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Abstract New Zealand unifloral honeys have a higher

commercial value than polyfloral honeys; however identi-

fication of floral source can be difficult and time-consum-

ing. In this study, we aimed to establish a rapid and semi-

automated method for identifying the floral source of New

Zealand honeys. Volatile compounds from ten types of

New Zealand unifloral honeys (a total of 234 samples)

were analyzed by solid-phase microextraction (SPME) and

gas chromatography coupled to mass spectrometry (GC–

MS). For 37 compounds, probability plots of log10[GC–MS

peak area] versus cumulative probability enabled visual

identification of those that could be possible markers used

to discriminate floral source. GC–MS peak areas were also

analyzed by hierarchical cluster analysis and principal

component analysis. Results showed data falling into

groups based on floral source, indicating that supervised

pattern recognition could be used to build a model with

which to classify honeys based on floral source. A model

was built using WEKA (Waikato Environment for

Knowledge Analysis) machine-learning software. The

logistic model tree algorithm in WEKA produced a model

that classified 89.8 % of samples correctly. Overall, results

show that the methods employed here have the potential to

be used as a basis for routine testing and classification of

New Zealand unifloral honeys.

Keywords Honey � SPME � GC–MS � Botanical origin �
Chemometrics

Introduction

Unifloral honeys (derived mostly from one floral source), as

opposed to polyfloral honeys (derived from multiple floral

sources), have characteristic sensory properties including

odor and aroma, which make them of higher commercial

value. Traditionally, identification of floral source has

involved pollen analysis, together with determination of

sensory and physico-chemical properties (color, moisture,

pH, conductivity and sugar profiles), however such methods

can be difficult and time-consuming [1, 2].

Volatile compounds are useful in linking honeys to their

floral source, as the volatile fraction of honey can originate

from the plant from which it was produced [1]. In previous

studies, characteristic volatile compounds from European

unifloral honeys were identified as markers, using a range of

extraction techniques including ultrasound-assisted solvent

extraction [3], simultaneous distillation–extraction [4],

dynamic head-space extraction [5] and solid-phase mic-

roextraction, SPME [6]. In contrast to other extraction

techniques, SPME requires minimal sample preparation and

combines sample preparation and instrument introduction

steps when it is coupled to GC–MS (gas chromatography–

mass spectrometry), therefore making it promising as a

convenient and semi-automated method for the extraction of

honey volatiles from numerous samples.

Previous studies have applied multivariate statistical and

chemometric methods to SPME–GC–MS data from
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European and Argentinean honeys in order to build clas-

sification models based on floral source [7–12]. Such

approaches, which involve analyzing honey volatile pro-

files as a whole, have been shown to yield superior clas-

sification rates compared with searching for individual

marker compounds [8]. Based on the success of previous

studies on European and Argentinean honeys, we have

investigated whether SPME–GC–MS coupled with che-

mometric methods could form a suitable approach to

classify New Zealand unifloral honey samples on a routine

basis. New Zealand unifloral honeys have been subject to a

number of composition analyses in the past, for example

the recent studies using LC–MS (liquid chromatography–

mass spectrometry) [13] and SIFT-MS (selected ion flow

tube–mass spectrometry) [14]. To our knowledge, ours is

the first study to analyze New Zealand unifloral honeys by

SPME–GC–MS, with the exception of two studies focusing

solely on mānuka honey [15, 16]. Here, we describe ana-

lysis of ten New Zealand unifloral honey types by SPME–

GC–MS, identification of compounds that could serve as

markers of floral source, and chemometric analysis of the

volatile profiles.

Materials and methods

Standards

3-Methylpentanoic acid, o-methoxyacetophenone, 2-meth-

ylbenzofuran, myrtenal, hexanoic acid, 3-methyl-2-butenal,

2-ethylhexanoic acid, linalool and 1-phenylethanol were

purchased from Sigma-Aldrich (St. Louis, MO). Thymol

was obtained from BDH (United Kingdom), phenol from

Univar (Seattle, WA), (E)-cinnamaldehyde from May and

Baker (United Kingdom), 1-(2-methoxyphenyl)-ethanol

from Acros Organics (Geel, Belgium), and dimethyl sulf-

oxide from Scharlau.

Samples

234 New Zealand honey samples, identified by the sup-

pliers as unifloral via pollen counting and physico-chemi-

cal analysis, were obtained from Airborne Honey Ltd.,

Haddrell’s of Cambridge, Waitemata Honey Co. Ltd., and

the New Zealand Honey Food and Ingredient Advisory

Service. These honeys were of the following floral types:

pohutukawa (Metrosideros excelsa) 17 samples, thyme

(Thymus vulgaris) 12 samples, mānuka (Leptospermum

scoparium) 28 samples, southern beech honeydew (Not-

hofagus spp.) 26 samples, southern rata (Metrosideros

umbellata) 23 samples, kamahi (Weinmannia racemosa) 18

samples, viper’s bugloss (Echium vulgare) 23 samples,

clover (Trifolium repens) 43 samples, tawari (Ixerba

brexioides) 28 samples, and rewarewa (Knightia excelsa)

16 samples. These are common unifloral honey types in

New Zealand and originate from different regions. Po-

hutukawa, tawari and rewarewa are predominantly pro-

duced in the North Island; thyme, beech honeydew,

southern rata and viper’s bugloss are predominantly pro-

duced in the South Island. Mānuka, clover and kamahi are

collected in both islands, with clover being the most

common honey type in New Zealand. Samples were stored

below 4 �C prior to analysis.

SPME

Fibers with the following coatings were obtained from

Supelco (Bellafonte, PA): 85 lm carboxen/polydimethy-

lsiloxane (CAR/PDMS), 50/30 lm divinylbenzene/carboxen/

polydimethylsiloxane (DVB/CAR/PDMS), 100 lm poly-

dimethylsiloxane (PDMS), 70 lm carbowax/divinylbenzene

(CAR/DVB), 65 lm polydimethylsiloxane/divinylbenzene

(PDMS/DVB) and 85 lm polyacrylate (PA), and were used

in an automated SPME holder. Fibers were conditioned in the

GC injection port for the time and at the temperature sug-

gested by the manufacturer, before being used for analyses.

For each analysis the sample was weighed into an amber

2-mL vial which was capped using a magnetic crimp-cap

with silicone/Teflon septum (Microliter Analytical). Caps and

septa were heated (150 �C, 16 h) before use, to reduce

siloxane levels. The SPME was automated, using a CTC

CombiPal auto injector (CTC Analytics, Switzerland)

mounted on the GC–MS, with a heated agitator unit and a

fiber conditioning station. Before SPME, the sample was

placed in the agitator to thermally equilibrate. During this

time, the SPME fiber was heated (250 �C) in the conditioning

station under a flow of N2 gas to desorb contamination arising

from volatile solvents present in the laboratory.

GC–MS

An Agilent 6890 GC with a split-splitless inlet and CTC

Combi-pal robotic autosampler was interfaced with an

Agilent 5793 MS (Agilent Technologies), with an electron

impact source (set at 70 eV). GC used a DB-VRX capillary

column (Agilent 122-1534; 30 m 9 250 lm 9 1.4 lm

film thickness), with helium carrier gas ([99.995 %) at

1.2 mL/min (constant flow mode). SPME fiber desorption

was carried out in splitless mode, with an injector tem-

perature of 250 �C. A GC oven temperature program of

35 �C (4 min hold) to 225 �C (5 min hold) at 15 �C/min

was used. The MS was operated in full scan mode, using a

mass range of m/z 33–350. Compounds were identified by

comparison of their mass spectra with the NIST (National

Institute of Standards and Technology) 98 spectral library,
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or by comparison of mass spectra and retention times with

purchased standards.

Optimization of method parameters

The recovery of volatiles was optimized by varying

parameters such as fiber type, temperature and extraction

time. Good sensitivity at a reasonable analysis time was

achieved by introducing honey (0.5 g) into a 2 mL vial,

pre-incubating (70 �C, 5 min), then extracting (70 �C,

20 min) using a CAR/PDMS fiber (similar to the method

used by Pérez et al. [17]). Some researchers have used

water to decrease the density of the honey matrix [18, 19]

and added salt to decrease the solubility of hydrophilic

compounds in the aqueous matrix [6, 20]. However if water

is not used, salt is not required to counteract the increased

retention of hydrophilic compounds; hence was decided

that neither water nor salt would be used.

Selection of marker compounds

The ten New Zealand unifloral honeys were analyzed by

the chosen SPME method. Two chromatograms from each

floral source were examined in detail and peaks were

identified by matching their spectra with those in the NIST

98 mass spectral library, resulting in a list of 240 com-

pounds. Ions and retention times for these compounds were

entered into an Agilent Enviroquant method [21], which

was used to examine the chromatograms of a further five

samples from each floral source. The following compounds

were eliminated from further analyses: acetone and ethyl

acetate (common to all honey samples); compounds in the

first 5 min of the chromatograms; siloxanes or peaks with

siloxane interferences in the last 5 min of the chromato-

grams; compounds that were in a single sample of a

unifloral type. 37 compounds were selected for analysis

based on their presence in the majority of samples for one

honey type, and confidence in their identification. Peak

areas of these 37 compounds were integrated for all 234

honey samples and converted to their logarithm (base ten)

to produce the data set that was subjected to chemometric

and statistical analyses. Probability plots were used to

further narrow the choice of marker compounds, as

described below.

Data processing

The peak areas of the 37 identified compounds in all 234

honey samples were integrated using Agilent Enviroquant

software from the SPME–GC–MS chromatogram of each

honey sample. Due to the large spread of values, peak

areas were converted to their logarithms (base ten) to give

more normal probability distributions (as seen in the

linearity of probability plots with the y-axis set as a

normal distribution). This formed the data set used in

statistical analyses.

Statistical and chemometric analyses

Probability plots

Probability plots for each of the 37 compounds analyzed in

the honey samples were generated using Minitab 15 [22].

Comparing the resulting data distributions for different

honey types allowed possible markers for floral source to

be identified. Estimated cumulative probability values were

calculated using the Median Rank formula in Minitab, and

the Normal probability distribution was used to transform

the y-axis. This yielded linear plots for most compounds,

allowing easy visual comparison. For compounds identified

as potential markers by probability plots (those listed in

boldface in Table 1), the independent two-sample Stu-

dent’s t-test was applied to ascertain whether there was a

significant difference (p \ 0.05) between abundances of

those compounds in different honey types.

While some compounds are suitable as marker com-

pounds for particular honey types (such as thymol for

thyme honey and p-benzoquinone for viper’s bugloss

honey), it is difficult to find marker compounds for all

honey types due to the complexity of the honey matrix. We

therefore aimed to use supervised methods to create a

chemometrics-based model capable of classifying floral

source. Prior to this however, it was necessary to establish

whether the underlying data structure was suitable for the

application of supervised methods, by undertaking unsu-

pervised multivariate statistical analyses.

Unsupervised learning techniques

These are multivariate statistical techniques in which class

membership is unknown, and are helpful in revealing

natural groupings within data. Two such techniques; hier-

archical cluster analysis (HCA) and principal component

analysis (PCA) were applied to the honey volatiles data set

(all compounds listed in Table 1) using Matlab R2012b

[23] (PCA) and Minitab 15 (HCA). Euclidean distances

and Ward linkage were used for the HCA.

Chemometrics/supervised learning techniques

These were used to build a model which could discriminate

between honey samples from different unifloral sources.

Supervised learning algorithms contained within the data

mining software WEKA (Waikato Environment for

Knowledge Analysis) [24, 25] were applied to the honey

Analysis of volatile compounds in New Zealand unifloral honeys 83
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volatiles data set (all compounds listed in Table 1). The

J48, logistic model tree (LMT), logistic, IBk (K-nearest

neighbor) and classification via regression algorithms were

studied. Ten-fold cross-validation was used in building and

testing models; this procedure enabled as much data as

possible to be used for training, while still allowing a

reasonable error estimate to be obtained [25]. Results from

WEKA were in the form of confusion matrices showing

the number of each class (honey type) assigned to that

class or to other classes, giving an overall classification

rate (percent of samples correctly classified).

Results

Selection of marker compounds

The total ion chromatograms obtained by SPME of the ten

New Zealand unifloral honeys are shown in Fig. 1. Elim-

ination of common, spurious and dubious peaks and con-

firmation of the appearance of the selected peaks in all

samples of the specified unifloral honey resulted in a list of

37 possible marker compounds (Table 1), identified by

comparison of their mass spectrum with the NIST 98 MS

library. This list was then refined further by use of prob-

ability plots (Fig. 2) to identify a list of potential marker

compounds (compounds listed in boldface in Table 1), and

the identity of each of the chosen compounds was con-

firmed by comparison of their mass spectra and retention

times with purchased standards.

For each honey type, the independent two-sample t-test

was used to identify statistically significant differences

between the abundances of the chosen marker compounds

compared with other honey types. Statistically signif-

icant differences (p \ 0.05) were found for most com-

pounds and unifloral types with a few exceptions; there

was no statistically significant difference between rela-

tive amounts of dimethyl sulfoxide in pohutukawa and

southern rata honeys, or between relative amounts of

o-methoxyacetophenone in tawari and rewarewa honeys.

In addition, 1-(2-methoxyphenyl)-ethanol was not present

in statistically significantly different relative amounts

between honeydew and rewarewa honeys, and honeydew

and tawari honeys.

Unsupervised learning

HCA

Hierarchical cluster analysis revealed clusters of honey

samples, with each cluster corresponding to predomi-

nantly one type of honey. Table 2 displays information

on how many samples were correctly classified perT
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cluster, and how many samples were correctly classified

per honey type. Three of the clusters contained 100 % of

one honey type (thyme, pohutukawa and tawari), and two

or fewer samples were misclassified for thyme, honey-

dew, mānuka, pohutukawa and rewarewa honeys.

PCA

The first two components obtained by PCA accounted for

40 % of variation. The score plot for the first two com-

ponents (Fig. 3) indicates distinction between honey types,

although with only 40 % of variance explained by these

first two components, there was some overlap between

clusters (perhaps with the exception of mānuka honey); 10

components were needed to explain 80 % of the variance.

1,10-bicyclopentyl and 4-methyl-5H-furan-2-one gave large

contributions to the first component, and 1-(2-methoxy-

phenyl)ethanol and 2-methylbenzofuran gave large contri-

butions to the second component.

Chemometrics/supervised learning

Of the five algorithms tested on the honey volatile data set,

the LMT algorithm yielded the most favorable results in

terms of large true classification rates and small false

classification rates. This algorithm classifies data by

building decision trees with linear logistic regression

models at nodes [25]. The confusion matrix resulting from

the LMT model is shown in Table 3 and the evaluation

statistics are in Table 4.

Fig. 1 Representative total ion

chromatograms obtained by

SPME of the ten New Zealand

unifloral honey types analyzed
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Discussion

Markers specific to unifloral honeys

Pohutukawa and southern rata honey

These species are both in the genus Metrosideros, and both

contained significantly greater relative amounts of dime-

thyl sulfoxide and/or dimethyl sulfide than other honeys

analyzed. As a percentage of the total peak area, the peak

area of dimethyl sulfide averaged 40 % in the pohutukawa

honeys and 20 % in the southern rata honeys. The relative

peak area of dimethyl sulfoxide averaged 2.5 % in the

pohutukawa honeys and 3.2 % in the southern rata honeys.

This suggests that volatile sulfur compounds are charac-

teristic of the Metrosideros genus (Table 1). These com-

pounds have a low odor threshold, and are therefore likely

to contribute significantly to the aroma of these honeys.

Dimethyl sulfoxide has previously been found in Spanish

rosemary honey, and could result from oxidation of

dimethyl sulfide [26]. Dimethyl sulfide was found in lesser

relative amounts in other ‘‘bush’’ honeys (from wild forest

areas and possibly containing contributions from

Metrosideros spp.); rewarewa, kamahi and tawari, although

with a smaller average peak area, of 5.7 % for rewarewa

and tawari honeys and 2.5 % for kamahi. It has also been

found by SPME–GC–MS in Spanish orange, eucalyptus,

rosemary, lavender and thyme honeys [17], and in Cuban

black mangrove honey [27]. In the present study the rela-

tively high level and presence of dimethyl sulfide in all

southern rata samples made it a useful marker, while

dimethyl sulfoxide was only found in pohutukawa and

southern rata, plus one viper’s bugloss sample.

Other possible markers for pohutukawa were 3-methy

l-2-butenal and (E)-cinnamaldehyde. The former has been

found in Spanish citrus, rosemary and polyfloral honeys

[28] and in a mixture of honeys from Europe and Brazil

[26]; the latter in Greek cotton honey [29]. However, of the

ten New Zealand unifloral honeys analyzed in this study,

3-methyl-2-butenal and (E)-cinnamaldehyde were found

only in pohutukawa honey and may be useful markers for

this honey type in New Zealand.

Thyme honey

Thymol was only found in thyme honey samples (Table 1),

and has also been found in Greek and Palestinian thyme

honeys, along with Spanish honeys from a large variety of

floral sources [30–33]. Thymol was considered a marker in

rosemary and Dorycnium pentaphyllum honeys [33] and in

lime tree (Tilia spp.) honey from France [4]. Since none of

these honey types apart from thyme are produced in New

Zealand it appears that thymol could be a useful marker

compound for New Zealand thyme honey, although this

could be compromised if thymol is used for control of

Fig. 2 Examples of probability plots for hexanoic acid and thymol;

the clear separation of thyme from other honey types indicates that

these compounds are unique to thyme honey

Table 2 Classification rates obtained from HCA for clusters of

honey samples

a b c

Clover 78 33

Viper’s bugloss 75 22

Thyme 100 17

Honeydew 79 0

Mānuka 96 7

Pohutukawa 100 12

Rewarewa 50 13

Tawari 100 39

Kamahi 65 17

Southern rata 89 26

Column a Honey type predominantly associated with each cluster

Column b Percentage of observations of the dominant honey type

within the cluster

Column c Percentage of samples of the type listed in column a

assigned to a cluster other than the dominant cluster for that honey

type
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varroa mites, Varroa destructor [34]. Hexanoic acid was

also only found in the thyme honeys, and has previously

been identified in European [6, 32, 35] and Cuban [10]

honeys from a variety of sources, but again none of these

honey types are produced in New Zealand. Neither hexa-

noic acid nor thymol were identified in a previous study on

New Zealand thyme honey [36], possibly due to the liquid–

liquid extraction or derivatisation procedures used,

although 3-hexenoic acid was reported. The degraded

carotenoid marker 1-(3-oxo-trans-1-butenyl)-2,6,6-trim-

ethylcyclohexane-trans, cis-1,2,4-triol previously isolated

from New Zealand thyme honey [36] was not detected in

SPME–GC–MS chromatograms, possibly due to its rela-

tively high molecular weight and high polarity.

Mānuka honey

Myrtenal ((1R)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-car-

boxaldehyde), 1-phenylethanol, 2-methylbenzofuran and 1-(2-

methoxyphenyl)ethanol appeared to be useful markers for

mānuka honey. There was a significant difference between the

relative amounts of these compounds in mānuka and other

honeys (independent two-sample t-test [p\0.05]), with the

exception of 1-(2-methoxyphenyl)ethanol. Myrtenal was also

extracted at lower levels from two clover samples and one

pohutukawa sample, and 2-methylbenzofuran from six hon-

eydew, one rewarewa and two kamahi honeys.

1-(2-Methoxyphenyl)ethanol was present in relatively

high levels in all mānuka honeys tested (Table 1), however

Fig. 3 Score plot showing the

first two principal components

obtained from PCA; these

explained 40 % of the variance

and show clustering of the

honey types due to their volatile

composition

Table 3 Confusion matrix showing results of the LMT algorithm applied to honey data

Classification Clover Honeydew Kamahi mānuka Pohutukawa Southern rata Rewarewa Tawari Thyme Viper’s bugloss

Clover 37 1 0 0 0 0 0 4 0 1

Honeydew 1 25 0 0 0 0 0 0 0 0

Kamahi 0 0 17 0 0 0 1 0 0 0

Mānuka 1 0 1 26 0 0 0 0 0 0

Pohutukawa 0 0 0 0 15 2 0 0 0 0

Southern rata 0 0 1 0 0 21 0 1 0 0

Rewarewa 1 0 0 0 0 0 15 0 0 0

Tawari 1 1 0 1 0 0 1 24 0 0

Thyme 0 0 0 0 0 0 0 1 11 0

Viper’s bugloss 4 0 0 0 0 0 0 0 0 19

Rows show how the samples of a particular honey were classified. Columns show, for a particular honey, how many of the other honeys were

misclassified as that honey type. Correct classifications are shown on the left to right diagonal
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it was also found in most other honey types tested at

levels that were not statistically significantly different by

Student’s t-test (p \ 0.05) to those in mānuka honey. The

aromatic acids 2-hydroxy-3-phenylpropanoic acid (phen-

yllactic acid), 2-methoxybenzoic acid and 4-hydroxy-

3,5-methoxybenzoic acid (syringic acid), previously found

in mānuka honey by liquid–liquid extraction [37], were not

detected in SPME–GC–MS chromatograms, likely due to

their high polarity and poor extractability by SPME.

However, these compounds were found in mānuka honey

by liquid chromatography-tandem mass spectrometry [13].

Similarly 2-methoxybenzoic acid, 4-methoxyphenyllactic

acid, phenylacetic acid, phenyllactic acid and methyl

syringate (methyl 3,5-dimethoxy-4-hydroxybenzoate), which

were found to be useful markers for mānuka honey by HPLC

(high performance liquid chromatography) following solid

phase extraction [38] were not detected here.

Myrtenal has not been identified in honey before.

1-(2-Methoxyphenyl)ethanol is also a new honey volatile,

although its oxidation product o-methoxyacetophenone was

identified in SPME–GC–MS chromatograms in the current

study; it was also found in mānuka honey as a major

component following liquid–liquid extraction [37] and by

SPME–GC–MS [15]. o-Methoxyacetophenone and the rela-

ted hydroxy species have been identified previously as marker

compounds by head-space SPME–GC–MS of mānuka honeys

together with benzofuran and dimethylbenzofuran [16];

differences between this result and the current study could be

attributed to the different solid phase employed for the

extraction in the previous study or to variations incurred in

storage or trans-shipment overseas.

2-Methylbenzofuran has previously been identified in a

mixture of European and Brazilian honeys by SPME [18],

and in polyfloral honeys from Portugal, together with

1-phenylethanol [39]. These compounds were not detected

in previous studies of mānuka honeys [37, 40, 41].

1-Phenylethanol has been extracted as a characteristic

volatile from chestnut (Castanea sativa) honey [4, 33],

however this honey is not produced in New Zealand and

few chestnut trees are present in locations where mānuka

honey is collected.

Southern beech honeydew honey

There were significantly greater relative amounts of phenol

and linalool (Student’s t-test [p \ 0.05]) in honeydew

honey, compared with the other honey types. Phenol was

present in only seven other samples (six mānuka and one

pohutukawa), while linalool was also found in 50 % of

mānuka and pohutukawa samples, together with four clo-

ver, three kamahi, two thyme, one southern rata and two

tawari samples. Linalool may therefore be a poor marker

for southern beech honeydew honey. Phenol has previously

been found in several different unifloral honeys, including

lavender (Lavendula stoechas) [33], chestnut [4, 33, 35],

heather (Calluna vulgaris) [42–44] and lime-honeydew

[44], although was not considered characteristic in these

honeys due to the relatively low levels. Of these honey

types only heather honey is collected in New Zealand, and

was not available for inclusion in this study (heather is

designated a pest species and efforts are underway to

eradicate it), therefore the relative amounts of phenol

extracted by SPME from heather and southern beech

honeydew honeys could not be compared. However

southern beech honeydew honey has distinctive physico-

chemical properties distinguishing it from heather honey.

Kamahi, tawari and rewarewa honeys: ‘‘bush honeys’’

These three honey types have [45 % pollen from the tree

species kamahi (W. racemosa), tawari (I. brexioides), and

rewarewa (K. excelsa), that grow in New Zealand native

forests (‘‘bush’’); therefore they may have common nectar

sources among other forest trees apart from these. Signif-

icantly greater levels of 4-methyl-5H-furan-2-one were

extracted from kamahi than from other honey samples in

this study (Student’s t-test [p \ 0.05]), however this com-

pound was also present in lower levels in southern rata,

rewarewa and tawari honeys (all originating from forest

areas), therefore either these honeys contain kamahi nectar,

Table 4 Evaluation statistics for the model created with the LMT

algorithm and ten-fold cross-validation

TPRa FPRb Pc Rd ROCe Class

0.860 0.042 0.822 0.860 0.957 Clover

0.962 0.010 0.926 0.962 0.998 Honeydew

0.944 0.009 0.895 0.944 0.971 Kamahi

0.929 0.005 0.963 0.929 0.988 Mānuka

0.882 0 1 0.882 0.998 Pohutukawa

0.913 0.009 0.913 0.913 0.996 Southern rata

0.938 0.009 0.882 0.938 0.942 Rewarewa

0.857 0.029 0.800 0.857 0.965 Tawari

0.917 0 1 0.917 0.982 Thyme

0.826 0.005 0.95 0.826 0.958 Viper’s bugloss

a True positive rate
b False positive rate
c Precision = (number of samples of a particular class correctly

classified)/(number of samples classified as that class)
d Recall = (number of samples of a particular class correctly clas-

sified)/(number of samples in that class)
e ROC area = Receiver Operating Characteristic. This characterizes

the trade-off between the true positive rate and false negative rate

(should be close to one but not one exactly as this is an indication of

data over-fitting)
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or 4-methyl-5H-furan-2-one originates from other bush

sources.

70 % of tawari samples contained significantly more

2-ethylhexanoic acid (Student’s t-test [p \ 0.05]) than

other honeys, but this compound was also found in lesser

relative amounts in 80 % of pohutukawa honeys. No pos-

sible volatile marker compounds were revealed for re-

warewa honey, with the relative amounts of 4-methyl-5H-

furan-2-one not significantly different (Student’s t-test

[p \ 0.05]) from those in southern rata and tawari honeys,

although the levels in southern rata, kamahi, tawari and

rewarewa were all significantly greater (Student’s t-test

[p \ 0.05]) than those in the other six honeys tested. This

means that 4-methyl-5H-furan-2-one could be used as a

marker for honey from New Zealand lowland native for-

ests, although it has not been previously reported as a

honey constituent. Other furan-2-ones have been found in

Japanese haze honey (3-methyl-3H-furan-2-one) [45] and

Spanish citrus honey (5-methyl-3H-furan-2-one) [32].

Viper’s bugloss honey

The presence of p-benzoquinone was characteristic of

viper’s bugloss samples and was absent from all other

honey types, therefore it could be used as a marker.

p-Benzoquinone, together with hydroquinone, was found in

viper’s bugloss honey by liquid–liquid extraction in a

previous study [46], in which hydroquinone was proposed

as a marker. These compounds appear to be unique to

viper’s bugloss honey, although hydroquinone was not

found in the current study.

Chemometric analysis

The results from the HCA and PCA indicate that the

underlying data structure was suitable for supervised

learning techniques to be applied; HCA sorted samples into

clusters of predominantly one honey type even through

class membership was unknown. Clusters of honeys pro-

duced by PCA (in which class membership was also

unknown) are shown in Fig. 3, although because this figure

represents only the first two components of the PCA (and

ten components were needed to explain 80 % of the vari-

ance), the clusters are therefore not clearly defined. The

results from the unsupervised learning techniques are suf-

ficiently promising to justify the application of supervised

learning algorithms, as was done with WEKA software.

The LMT algorithm was relatively successful in classifying

tawari and viper’s bugloss honeys, which were problematic

honey types when other algorithms were used. Further-

more, the rate of true positives for all honey types was high

and the rate of false positives low. High rates of correct

classification were reflected by the high precision, recall

and receiver operating characteristic area values (Table 4).

Overall, the classification rate was 89.8 %.

The results presented here show that a method coupling

SPME–GC–MS and chemometric analysis has the potential

to form the basis of a routine testing method for the New

Zealand honey industry. The probability plots and LMT

algorithm provided by WEKA software were both able to

classify the floral source of New Zealand honeys with

approximately 90 % success. Future research should focus

on testing larger numbers of samples to improve model

performance.
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18 (2001)

7. E. de la Fuente, I. Martı́nez-Castro, J. Sanz, J. Sep. Sci. 28, 1093

(2005)

8. M.V. Baroni et al., J. Agric. Food Chem. 54, 7235 (2006)

9. K.A. Aliferis, P.A. Tarantilis, P.C. Harizanis, E. Alissandrakis,

Food Chem. 121, 856 (2010)

10. L. Ceballos, J.A. Pino, C.E. Quijano-Celis, A. Dago, J. Food

Qual. 33, 507 (2010)
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