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Abstract
Traditional rice varieties serve as a pool for diverse germplasm. Present study investigates the compositional variability of 
metabolites and elements in traditional rice varieties with varying grain size and shape. Grain quality characterization of 
traditional rice varieties including medium, small and bold shaped grain types was performed. Additionally, whether these 
differences in the size and shape of varieties are reflected in the metabolite and elemental composition of their grains was 
explored. Two major clusters were obtained from hierarchical clustering of varieties based on the similarities of grain size 
and shape. The second cluster was further separated into four sub-clusters (clusters II, III, IV and V). A single variety repre-
sentative of each cluster was selected for further analysis. Metabolite analysis and elemental analysis of grains was carried 
out by gas chromatography mass spectrometry (GC–MS) and inductively coupled plasma mass spectrometry (ICP-MS), 
respectively. A total of 47 metabolites belonging to different metabolite groups and a total of 35 minerals were identified 
from dehulled grains of selected varieties. Distinct differences detected amongst the representative varieties from five clusters 
with respect to their metabolite and elemental profiles were further confirmed by partial least square discriminant analysis 
(PLS-DA) of the data obtained from both GC–MS and ICP-MS platforms. This study further highlights the usefulness of 
metabolite and elemental profiling complemented by suitable statistical tools to explore the prospect of an inherent correla-
tion between grain quality features, biochemical composition and genetic background.
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Introduction

Traditional rice varieties are those that have come into exist-
ence over a series of evolution and adaptation processes in 
a particular agro-environment and agricultural practices. 
Preferences of local farmers combined with natural, diverse 
agro-climates, soil and varied agricultural practices led to 
huge diversity of germplasm among traditional rice varieties 

[1]. Popularization of high yielding varieties, led by green 
revolution created a setback to the cultivation of traditional 
rice varieties [2]. Low yields of traditional rice varieties 
also favored the shift to cultivation of high yielding varie-
ties by farmers. However, each traditional rice variety has 
a specialty trait that has either agricultural and/or food sig-
nificance. Some varieties are suited to particular type of 
soil, others can withstand drought and/or flood, while some 
others are salinity tolerant [3, 4]. Some traditional varie-
ties are known for their fragrance and/or color of the rice, 
while some are popular for their health benefits owing to 
their nutrient content and bioactivities [5]. If specialty traits 
of traditional rice varieties can be coupled with agronomic 
competence of high yielding rice varieties, the outcome 
may create enthusiasm among the growers. This in turn, 
if matched by willingness of consumers to try out these 
improved rice varieties, may have a positive effect on the 
economy of Indian farmers.

Electronic supplementary material The online version of this 
article (https ://doi.org/10.1007/s1169 4-019-00273 -7) contains 
supplementary material, which is available to authorized users.

 * Adinpunya Mitra 
 adin@iitkgp.ac.in; adinpunya@gmail.com

1 Natural Product Biotechnology Group, Agricultural 
and Food Engineering Department, Indian Institute 
of Technology Kharagpur, Kharagpur 721 302, India

2 Department of Horticulture, Sikkim University, Gangtok, 
Sikkim 737 102, India

http://orcid.org/0000-0002-1740-8147
http://crossmark.crossref.org/dialog/?doi=10.1007/s11694-019-00273-7&domain=pdf
https://doi.org/10.1007/s11694-019-00273-7


115Grain size and shape reflects variability in metabolite and elemental composition in traditional…

1 3

In order to develop improved varieties with both good 
yield and grain quality, it is imperative to identify tradi-
tional rice varieties with traits that influence the grain qual-
ity, a suitable high yielding background, and to select them 
for a breeding program. Grain quality evaluation encom-
pass measurement of physical traits such as length (L) and 
breadth (B) of grains [6], yield trait such as thousand grain 
weight (TGW) and cooking quality traits that influence the 
texture of cooked rice, such as amylose content (AC), gelati-
nization temperature (GT), which is an indirect indicator of 
cooking time [6]. Other grain quality features important for 
millers and consumers include the shape and size of grains, 
which are influenced by the length and breadth of grains. 
Grain size and shape affect milling quality of rice and also 
the appearance of milled rice grain. In rice, these traits are 
under polygenic control and each of the sub-species of rice 
(indica, japonica) carries diverse combinations of alleles for 
grain size and shape [7]. Majority of the previous studies 
however aimed at achieving the right combination of alleles 
resulting in the desired shape and size of grain that have 
potential implications in developing high yielding varieties 
with particular grain morphology to satisfy various quality 
requirements of consumers [7]. As there are growing num-
bers of health-conscious consumers, nutritional quality adds 
a new dimension to the visual appeal of grain. It would be 
interesting to determine if there are any plausible qualitative 
or quantitative differences in the metabolite content of grains 
with different shape and size.

Apart from these traits, biochemical composition of 
grains including metabolites and mineral elements also 
affect the nutritional quality of rice, which in turn depends 
on type of rice [8, 9]. For instance, basmati and jasmine 
type fragrant varieties differ significantly in their metabo-
lome, owing to differences in the composition of volatile and 
primary polar compounds. Major polar compounds caus-
ing the distinction between the two fragrant varieties are 
organic acids. Organic acids such as myristic acid, fumaric 
acid and nonanoic acid are present in higher quantities in 
basmati rice, whereas higher amounts of erythronic acid 
and 2-amino-malonic acid are present in jasmine rice [8]. 
Metabolite analysis of 26 indica rice varieties revealed vari-
etal differences in their metabolic constituents. Hierarchical 
clustering based on the metabolite profile resulted in group-
ing of varieties into five clusters. A distinct difference in the 
contents of organic acids, fatty acids, amino acids, sugar 
alcohols, sucrose, campesterol and fucosterol among the 
varieties belonging to different clusters was observed [10]. 
Metabolite profiling in combination with multivariate analy-
sis demonstrated distinct differences in the metabolite profile 
of dehulled colored and non-colored rice [11, 12]. Frank 
et al. have effectively demonstrated the use of multivariate 
analysis to separate red, black and non-colored rice based 
on their metabolite profiles. They observed that colored 

rice was shown to contain higher amounts of amino acids, 
organic acids, fatty acids and fatty acid methyl esters [11]. 
Another study by Kim et al. revealed a strong correlation 
between primary metabolites and the individual phenolics 
contents of grains upon metabolite profiling of colored rice 
varieties. Their study also demonstrated the usefulness of 
multivariate data analysis to discriminate between colored 
and non-colored rice grains [12]. Discrimination of varie-
ties based on their geographical origin was demonstrated 
by multi-elemental profiling and subsequent multivariate 
analysis [9, 13–15]. Chung et al. validated the geographical 
origin of rice by performing multi-elemental analysis and 
chemometric studies. Their quantification analysis showed 
that 11 out of 25 elements such as, Copper (Cu), silver (Ag), 
zinc (Zn), chromium (Cr), calcium (Ca) have contributed to 
distinguish the rice varieties of different origin [13]. A simi-
lar study by Cheajesadagul et al. showed differentiation of 
Thai jasmine rice from rice samples of different geographi-
cal origin using multi-element fingerprinting followed by 
multivariate analysis. Elements such as, boron (B), molybde-
num (Mo), cadmium (Cd), Cu and magnesium (Mg) served 
as the major variables of such separation of Thai jasmine 
rice from other samples. Furthermore, same strategy was 
utilized to separate Thai jasmine rice based on the region 
of origin within Thailand. Elements such as Mo, rubidium 
(Rb), Cd and B are responsible for distinguishing Thai jas-
mine rice of different regions of Thailand [14]. In contrast, 
application of elemental analysis to classify type of rice [9] 
has received less attention, even though this information has 
a direct relevance to nutritional quality of rice. Promchan 
et al. have used elemental imaging to classify rice varieties 
based on their origin and type [9]. To our knowledge, the 
findings reported in this manuscript is the only study that 
demonstrates the application of multi-elemental analysis to 
differentiate rice grains based on shape and size.

It is therefore important to look upon the grain quality 
features of selected traditional rice varieties with special 
emphasis on their nutritional profiles. Further, in order to 
elucidate compositional differences of metabolites and ele-
ments between the rice varieties, their metabolic and ele-
mental profiles should be subjected to multivariate statistical 
analysis. This manuscript reports our attempt to characterize 
12 traditional rice varieties in terms of grain quality features. 
Further, clustering of these varieties based on the differences 
and similarities in their size and shape was done. Partial least 
squares discriminant analysis (PLS-DA) of the data obtained 
by gas chromatography mass spectrometry (GC–MS) and 
inductively coupled plasma mass spectrometry (ICP-MS) 
platforms from representative varieties of each cluster was 
done to see if grain morphological differences are reflected 
in their metabolite and elemental profiles. This study also 
encourages the utilization of new selection tools for breeding 
programs aimed at developing improved rice.
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Materials and methods

Plant materials

Twelve traditional rice varieties (Table S1) were grown in 
the farm of Agricultural and Food Engineering department 
of IIT Kharagpur (22.330239°N latitude, 87.323653°E lon-
gitude and 29 m altitude) in the year 2015 (July–Novem-
ber). The set included three non-fragrant and nine fragrant 
traditional rice varieties. A number of these varieties are 
currently cultivated across the state of West Bengal, India. 
These offer vast genetic diversity which is important for 
breeding initiatives.

Seedlings (17–21 days old) were transplanted in experi-
mental field plot (2.0 × 2.5 m) with plant to plant and row 
to row spacing of 25  cm × 25 cm. Standard agricultural 
practices were followed. Nitrogen (N), phosphorous (P) 
and potassium (K) were applied in the ratio 100:50:60 kg/
ha. Both P and K were applied before transplantation, while 
N was applied in three equal split doses. Each variety was 
replicated three times in each main plot. Grains from each 
subplot were harvested at maturity and sun-dried until the 
moisture content reached 12–14%. Moisture was measured 
using universal moisture testing machine (Indosaw, Osaw 
Industrial Products, India).

Around 500 g of paddy was dehulled using Satake rubber 
roll dehusker (Satake engineering Co. Ltd, Japan). Twenty 
grams of dehulled rice were ground and screened. Ground 
rice powder was stored at − 80 °C until further analysis for 
determining metabolite and elemental composition of grains.

Chemical reagents

All the chemicals used in this study were purchased from 
Sigma-Aldrich, now incorporated in Merck. All the solvents 
used are MS grade and were purchased from Merck.

Measurement of grain quality traits

Grain dimensions were measured using Vernier calipers 
(Mitutoyo, Japan). A total of ten grains per each variety were 
taken for the measurement of grain dimensions. Classifica-
tion of grains into different shapes and sizes was done based 
on the length and L/B ratio of grain [16]. A more detailed 
description of size and shape based on grain dimensions 
of the studied varieties is given in Supplementary material 
(Table S1). A count of 1000 grains was done to measure 
TGW, a yield associated trait.

Cooking quality parameters like AC and alkali spreading 
value (ASV) were determined from milled rice. Dehulled 
rice was polished using Satake polisher (Satake engineering 

Co. Ltd, Japan). Broken rice grains were separated from 
whole grains in a grader. AC and ASV of milled grains 
were determined following the method of Bhonsle and 
Krishnan [17]. AC of each variety was calculated against a 
standard curve of amylose and expressed in mg per gram of 
fresh weight. ASV, which in turn determines GT, was deter-
mined by placing six milled grains in a petri plate (9 mm 
diameter) equidistant from each other. Then 10 mL of 1.7% 
of KOH was added to each plate. Plates are covered and 
incubated at room temperature for 23 h. ASV was calculated 
using a seven-point scale [16].

Metabolite extraction

Five representative varieties were selected from each cluster 
on the basis of their superior agronomic performances in the 
studied agro-climatic zone (data not shown) for metabolite 
profiling using GC–MS. Metabolite extraction and derivati-
zation was done following the method of De and Nag [10] 
with slight modifications. Dehulled grain powder (100 mg) 
was used for extraction of polar metabolites with 1 mL of 
100% methanol (mixture was vortexed thoroughly and incu-
bated at 70 °C for 15 min). Ribitol and norleucine (20 µL 
of 0.2 mg/mL solution) were added prior to extraction as 
internal standards. Collected supernatant was distributed 
into microcentrifuge tube (50 µL). Supernatant was then 
vacuum dried. Dried methanolic extracts were methoxy-
aminated (20 µL of 30 mg/mL solution of methoxyamine 
hydrochloride in pyridine) for 120 min at 37 °C, followed 
by derivatization with N-methyl-N-(trimethylsilyl) trifluoro-
acetamide (TMS) and N-tert-butyldimethylsilyl-N-methyl-
trifluoroacetamide with 1% tert-butyldimethylchlorosilane 
(TBS). During derivatization the samples were incubated at 
37 °C for TMS analysis and 65 °C for TBS analysis. Reten-
tion times were calibrated by addition of a C8–C20 and 
C20–C40 n-alkane mixture for TMS analysis and C8–C20 
n-alkane mixture for TBS analysis to each sample prior to 
GC injection.

Metabolite analysis by GC–MS

The derivatized metabolites were analyzed on a GC–MS 
instrument (TRACE™ 1300, Thermo Scientific) by inject-
ing 1 µL of the sample with a split ratio of 10:1. The 
separation of derivatized compounds was performed on a 
TB-5 column (30 m × 0.32 mm id, film thickness 0.25 μm) 
with helium as a carrier gas. For TMS analysis, condi-
tions maintained by GC–MS were followed according to 
Samanta et al. [18], with slight modifications. The inlet 
temperature was set at 280 °C and the flow rate of carrier 
gas through the column was 1.5 mL min‒1. The column 
oven temperature of GC was held at 70 °C for 4 min, and 
then ramped to 300 °C at a rate of 5 °C min‒1 and held 
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for 10 min. The interface and the ion source temperatures 
were set at 300 °C and 230 °C, respectively. For TBS 
analysis, conditions maintained by GC–MS were followed 
according to Jacobs et al. [19], with slight modifications. 
The inlet temperature was set at 230 °C and the flow rate 
of carrier gas through the column was 1.5 mL min‒1. The 
column oven temperature of GC was held at 100 °C for 
10 min, and then ramped to 106 °C at a rate of 1 °C min‒1 
and to 300 °C at the rate of 7 °C min‒1 and finally held 
for 10 min. The interface and the ion source temperatures 
were set at 300 °C and 230 °C, respectively. The electron 
energy for ionization mode was set at 70 eV (ISQ QD, 
single quadrupole mass spectrometer, Thermo Scientific) 
for both TMS and TBS analysis and mass spectra were 
recorded using full scan monitoring mode with a mass 
scanning range of m/z 40–600 a.m.u. Reagent blanks and 
quality control (QC) samples were included in the runs. 
The QC samples were a mixture of all the samples (pooled 
QC), and were injected after every seven to nine samples. 
Raw files obtained after GC–MS analysis were converted 
to NetCDF file format and deconvoluted by Automated 
Mass Spectral Deconvolution and Identification System 
(AMDIS). Peaks were identified by comparing the mass 
spectrum of the compound to that from mass spectral 
library NIST 14 (if at least three specific m/z fragments 
per each compound are matched) and comparing retention 
index from the literature. The relative abundance of vari-
ous metabolites was calculated as the ratio of peak area of 
an individual compound to that of an internal standard and 
normalized to sample weight before statistical analysis.

Elemental extraction and profiling by ICP‑MS 
analysis

Dehusked rice grain powder was digested using an acid 
mixture (a ratio of 9:4 nitric acid to perchloric acid). 
Digestion was performed following the method of [20] 
with a few modifications. Briefly, 0.5 g of ground dehulled 
rice sample was digested with 20 mL of acid. The diges-
tion flask was heated until the digest was clear. The clear 
digest obtained was later diluted to 50 mL with distilled 
water. A blank was prepared with same treatment and 
without any sample.

Acid digested extract was then analyzed by ICP-MS 
system (Perkin Elmer, Nex ION 300 X) with cross flow 
nebulizer as essentially described by Mumm et al. [8]. 
Mineral contents of digested samples are estimated by 
multi-elemental standard solutions no. 1, 3 and 5 (provided 
by Perkin Elmer). The concentration of estimated minerals 
is expressed in ng/g of fresh weight of the sample.

Statistical analysis

All statistical analyses were performed on means of trip-
licate measurements. Supplementary data on quantitative 
traits were statistically analyzed using SPSS software (Ver-
sion 17.0). Metaboanalyst, an open source software was used 
for clustering, heat map generation and PLS-DA [21]. After 
clustering of varieties based on their grain quality features 
and heat map generation, a variety representative of each 
cluster was selected for metabolite and elemental analysis. 
After GC–MS and ICP-MS analysis, data generated was 
subjected to PLS-DA analysis to evaluate similarities and 
differences between varieties with varying size and shape. 
Output from PLS-DA consists of scores plot and loadings 
plot. Scores plot represent the separation of samples, while 
loadings plot signifies the variables causing the separation. 
Variable importance in the projection (VIP) scores were also 
obtained from PLS-DA. Variables with high VIP scores con-
tribute most to the separation of samples.

Results and discussion

Grain quality characterization and clustering

Grain quality is affected by both physical traits such as 
length, breadth, L/B ratio and TGW and cooking quality 
traits such as AC and ASV. Therefore, grain quality diversity 
of selected traditional rice varieties was assessed. Quanti-
tative representation of all these characteristics is done in 
the form of a table in supplementary data (Tables S2, S3). 
Visual representation of variation of grain quality characters 
in different rice varieties is done in the form of a heat map 
(Fig. 1a). Considerable diversity of studied characteristics 
was observed among the varieties. Numerous reports sup-
porting this observation are available in literature, depict-
ing the diversity of traditional rice varieties regarding their 
grain quality features [1, 22–25]. Saha et al. collected the 
indigenous rice varieties of West Bengal, India and also 
performed morphological characterization of the collected 
germplasm. They reported a huge diversity among the stud-
ied germplasms in terms of their agronomic features, physi-
cal and cooking quality traits of grain including aroma [1]. 
In another study, Roy and Sharma collected germplasm from 
various agro-ecological pockets of West Bengal, India, and 
16 agro-morphological traits and eight grain quality traits 
were evaluated from those collected landraces. All the traits 
evaluated showed genetic diversity among the studied lan-
draces, serving as a source of information for crop breed-
ers [23]. Agro-morphological characterization of 124 lan-
draces of Nagaland, India revealed a considerable genetic 
variability in plant architecture, physical and quality grain 
traits [24].
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To identify varieties with similar grain quality traits, clus-
ter analysis was performed based on the above-mentioned 
traits, which classified the varieties into two major clusters 
and second cluster was separated into four sub-clusters, thus 
making altogether five clusters (Fig. 1a). From the cluster-
ing analysis, it is clear that grouping of all twelve varieties 
into separate clusters is caused by physical traits such as 
length, TGW and cooking quality traits such as AC. Length 
of grains also influences L/B ratio, which in turn determines 
the shape of grain. Grain dimensions are varietal depend-
ent traits. Long, slender grains tend to break more during 
milling, than short, bold grains. Thus, grain size and shape 
have a significant effect on type of milling equipment to 
be used and milling recovery [26]. A comprehensive study 
by Xie et al. [27] demonstrated that a positive correlation 
exists among grain morphological traits, grain weight, and 
recovery of milled rice. Grain dimensions similarly influ-
ence cooking quality traits of grain [28]. AC is one of the 
grain quality traits that influence the texture of cooked rice 
[6]. Varieties with high amylose content tend to be dry and 
separate upon cooking, while varieties with low amylose 
content tend to be glutinous and sticky [29]. In this study, 

varieties from cluster I are characterized by medium sized 
and medium shaped grains. Varieties of this cluster have 
high TGW and AC. Tulsimukul, Champakushi and Kalonu-
nia constituted the first cluster and these are non-fragrant 
type rice. Cluster II comprised of a single variety (Dud-
heswar). It has a long and slender shaped grain. This is a 
fragrant rice variety with intermediate AC. Radhunipagol, 
Kataribhog and Tulaipnaji are grouped into cluster III. They 
belong to medium sized and medium shaped grains and are 
fragrant type rice with low AC. Cluster IV is comprised 
of Kanakchur variety and is characterized by its distinct 
fragrance and bold shaped grain. Varieties grouped into 
cluster V are Gobindobhog, Badshabhog, Gopalbhog and 
Tulsibhog. They belong to short grain fragrant rice types. 
Varieties from this cluster have low AC and TGW. However, 
flavour of cooked rice is as important as its texture. Flavour 
is imparted to grains by their biochemical constituents [8]. 
These include metabolites, mineral elements and volatile 
compounds. Studying the biochemical composition of grains 
adds another dimension to the grain quality, and existence of 
any correlation between the metabolite and elemental com-
position of grains with known differences in size and shape 
is worth exploring. Accordingly, a variety from each cluster 
was selected which represents the major features of that par-
ticular cluster for metabolite and elemental analysis. They 
are Champakushi from cluster I, Dudheswar, only variety in 
cluster II, Radhunipagol in cluster III, Kanakchur, also only 
variety in cluster IV and Tulsibhog in cluster V. Picture of 
grains depicting the diversity of selected rice varieties in 
terms of their size and shape is given in Fig. 1b. In addi-
tion, PLS-DA of data obtained from GC–MS and ICP-MS 
platforms (by metabolite and elemental profiling of selected 
varieties) was performed.

Compositional variation of metabolites in rice 
grains on the basis of their size and shape

Metabolite analysis of the rice grains was done by derivati-
zation of methanolic extracts of dehulled rice powder and 
subsequent analysis by GC–MS. Derivatization was done 
by silylation using TMS and TBS. The derivatized prod-
ucts were run in GC and identified by their mass fragmenta-
tion spectra and confirmed by retention index calculation. 
GC–MS chromatograms corresponding to TMS and TBS 
analysis are given in Figs. S1 and S2 of supplementary mate-
rial. A total of 47 metabolites were identified from all the 
five varieties. List of metabolites identified, along with three 
major m/z fragments considered for the identification, and 
corresponding CAS number are presented in the in Table 1. 
Major groups of metabolites identified were sugars, sugar 
alcohols, amino acids, fatty acids, organic acids, phytoster-
ols, phenolics etc. Similar metabolite groups were identified 
from 26 different Indian indica rice varieties by De and Nag 

Fig. 1  a Heat map and hierarchical clustering analysis generated 
from evaluation of grain quality traits of all 12 varieties. 1—Cham-
pakushi, 2—Radhunipagol, 3—Gobindobhog, 4—Kalonunia, 5—
Dudheswar, 6—Badshabhog, 7—Kanakchur, 8—Gopalbhog, 9—
Kataribhog, 10—Tulsibhog, 11—Tulaipanji and 12—Tulsimukul. L 
Length of grain, B breadth of grain, L/B length-to-breadth ratio, TGW  
1000-grain weight, ASV alkali spreading value; AC amylose content. 
Heat map shows clustering of varieties (Cluster I, II, III, IV and V) 
based on the similarity of their grain size and shape and these clus-
ters are labeled with different colors. In the heat map, lowest value 
is indicated by dark blue, the highest value by bright red and values 
in the middle are indicated by light grey, with a corresponding gradi-
ent between extremes. Rows and columns represent individual grain 
quality traits and average values of each trait in all 12 rice varieties, 
respectively. b Visual phenotypes displaying the differences in size 
and shape of the varieties selected from each cluster for metabolite 
and elemental analysis. 1—Champakushi, 2—Dudheswar, 3—Radhu-
nipagol, 4—Kanakchur and 5—Tulsibhog (Color figure online)
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[10]. List of identified metabolites along with their mean 
relative abundance values and retention index are given in 
Table S4 in supplementary material. Relative abundances 
of identified metabolites vary significantly among the stud-
ied varieties and are represented in the form of a heat map 
(Fig. 2a). Grains of Champakushi are rich in organic acids, 
monosaccharides and sugar alcohols, while grains of Dud-
heswar are rich in amino acids content. Grains of Kanakchur 
are rich in fatty acids and their derivatives, sugar alcohols, 
organic acids, disaccharides and even some phytosterols. 
Unique aroma of Kanakchur could be a due to the presence 
of linoleic and oleic acids in higher amounts. These unsatu-
rated fatty acids are produced during hydrolysis of lipids 
and their breakdown products constitute major volatile com-
pounds in milled rice [6]. Metabolites identified in this study 
are vital for growth and development of plants and their 

adaptation to different environmental stresses. Besides, most 
of the metabolites detected by GC–MS analysis have known 
nutritional benefits, e.g. γ-aminobutyric acid (GABA) and 
azelaic acid [30].

Compositional variation of mineral elements in rice 
grains on the basis of their size and shape

Elemental analysis of the rice grains was also performed. 
Preparation of samples digested with nitric acid and perchlo-
ric acid, followed by ICP-MS analysis resulted in identifica-
tion and quantification of a total of 35 elements with varying 
quantities in different varieties. Essential minerals such as 
Ca, Mg, phosphorous (P), sodium (Na), potassium (K) and 
trace elements such as Cu, Zn, cobalt (Co), iron (Fe), sulphur 
(S), manganese (Mn) are identified. Significant differences 

Table 1  List of metabolites identified by TMS and TBS derivatization and subsequent analysis by GC–MS

GABA γ-Aminobutyric acid, TCA  tricarboxylic acid cycle metabolites
a PubChem CID

TMS derivatives TBS derivatives

Compound name Group m/z fragments CAS No Compound name Group m/z fragments CAS no.

1,3-Propanediol Other groups 147,130,115 17,887-80-8 Tiglic acid Organic acid 157,75,158 –
Oxalic acid Organic acid 147,73,148 18,294-04-7 Guaiacol Other groups 166,181,151 –
Vanillic acid Phenolic com-

pound
73, 267,297 2078-15-1 Lactic acid Organic acid 147,73,261 –

Glycerol-3-phos-
phate

Lipid precursor 73,357,299 31,038-11-6 Glycolic acid Organic acid 73,147,189 67,226-76-0

Azelaic acid Organic acid 73,75,55 17,906-08-0 l-Alanine Amino acid 73,158,147 92,751-15-0
Fructose Sugar 73,103,307 56,196-14-6 Glycine Amino acid 73,147,218 107,715-88-8
Galactose Sugar 73,147,205 128,705-64-6 Urea Other groups 231,147,73 82,475-73-8
Glucose Sugar 73,147,205 130,405-10-6 l-Valine Amino acid 73,186,260 107,715-89-9
p-Coumaric acid Phenolic com-

pound
73,219,293 10,517-30-3 Leucine Amino acid 73,200,57 107,715-90-2

Mannitol Sugar alcohol 73,319,205 14,317-07-8 Isoleucine Amino acid 73,200,274 92,771-658
Sorbitol Sugar alcohol 73,147,319 13,829,212a GABA Amino acid 73,147,75 110,024-92-5
Galactitol Sugar alcohol 73,217,307 18,919-39-6 Succinic acid TCA 73,75,147 98,847-52-0
Gluconic acid Sugar acid 73,333,147 34,290-52-3 Proline Amino acid 73,184,147 107,715-91-3
Palmitic acid Fatty acid 313,73,117 55,520-89-3 Glycerol Polyol 89,73,147 82,112-23-0
Myo-inositol Sugar 73,217,147 2582-79-8 Phosphoric acid Other groups 73,57,383 85,197-28-0
Linoleic acid Fatty acid 75,73,67 56,259-07-5 l-Pyroglutamic 

acid
Amino acid 

derivative
73,272,147 107,716-03-0

Oleic Acid Fatty acid 117,73,339 21,556-26-3 l-Serine Amino acid 73,362,390 107,715-93-5
trans-9-Octadece-

noic acid
Fatty acid 73,75,117 96,851-47-7 Myristic acid Fatty acid 75,285,43 104,255-79-0

Stearic acid Fatty acid 73,117,341 18,748-91-9 Malic acid TCA 73,115,147 99,461-86-6
1-Monopalmitin Monoglyceride 73,43,371 1188-74-5 l-Aspartic acid Amino acid 73,75,302 107,715-96-8
Sucrose Sugar 361,73,362 19,159-25-2 l-Glutamic acid Amino acid 73,432,75 107,715-97-9
1-Monooleoylg-

lycerol
Monoglyceride 73,397,129 54,284-47-8 l-Asparagine Amino acid 73,417,147 96,381-41-8

Stigmasterol Phytosterol 83,129,255 14,030-29-6 Citric acid TCA 73,147,459 99,477-48-2
β-Sitosterol Phytosterol 129,357,121 2625-46-9
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in the quantities of some of the macro- and micronutrient 
elements were observed between all the five selected varie-
ties. Quantitative data is given in Table S5 as supplementary 
material. Quantitative variation of elemental concentration 
in the five varieties is represented as heat map in Fig. 3a. 
Based on the quantitative variation of elemental content in 
the grains, the studied varieties were clearly divided into 
two groups. First group constitute varieties Kanakchur and 
Radhunipagol. This group is characterized by compara-
tively low mineral content. However, Kanakchur contains 
relatively high amounts of Cu and Nickel (Ni). Second group 
is characterized by high mineral content in their grains. All 
the three varieties in this group viz. Champakushi, Tulsib-
hog and Dudheswar showed relatively similar quantities 
of essential elements such as Na, K, Ca and Mg. However, 

content of P varied significantly among these three varie-
ties. Highest level of P was found in Tulsibhog amongst the 
studied varieties. Among the trace elements, Mn and Cu 
were present in higher amounts in the grains of Tulsibhog. 
Higher quantities of S and Zn were shown to be present in 
Champakushi. However, grains of both Champakushi and 
Dudheswar showed relatively high Fe content.

Partial least squares‑discriminant analysis (PLS‑DA)

Impact of germplasm, geographical origin, grain type and 
color, aromaticity etc. on variability of grain composition in 
terms of metabolite and mineral contents was well demon-
strated by multivariate analysis techniques [11, 14, 31, 32]. 
PLS-DA is a supervised multivariate analysis technique that 

Fig. 2  Variability in the composition of metabolites in selected rice 
varieties. 1—Champakushi, 2—Radhunipagol, 3—Tulsibhog, 4—
Dudheswar, 5—Kanakchur. a Heat map showing the variations of 
relative abundances of identified metabolites. In the heat map, lowest 
value is indicated by dark blue, the highest value by bright red and 
values in the middle are indicated by light grey, with a corresponding 
gradient between extremes. Corresponding PLS-DA showing a clear 

separation of varieties based on grain size and shape. b Scores plot 
generated from GC–MS based metabolite profile of the above-men-
tioned varieties explains 31.9% of the variation between the selected 
varieties as collectively shown in PC1 and PC2. Different colored 
symbols indicate different varieties. c Loadings plot of PC1 versus 
PC2 generated from accumulated metabolites in the five selected 
varieties. GABA γ-amino butyric acid (Color figure online)
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was performed in order to identify whether metabolite and 
elemental profiling can differentiate varieties with differ-
ent grain size and shape and also to identify the variables 
responsible for the distinction between varieties. PLS-DA 
provides a better interpretation of large and complex datasets 
through scores plot that are easily interpretable, has lesser 
dimensions and clearly resolve sample groups [14]. PLS-
DA for metabolite and elemental profiles of all five stud-
ied varieties was carried out separately. As anticipated, the 
selected varieties were distinctly separated from each other 
in both the cases. This indicates that, unique metabolite and 
elemental profiles exists for morphologically different tra-
ditional rice varieties. Scores plot for metabolite profile is 
shown in Fig. 2b. Together PC1 and PC2 explained 31.9% of 
the variation among all studied varieties. From the loadings 

plot (Fig. 2c) and VIP scores (Fig. 4a) the most discrimi-
nant metabolites responsible for the variation among varie-
ties could be identified. PC1 explaining 18% of the total 
variation, primarily separates varieties based on grain size 
and shape. Champakushi (Long, medium grain), Radhuni-
pagol (medium size and medium-shaped grain), Kanakchur 
(short, bold grain) are well separated from Dudheswar (long 
and slender grain) and Tulsibhog (short grain). Loadings 
along PC1 were caused by organic acids (such as, tiglic acid, 
azelaic acid, gluconic acid and oxalic acid), fatty acids (such 
as oleic acid, linoleic acid, and palmitic acid) and amino 
acids (such as, alanine and isoleucine). Phenolic acids such 
as, vanillic acid and p-coumaric acid, also contribute to the 
separation along PC1. Vanillic acid was reported to be as one 
of the major phenolic compounds enabling discrimination 

Fig. 3  Variability in the composition of mineral elements in selected 
rice varieties. 1—Champakushi, 2—Radhunipagol, 3—Tulsibhog, 
4—Dudheswar, 5—Kanakchur. a Heat map showing the variations 
of absolute quantities of identified elements. In the heat map, lowest 
value is indicated by dark blue, the highest value by bright red and 
values in the middle are indicated by light grey, with a corresponding 
gradient between extremes. Corresponding PLS-DA showing a clear 

separation of varieties based on grain size and shape. b Scores plot 
generated from ICP-MS based elemental profile of the above-men-
tioned varieties explains 69.7% of the variation between the selected 
varieties as collectively shown in PC1 and PC2. c Loadings plot of 
PC1 versus PC2 generated from accumulated elements in all the 
selected varieties (Color figure online)
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of Korean rice based on geographical origin [33]. Dittgen 
et al. [34] reported that p-Coumaric acid is one of the phe-
nolic compounds that could discriminate a black rice variety 
growing in different locations. PC2 which explains 13.9% 
of the variation could separate long and slender Dudheswar, 
from short grained Kanakchur and Tulsibhog. Loadings 
along PC2 were caused by organic acids (such as glycolic 
acid, lactic acid), fatty acids (myristic acid), amino acids 
such as serine, leucine, and amino acid derivative l-pyroglu-
tamic acid. PLS-DA for elemental composition resulted in 
PC1 and PC2 that could explain 69.7% of variation (Fig. 3b). 
PC1 explains 42.6% of the variation among varieties. Cham-
pakushi, Radhunipagol and Kanakchur are separated from 
Dudheswar and Tulsibhog along PC1. This separation of 
varieties based on elemental profile is similar to the separa-
tion of varieties achieved by metabolite profile. Interestingly, 
non-fragrant variety Champakushi can be clearly differen-
tiated from other fragrant varieties along PC1 in PLS-DA 
analyses for both metabolite profiling and elemental profil-
ing data. From the loadings plot (Fig. 3c) and VIP scores 
(Fig. 4b), elements causing separation between the varieties 
could be identified as Li, Ni, S, Zn, Cu, Si, Ag and Fe. Previ-
ous studies identified Cu, Ag, Zn, and Cr [14] and K, Ca, Zn, 
Mg, Mn, Sr, Ni, and Cd [31] as critical for discrimination of 

geographical origin of rice. It was clear from the heat map 
that grains of Dudheswar accumulated higher quantities of 
minerals in their grains, followed by Champakushi and Tul-
sibhog. However, it is interesting to note that elements such 
as Cd, Zn, Fe, mercury (Hg), lithium (Li) and strontium (Sr) 
that are contributing to the separation of studied varieties as 
indicated by their high VIP scores are present in relatively 
higher quantities in Champakushi than in Dudheswar. This 
study encompassing comparative metabolite and elemental 
profiling revealed how the selected varieties are distinct from 
each other. Grain morphology and characteristic biochemi-
cal signatures of all five selected varieties are specified in 
Table 2. 

Conclusion

In the present study, we were able to categorize all the 12 
traditional rice varieties into different clusters based on grain 
quality evaluation. Traits such as grain dimensions, TGW 
and AC contributed to the discrimination among studied 
varieties. Five major clusters are obtained and varieties 
from each cluster differ in their grain size and shape. Out 
of five clusters, one variety from each cluster was selected 

Fig. 4  VIP (variable importance in projection) score-plots derived 
from the PLS-DA analysis showing the variables with high discrimi-
nating power. Coloured boxes indicate the relative concentrations of 

corresponding variable in each rice variety. a Metabolites with high 
VIP scores. b Mineral elements with high VIP scores (Color figure 
online)
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as a representative variety and a combination of platforms 
for metabolite and elemental profiling were used. Around 
47 metabolites and 35 minerals could be identified in all 
five varieties. These five varieties, which have distinct dif-
ferences in grain size and shape showed a unique metabolite 
and elemental profile as revealed by PLS-DA analysis. All 
the identified metabolites and elements are present in vary-
ing quantities, so the differentiation between biochemical 
compositions of grains from selected varieties is typically 
quantitative. Further, this study highlights the discriminat-
ing power of metabolite and elemental composition in rice 
depending on grain dimensions.
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