
measurements have been applied to evaluate the water 
holding capacity of meat [9, 10]. Moreover, LF-NMR is 
effective in studying water mobility change during cook-
ing or drying processes of potatoes and Tofu [11–13]. 
Previously, LF-NMR analysis has been applied in evalu-
ation of water distribution of fruits including blueber-
ries [14], sweet cherry [15], and grape [16]. LF-NMR 
Magnetic Resonance Imaging (MRI) can detect internal 
bruise and sprain disease symptoms in potatoes [17]. 
Besides, low-field proton magnetic resonance sensor 
could also be used in sensing internal discoloration in 
whole apples [18]. Theoretically, the water mobility may 
be changed in wormy and moldy dried longan fruits due 

to the change of water mobility during the growth of fun-
gal and pests. Therefore, we proposed a discriminative 
method for defective dried longan fruits by checking the 
water status inside the fruits.

Principal component analysis (PCA), the linear com-
binations of the original variables, has usually been 
applied in reducing the dimensionality of large datasets 
[19]. PCA model is able to reveal the aggregation and 
separation trend among groups from the distribution of 
samples in PCA diagram. However, the properties of 
PCA have some undesirable features when these vari-
ables have different units of measurement [19]. Machine 
learning has the potential to provide an accurate and 
more efficient solution in detecting contaminations in 
food products [20] and several reports have highlighted 
its application in the prediction of food contamination. 
For example, Support Vector Machine (SVM) model 
achieved up to 85 % accuracy in identification of food 
contaminating beetle species by imaging their elytra 
under a microscope [20]. Moreover, hyperspectral 
remote sensing combined with kernel-based extreme 
learning machine (KELM) were used to trace changes 
in the chlorophyll content of shaded tea leaves, poten-
tially developing a green tea quality detection method 
[21]. The deep learning neural network (DLNN), as one 
of the most powerful approaches for machine learning, 
builds multi-layered neural networks containing many 
neurons to model complex relationships in big data. 
DLNN has proven improved prediction performance 
over traditional models for speech recognition, image 
identification and natural language processing [22]. 
Relationship between features and phenotypes could 
be learned and a mapping from features to their cor-
responding phenotypes could be constructed by tuning 
selected hyperparameters, such as the number of neu-
rons and the type of layers. The successful application 
of DLNN in the fields of systems biology and compu-
tational biology to solve prediction problems includ-
ing gene annotation, recognition of protein folds and 
prediction of genome accessibility has demonstrated 
its powerful capability of learning complex relation-
ship from biology data [23]. Give the limitation of PCA 
analysis on variables with different units of measure-
ment, the possibility of using DLNN model based on 
LF-NMR relaxation features for food discrimination 
remains to be evaluated. Therefore, the present study 
aimed to apply LF-NMR combined with DLNN on non-
destructive quality evaluation of dried longan fruit, pro-
viding a new method for inferior longan fruit screening 
and differentiation, thus increasing food safety for cus-
tomers and profits to the fruit industry.



654 Y. Fu et al.

1 3

Materials and methods

Samples grouping

The dried longan fruits were provided by Dengshi Specialty 
Company in Luzhou in Southwest China. Longan fruits 
were collected in September to October in 2014, 2015, and 
2018, and dried in stoves. Precisely, all fresh fruits were 
subjected to a standard production process as following. 
The harvested fresh longan fruits were sorted, washed, ini-
tiating baked, refrigerated, re-baked and packed. From the 
perspective of the quality, edible dried longan fruits were 
labeled as normal, and moldy or wormy fruits were labeled 
as moldy/wormy judged by naked eyes after removing the 
pericarp (Fig. 1). Samples from 2014 (14_batch) and 2015 
(15_batch) were only subjected to transverse relaxation 
measurement, whereas those from 2018 (18_batch) were 
processed with both transverse relaxation measurement and 
proton density imaging analysis (PDIA). All experimental 
samples were subjected to NMR relaxation measurement 
or MRI analysis approximately a month after being dried. 
The comparison amongst subjects from different years was 
conducted after finishing the experiments. Subjects were 
weighed and conducted with quantity normalization.

NMR relaxation measurement

LF-1 H NMR measurements were performed on 23 MHz 
NMR analyzer PQ001-20-025 V (Niumag Electric Cor-
poration, Shanghai, China). The NMR instrument was 
equipped with a 60 mm diameter radio frequency coil. 
Dried longan fruits were placed on the NMR bed and 
inserted in the NMR probe. The strength of the mag-
netic field is 0.5 ± 0.08 T. Carr-Purcell-Meiboom-Gill 
(CPMG) pulse sequence was employed to measure 
spin-spin relaxation time  (T2) to collect decay signals. 
SFO1(Spectrometer Frequency offset of the first (observe) 

channel) was 21.242 MHz. The pulse durations used were 
5.4 and 10.64 µs for the 90° (P1) and 180° (P2) pulses, 
respectively. Data were acquired from 2500 echoes over 8 
scans at 32 ℃. The repetition time between scans was 800 
ms. Spectral width (SW) was 125 kHz, time echo (TE) 
was 0.2 ms. After acquiring the CPMG sequence of the 
pericarp-covered dried longan fruits, the T-invfit software 
was used to inverse the obtained CPMG sequence into a 
spin–spin relaxation time  (T2) distribution. Afterwards, 
all dried longan fruits were cracked and pericarp-removed 
for verification.

MRI measurement

18_batch were picked out for MRI measurement. In this 
part, samples with pericarp covered (PC) and/or peri-
carp removed (PR) were arranged for MRI measurement. 
SPIN ECHO sequence was used to obtain proton den-
sity weighted images using NMR imaging system Mes-
oMR23-060 H-I (Niumag Electric Corporation, Shang-
hai, China). MRI parameters were listed as following. 
SFO1(MHz) = 23.406, RFA90˚ = 7.0, RFA180˚ = 10.6, 
Time of repetition (TR) = 300 ms, Time of echo (TE) = 
6 ms, Slice width = 5 mm, Slices = 1, Average = 2, Read 
Size = 256, Phase Size = 128. Pseudo-color convention 
is a method of image processing that changes gray images 
into color images [24]. The processing of mapping gray 
image into a color image and the decision of transform 
functions refers to pseudo-color-coding method [24].

Discrimination based on PCA analysis

LF-NMR  T2 relaxation curves of dried longan fruits were 
pictured using Microsoft Excel 2016. PCA plot were con-
ducted by PAST v2.17. A score plot of the first two PCs for 
samples grouped in ellipses, representing group member-
ship assuming the 95 % confidence limit as the cut-off dis-
tance. Prediction of positive (moldy/wormy) and negative 
(normal) subjects were conducted based on PCA cluster as 
subjects circled in the respective ellipses were predicted to 
be normal, whilst those outside were deemed to be moldy/
wormy. Recall, accuracy, precision and F-score according 
to Eqs. (1), (2), (3) and (4) were calculated as follows:

(1)Recall =TP/(TP+FN)

(2)Precision =TP/(TP+FP)

(3)Accuracy =(TP+TN)/(TP+TN+FP+FN)

(4)F-score = (2Precision × Recall)∕(Precision + Recall)

Fig. 1  Dried longan fruits with pericarp covered (PC) or pericarp 
removed (PR). Normal, moldy, and wormy longans without pericarp 
were displayed, fungal film and insect eggs were indicated in red cir-
cle and arrow
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where TP: true positive; FP: false positive; TN: true nega-
tive; FN: false negative. Moldy/wormy subjects were desig-
nated as positive whereas normal ones as negative.

Machine learning modeling construction 
and prediction

A DLNN model was constructed by the keras in tf-
nightly-gpu (2.4.0.dev20200802) library with Python 
3.8.5. Hyperparameters were specified before training 
the model. Manual hyperparameter tuning was performed 
to determine each parameter. Each hyperparameter was 
finely tuned for low loss and high accuracy as follows. 
(1) the number of hidden layers: 2, 3; Deep neural net-
work was avoided for reducing computing complex-
ity and overfitting. (2) learning rate: 0.1, 0.01, 0.001, 
0.0001; A suitable learning rate could contribute for 
smooth learning process and ensure the convergence of 
the model. (3) Batch size: 100, 274; A proper batch size 
could guide the learning process better. (4) Number of 
units in hidden layers: 100, 200; the number of units in 
hidden layers determines the capacity of the model. Too 
many or too few hidden layers could lead to overfit or 
underfit. (5) Number of epochs: 300, 400; ensures that 
the model could reach better performance (high accuracy 
and low loss). (6) Regularization: None, L2 (lambda: 
0.01, 0.001); constraint the overfitting of the model by 
avoiding overlarge weights. (7) Activation function in 
hidden layers: ReLU. This is a nonlinear function per-
forming affine transformation to enhance the capacity 
of the model.

Besides, the different combinations of the hyperpa-
rameters above were tried. When the outcomes of differ-
ent model were similar, hyperparameters that retained 
the model less complexity and capacity were preferred. 
The combination of hyperparameters that yielded the 
most satisfactory outcome (low loss and high accuracy) 
amongst all the attempts was provided in Table 1. Spe-
cifically, the model consists of two hidden dense layers 
with 100 rectified linear units (ReLU) in each layer. The 

network was trained with Adam optimizer (batch size: 
100, learning_rate: 0.01) and binary_crossentropy loss 
function for 300 epochs. To assess the performance of 
this model, a ten-fold cross-validation method imple-
mented in MultilabelStratifiedShuff leSplit provided 
by the Python package iterstrat.ml_stratifiers was used. 
Negative predictive value (NPV), specificity, recall, pre-
cision, accuracy, Average Precision (AP) and Area Under 
the Receiver Operating Characteristic Curve (AUC) 
implemented in the Python package sklearn was used 
to evaluate the performance of our model. Formulas for 
recall, accuracy, precision, and F-score calculation were 
as shown above. NPV and Specificity is calculated as 
shown in Eqs. (5) and (6).

where FP: false positive; TN: true negative; FN: false nega-
tive. Moldy/wormy subjects were designated as positive 
whereas normal ones as negative.

Results and discussion

Verification defects and normal fruits

The defects and normal fruits in 274 subjects collected 
from 2014, 2015 and 2018 were verified by removing peri-
carp with naked eyes after LF-NMR testing. The numbers 
of defects versus normal subjects were relatively balanced 
with ratios of 50:55 and 47:50 in 14_batch and 15_batch, 
respectively. However, only 10 out of 72 of 18_batch were 
proven to be moldy or wormy.

Water status in the moldy/wormy dried longan 
fruits

The transverse  T2 relaxation curve of dried longan fruits 
samples is presented in Fig. 2. According to the spectra, 
a major peak identified as  T21 (0-20 ms) was observed 
in all samples, which suggested that water content in 
dried longan fruits is relatively immobile. Previous study 
reported that 20-30 % water content were preserved in 
dried longan fruits, which is essential to keep its soft 
taste [25, 26]. In plant tissue, water components with 
0.01-10 ms, 10-150 ms and 150-1000 ms  T2 relaxa-
tion time were ascribed to cell wall protons, cytoplas-
mic water, and vacuolar water, respectively [15]. After 
around 60 % of its weight were lost by drying process 
[25], the present study confirmed that certain amount of 
bound water  (T21) associated with cell wall were left in 
dried flesh. However, the present study showed that the 

(5)NPV =TN/(TN+FN)

(6)Specificity=TN /(TN+FP)

Table 1  Learning and architecture parameters of the deep learning 
neural network (DLNN) model with the best performance

Hyperparameters Values

Learning rates 0.01
Batch size 100
Number of units in hidden layers 100
Number of hidden layers 2
Number of epochs 300
Regularization none
Activation function in hidden layers ReLU
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water status among samples changed by batches (14_
batch, 15_batch, 18_batch). For example,  T21 of 18_batch 
(Fig. 2e and f) had the shortest  T2 relaxation time (0-1 
ms), representing strongly bound water. By comparison, 
 T21 ranged from 0 to 10 ms were observed in 14_batch 
(Fig. 2a and b) and 1-20 ms in 15_batch (Fig. 2c and 
d), standing for the bound water with more mobility 
than that of 18_batch. 15_bacth had relatively latent  T2 
relaxation time compared to others (Fig. 2c and d). The 
present study, as the first to investigate water distribution 
inside of the dried longan fruits based on  T2 relaxation 

time by LF-NMR, suggested that this kind of fruit char-
acterized with bound water, yet the mobility of the water 
content is varied amongst samples. The drying process of 
longan can cause the variation of water mobility among 
samples. To maintain the soft texture of the dried longan 
fruits, the drying process were conducted by multiple 
times, and the interval time of around 10-16 h enables 
the moisture in the inner fruit core to move outside to 
be dried by next drying process. The temperature and 
moisture in interval time vary from batch to batch, and 
despite the moisture content determined for the fruit part 

Fig. 2  The transverse relaxation curves  (T2) of dried longan fruits. a, c and e normal samples harvest in 2014, 2015 and 2018, respectively. b, d 
and f moldy/wormy longan fruits of harvest in 2014, 2015 and 2018, respectively
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were similar among batches, the moisture content for the 
whole dried fruit may not be exactly the same, thus to 
affect the migration of water components in the different 
part of the dried fruits. Notably, the corresponding rela-
tive amplitude of the peaks, marked as  A21 were higher in 
15_batch than 14_ and 18_batchs, reflecting the stronger 
hydrogen protons density in the sample. Besides,  A21 
of some moldy/wormy samples characterized decreased 
signal amplitude, while others had a tendency of shift to 
the right (Fig. 2b, d, and f). Both moisture content and 
water status act as essential factors that affect the shelf 
life of longan fruits; the study suggested that rotten dried 
longan fruits were not characterized with higher moisture 
content than normal fruit but probably the opposite, and 
the water component in them might be less bonded. Two 
peaks, 10-100 ms in 18_batch, 20-200 ms in 14_batch 
and 15_batch, representing immobilized and water free 
water, respectively, were negligibly small (Fig. 2), but 
how these water components affect quality of dried lon-
gan fruits and if their LF-NMR  T2 measurements can be 
used for discrimination remains unknown.

Water distribution in the moldy/wormy 
dried longan fruits

MRI analysis was performed to compare the proton den-
sity relaxation which indicating the water distribution 
between samples before and after pericarp-removed, 
between PC and PR samples, and between normal and 
moldy/wormy samples (Fig.  3a). The proton density 
weighted images with MRI were processed with pseudo 
color transformation. The color bar, representing dif-
ferent level of grey scales, provides a relative scale for 
the moisture content [27, 28]. Heterogeneity of moisture 
content was observed in the flesh tissue. For instance, 
outer parenchyma that close to pericarp had brighter 
colors compared with inter part (Fig.  3). Previously, 

heterogeneity of water distribution was found between 
the inner and outer parenchyma of apples by MRI [29], 
and between the florets and stalks in broccoli tissue [28]. 
Moreover, pericarp-removed normal, moldy, and wormy 
fruits, two of each were set on order for imaging analysis. 
As shown in Fig. 3b, moldy/wormy fruits were distin-
guished from normal ones by less moisture content in 
the parenchyma. This result is consistent to the decreased 
tendency of  T21 amplitude signal. Notably, a moldy lon-
gan fruit was distinguished with the pericarp remained 
intact using the LF-NMR imaging (Fig. 3c), showing a 
decreased signal in the flesh part.

PCA Cluster

Previously, PCA was conducted to determine the sensi-
tive wavelength of the Hyperspectral date, based on which 
the SVM modeling was conducted to classify the different 
qualities of litchis [30] or grape seeds [31]. In this study a 
simple and rapid PCA clustering method was applied to the 
transverse  T2 relaxation time of longan fruit to distinguish 
normal and moldy/wormy longan fruits from different years. 
PC1 and PC2 explained 79.10 % and 13.52 %, respectively, 
of the variation in the data and discriminated according to 
the different harvest year of the samples. The normal fruit 
was relatively clustered but separated by years. Therefore, 
accuracy, recall and precision, embodying the classification 
performance of PCA, were separately calculated based on 
datasets from different years. Few negative (normal) subjects 
were mixed in positive (moldy/wormy) ones; therefore, high 
precision values were obtained in samples from different 
years (100 %, 97 % and 100 %) by prediction (Fig. 4). By 
contrast, moldy/wormy subjects were relatively scattering, 
resulting the low recall values of discrimination by PCA 
(56 %, 62 %, and 60 %). The accuracy for detecting positive 
subjects from 2014 to 2015 datasets were 79 % and 80 %, and 
the F-scores were 72 % and 76 %. Due to the low percentage 

Fig. 3  The pseudo-color gray transformed proton density images of 
normal and moldy/wormy longan fruits with or without pericarp. The 
gray scale (0-255) images were changed to color images. a pericarp-

covered (PC) and pericarp-removed (PR) normal longan fruits; b PR 
normal, moldy, and wormy longan fruits; c PC moldy longan fruit 
was spotted out from normal ones
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of positive subjects (10 out of 72) in 2018 dataset, F-score 
(75 %) was more credible than accuracy (94 %) in this case.

Performance of predictive DLNN modeling

Hyperparameters including learning rates, batch size, 
number of units in hidden layers, number of hidden lay-
ers, number of epochs and regularization were adjusted. 
The final hyperparameters and architecture of the DLNN 
model adapted in this study were provided (Table 1; 
Fig. 5). An objective and comprehensive evaluation of 
the performance of the model was obtained through ten-
fold cross-validation. Metrics used to evaluate each pre-
diction were presented in Fig. 6. The values of AUC, AP, 
precision, recall, NPV, specificity, accuracy and F-score 
reached up to 95 %, 96 %, 100 %, 82 %, 89 %, 100 %, 89 % 
and 86 %, respectively. These results highlighted the sat-
isfactory performance of the DLNN model. The accuracy 
on discriminating the moldy/wormy from normal dried 
longan fruits reached 89 %, compared to the accuracy of 

93 % of a predictive model on in-shell shriveled walnuts 
[32], 88.7 % of the discriminant model of grape seeds 
built by SVM using the spectra based on the effective 
wavelengths (EWs) [31], 93 % on the identification of 
rice seed varieties using NIR spectroscopy [33], and 98 % 
on the early identification method for cucumber diseases 
based on the techniques of hyperspectral imaging and 
machine learning [34]. Interestingly, a previous study 
proposed a novel method using supervised SVM based 
on LF-NMR and relaxation features, which showed that 
when the relative position of each edible oil has been 
determined by PCA before the designing of binary tree 
structure of SVM model, the classification accuracy of 
99.04 % can be achieved [35]. By contrast, deep learning 
modelling approaches obtained better performances than 
PCA classification in this study, showing that deep learn-
ing had significant potential to be used as modelling and 
feature extraction methods in LF-NMR  T2 data analy-
sis. Importantly, the DLNN model yielded satisfactory 

Fig. 4  Principal Component Analysis (PCA) of  T2 relaxation times of 
normal and moldy/wormy longan fruits. 2014_normal (normal sam-
ples from 2014, circle, purple); 2015_normal (normal samples from 
2015, rectangle, reddish brown), 2018_normal (normal samples from 

2018, square, pink), 2014_moldy/wormy (moldy/wormy samples 
from 2014, cross, green); 2015_moldy/wormy (moldy/wormy sam-
ples from 2015, square, blue); 2018_moldy/wormy (moldy/wormy 
samples from 2018, oval, turquoise)
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performance of high recall and precision marks up to 
82 % and 100 % respectively. The remarkable predict-
ing performance of the DLNN model featured both high 
recall and precision to discriminate defects at utmost 
while minimizing false rejection of normal fruits. For 
several outliers, the present model failed to predict them 
correctly (Fig. 6), suggesting more samples containing 
comprehensive characteristics should be collected to 
improve this DLNN model. Despite of outliers which 
might result from the heterogeneity amongst samples 
from three different years, the high accuracy, recall, and 
precision suggested this model can be improved to a 

better level of performance if more specimens containing 
comprehensive characteristics were included. Under the 
consideration of reasonable cost and simple procedure, 
the present study indicated that DLNN model can effec-
tively predict dried longan fruits quality through training 
and testing on LF-NMR  T2 relaxometry data with a high 
feasibility.

A limitation of this study is that we failed to distinguish 
wormy and moly longan fruits one by one hence labeled 
them together as moldy/wormy. Ideally, the distinguish 
between moldy and wormy fruits helps in the better dis-
crimination of inferior longan fruits, assumed that wormy 
and moldy samples may have different characteristics of 
moisture content and water mobility and feature different 
 T2 relaxometry and proton density by LF-NMR. Unfortu-
nately, some dried longan fruits were difficult to differentiate 
between wormy and moldy as they were mingled with fungal 
infection and pest invading. Therefore, the fruits deterio-
rated by fungal infection and pest invasion were put together 
for LF-NMR analysis in this study. The reason that makes 
longan fruits unqualified should be specified and separately 
detected in future studies to better discriminate between infe-
rior longan fruits and normal ones.

Conclusions

The present work has proposed a non-invasive and effective 
method that could be applied to discriminate moldy and/
or wormy dried longan fruits, in which LF-NMR and MRI 
techniques were used to examine the water bounding status 
and distribution inside the fruits and a DLNN model was 
constructed to predict defective longan fruits based on the 
transverse relaxation. This study highlighted the remarkable 
performance of DLNN model in discriminating defective 
dried longan fruits of high efficiency featured by both high 
recall and precision. Future work will focus on improving 
the performance of the DLNN model in experiential learning 
and its ability to combine and correlate diverse data (rotten 
longan fruits featured by different characteristics) by enlarging 
sample size. Ultimately, an NMR-DLNN based software is 
expected to be developed and applied in longan and other fruit 
processing industry for routine and online quality control.

Fig. 5  Mappings in deep learning neural network (DLNN). Start-
ing from the LF-NMR  T2 relaxometry dataset input, modeled using 
DLNN and validated by several 10-fold cross validation replicates
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