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Abstract There have been considerable recent advances in

the technology for rapidly detecting foodborne pathogens.

However, a traditional culture method is still the ‘‘gold

standard’’ for presumptive-positive pathogen screening

although it is labor-intensive, ineffective in testing large

amount of food samples, and cannot completely prevent

unwanted background microflora from growing together

with target microorganisms on agar media. We have devel-

oped multivariate classification models based on visible and

near-infrared hyperspectral imaging for rapid presumptive-

positive screening of six representative non-O157 Shiga-

toxin producing Escherichia coli (STEC) serogroups (O26,

O45, O103, O111, O121, and O145) on agar plates of pure

and mixed cultures. The classification models were devel-

oped with spread plates of pure cultures. In this study, we

evaluated the performance of the classification models with

independent validation samples of mixed cultures that were

not used during training and found the best classification

model for differentiating non-O157 STEC colonies on

spread plates of mixed cultures. A validation protocol

appropriate to hyperspectral imaging of mixed cultures was

developed. An additional independent validation set of 12

spread plates with pure cultures was used as positive controls

to help the validation process with the mixed cultures and to

affirm the model performance. One imaging experiment

with colonies obtained from two serial dilutions was per-

formed. A total of six agar plates of mixed cultures were

prepared, where O45, O111 and O121 serogroups that were

relatively easy to differentiate were inoculated into all six

plates and then each of O26, O103 and O145 serogroups was

added into the mixture of the three common bacterial cul-

tures. The number of mixed colonies grown after 24-h

incubation was 331 and the number of pixels associated with

the grown colonies was 16,379. The best model found from

this validation study was based on pre-processing with

standard normal variate and detrending, first derivative,

spectral smoothing, and k-nearest neighbor classification

(kNN, k = 3) of scores in the principal component subspace

spanned by 12 principal components. The results showed

95 % overall detection accuracy at pixel level and 97 % at

colony level. The developed model was proven to be still

valid even for the independent validation samples although

the size of a validation set was small and only one experi-

ment was performed. This study was an important first step

in validating and updating multivariate classification models

for rapid screening of ground beef samples contaminated by

non-O157 STEC pathogens using hyperspectral imaging.
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Introduction

Escherichia coli (E. coli) are bacteria living in the intestine

of warm-blooded animals and humans [1]. Many E. coli

strains do not cause human disease; there is, however, a

group of E. coli that produces Shiga toxin. Symptoms of

human illnesses caused by the consumption of Shiga toxin-

producing Escherichia coli (STEC) are diarrhea, stomach

cramps, vomiting, and a potentially lethal kidney compli-

cation called the hemolytic uremic syndrome (HUS). The

most prevalent and commonly recognized STEC serotype

is E. coli O157:H7; non-O157 STEC serogroups such as

O26, O45, and O103 are also increasingly recognized [2,

3]. The Center for Disease Control (CDC) in the United

States (US) estimated that overall, as many as 265,000

STEC infections occur every year in the US, with about

64 % non-O157 STEC infections [4]. According to a pre-

vious study, from 1983 to 2002, about 70 % of non-O157

STEC infections were caused by six major serogroups,

including O26, O45, O103, O111, O121, and O145 (called

‘‘Big Six’’) [5]. In 2011, the Food Safety and Inspection

Service (FSIS) of the U.S. Department of Agriculture

(USDA) declared the ‘‘Big Six’’ non-O157 STEC sero-

groups as adulterants through a Federal Register Notice

and announced plans to start the Hazard Analysis and

Critical Control Points (HACCP) verification testing pro-

gram for raw beef trim and ground beef [6]. Under the new

rule, any meat that contains the six non-O157 STEC cannot

be sold as raw products.

The current method of the FSIS for detecting and

identifying the six non-O157 STEC takes 4 days until the

non-O157 STEC bacteria are genetically and biochemi-

cally identified [7, 8]. After enrichment on the first day of

analysis, multiplex real-time polymerase chain reaction

(PCR) tests are performed on the second day in order to

detect potential positives of these six serogroups. Samples

with positive results will be further analyzed using

immunomagnetic separation (IMS) beads with serogroup-

specific antibodies followed by plating onto Rainbow agar

O157 (in short, Rainbow agar). After 20–24 h incubation,

suspicious colonies on Rainbow agar plates are visually

screened for presumptive positive tests with latex aggluti-

nation on the third day before performing the PCR assays

and biochemical identification test on the fourth day. Since

the morphologies of the targeted STEC colonies may vary

widely among strains and serogroups, the current practice

of the FSIS visually identifies different colony morpholo-

gies/phenotypes and picks at least one colony from each

identified colony morphology/phenotype for the presump-

tive positive testing, and then performs the fourth day tests

only with latex agglutination positive colonies (up to five

colonies per plate) [8]. Rainbow agar is a selective and

differential chromogenic medium used to isolate

presumptive-positive STEC. Considering the multi-day

workflow of STEC detection and isolation, it is beneficial

to reduce the time needed to identify presumptive-positive

STEC colonies with a more objective and accurate tool. It

is challenging to rapidly and accurately identify the six

STEC colonies by eye due to phenotypic variability in

STEC populations and/or the presence of background

microflora.

The FSIS laboratories have been using Rainbow agar for

presumptive positive screening of STEC O157:H7 from

meat products, where it takes 5–6 days to get confirmatory

test results through biochemical and genetic tests, such as

latex agglutination, toxin assay, and PCR [9, 10]. It is

known that STEC O157:H7 colonies appear charcoal grey–

black or steel black on Rainbow agar whereas the six non-

O157 STEC colonies appear purple, gray, or gray–blue on

Rainbow agar [11]. Phenotypic discrimination of non-

O157 serogroups on Rainbow agar has been limited with

mixed results reported [12] because Rainbow agar was

originally developed to isolate O157:H7 colonies and

suitable selective and differential agar media are not

available for non-O157 [13]. In addition, screening non-

O157 STEC colonies is further complicated by the fact that

ground beef harboring non-O157 STEC pathogens can

potentially have high background microflora which can

also grow competitively on Rainbow agar. Although time

consuming and labor-intensive, plating methods still rep-

resent a field where progress is needed in order to more

accurately differentiate pathogen colonies from one

another or from background microflora. Rapid detection

and identification of non-O157 STEC serogroups on agar

media are also important for development of intervention

and verification strategies for the food industry and regu-

latory agencies such as the FSIS and the CDC.

Hyperspectral imaging is an optical imaging technique

that combines conventional imaging and vibrational spec-

troscopy to acquire both spatial and spectral information

from every pixel in each object under test. The spectral

‘‘fingerprints’’ of bacteria provided by hyperspectral

imaging can be used for detection and identification of

pathogens grown on agar media. So far, research with

hyperspectral imaging for detection and identification of

pathogenic colonies has been confined to Campylobacter

[14, 15] and non-O157 STEC [16–18]. In particular, a

visible and near-infrared (VNIR) hyperspectral imaging

technique with multivariate classification models was

developed to differentiate colonies of non-O157 STEC

bacteria [16–18]. The multivariate classification models

were developed from spatial and spectral information

obtained from non-O157 STEC colonies on Rainbow agar

plates, and the models were optimized for their operating

parameters. The models were based on some of popular

chemometric techniques such as scatter correction, first
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derivative, spectral smoothing, k-nearest neighbor classi-

fication and principal component analysis (PCA), and then

classification results were predicted on images. A trans-

parent sample holder was also designed to minimize

shadows cast by colonies on semi-transparent agar plates.

However, the previous hyperspectral imaging studies for

detecting and differentiating pathogens on agar plates were

limited to pure cultures, where the identity of each colony

was known based on a priori knowledge about which

organism was inoculated into each Petri dish. Thus, it was

necessary to study and validate the performance of the

classification models with data obtained under more real-

istic conditions such as mixed cultures.

A mixed culture is a laboratory culture that contains two

or more identified species or strains of microorganisms.

Spread plates of mixed cultures may produce diverse and

realistic colony populations mimicking actual microbial

populations of contaminated food samples although mixed

cultures are still laboratory control samples. However, in

hyperspectral imaging of colonies from mixed cultures,

performance of a classification model is much more diffi-

cult to validate than pure cultures because it is unknown

where specific bacteria grow on an agar plate due to

spreading of liquid cultures and bacterial competition for

growth and survival [19, 20], and thus it is almost

impractical to confirm the identity of every colony with a

genetic and/or a biochemical confirmation method simply

for validating classification models. This difficulty is in

part because there are too many (typically about 50–300)

colonies per plate. Hence, the objective of this study was

(1) to develop a validation protocol appropriate for spread

plates with mixed cultures of the six STEC serogroups and

(2) to assess the performance of the multivariate classifi-

cation models with mixed cultures.

Materials and methods

Non-O157 STEC mixed cultures

The pure cultures of the non-O157 STEC bacteria were

obtained from a culture collection at the Eastern Labora-

tory of USDA-FSIS. A total of six non-O157 STEC strains

were chosen for this study with one strain being from each

representative O-serogroup (O26, O45, O103, O111, O121,

and O145). The specific STEC strains were O26:H2 strain

4, O45:H2 strain 8, O103:H2 strain D, O111:H1 strain 16,

O121:H19 strain A, and O145:H- strain K. The pathoge-

nicity of all test strains was confirmed by the presence of

two genetic targets: one of two stx genes (stx1 and stx2)

and the intimin (eae) genes [7]. Working stocks of each

culture were stored on nutrient agar slants (Becton–Dick-

inson, Sparks, MD, USA) at 4 �C. Cell suspensions were

prepared from cultures grown overnight on Blood agar

(BA, Trypticase Soy Agar with 5 % sheep blood, Remel,

Lenexa, KS, USA) at 37 �C. Cells were suspended in

sterile saline (0.85 %) at an initial concentration of

approximately 109 CFU/mL (0.50 turbidity), with a Dade

Behring MicroScan Turbidity Meter (Dade Behring, West

Sacramento, CA, USA). Serial dilutions of each cell sus-

pension were prepared in sterile saline.

Cell suspension mixtures containing equal portions

(500 lL aliquots of 103 CFU/mL) of serogroups O45,

O111, and O121 that were relatively easy to differentiate

with the developed classification models [16–18] were

prepared from the individual STEC serogroup serial dilu-

tions. An equivalent concentration of a fourth serogroup

(O26, O103 or O145) was inoculated into the three strain

mixture. The reason why the mixed cultures were prepared

with the mixture formula of three easy serogroups plus one

difficult serogroup (not with all six serogroups) was due to

its simplicity in performance validation of the developed

classifiers. The aforementioned mixture formula was

designed to build ground-truth maps only from the mea-

sured images. For example, when the difficult ones (O26,

O103 and O145) were mixed, the identities of all colonies

(typically over 100 per plate) should have been confirmed

by latex agglutination and/or PCR in order to build ground-

truth maps of colony identities. On the other hand, for

example, when O26 was mixed with O45, O111, and O121,

each colony of O45, O111, and O121 was identified with a

help from both the image analysis on a computer display

Tungsten halogen 
lamps 

VNIR HSI 
(400-1000 nm): 

Frontal lens moves 
via a translational 

motion control 

Sample holder 
(transparent):  

12-cm height 

Agar plate (Petri dish) Teflon (white background)

Fig. 1 Push-broom line-scan VNIR hyperspectral imaging system
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and the prediction using a classifier. Then, the remaining

colonies on the plate belonged to O26. The resulting cell

mixtures contained approximately 2.5 9 102 CFU/mL of

each of four serogroups (O45, O111, O121 and O26; O45,

O111, O121 and O103; or O45, O111, O121 and O145).

Then for each mixture, 50 and 100 lL aliquots were spread

onto individual Rainbow agar (RBA, Biolog, Inc., Hay-

ward, CA, USA) plates (100-mm diameter).

In addition to the aforementioned mixed cultures,

approximately 50 and 100 lL aliquots from serial dilutions

of each pure cell suspension were inoculated onto Rainbow

agar plates as positive controls by a spread plating tech-

nique. This positive control group was prepared to help to

find any errors in the validation process with the mixed

cultures and to affirm the model performance. All plates

were incubated at 37 �C for 24 h. Following the above

protocol, one experiment was carried out. Thus, a total of 6

plates (2 cell concentrations 9 3 mixtures) with mixed

cultures and 12 plates (2 cell concentrations 9 6 sero-

groups) with pure cultures were used to evaluate the

developed classification models.

Hyperspectral image acquisition

Hyperspectral image acquisition was performed with a

push-broom line-scan visible near-infrared (VNIR) hyper-

spectral imager (Themis Vision Systems, Richmond, VA,

USA) including a 12-bit CCD camera with 1,376 9 1,040

pixels (SensiCam QE, PCO-TECH Inc, Romulus, MI,

USA), a spectrograph (ImSpector V10E with 30-lm slit,

Specim-Spectral Imaging Ltd., Oulu, Finland), a C-mount

objective lens (APO-Xenoplan 1.8/35-mm, Schneider

Optics, Hauppauge, NY, USA) with motion control

(Newark, CA, USA), a custom sample holder, and a

computer. Figure 1 shows a picture of the imaging system.

The imaging system acquired reflectance values for the

wavelengths ranging from 368 to 1,024 nm with an aver-

age wavelength separation of 1.27 nm. Two 50-W tungsten

halogen lamps (4,700 K) were used for reflectance imaging

by illuminating a Petri dish at 45� from the left and right

sides 43 cm apart. A transparent Acrylic box with the

dimension of 33 (length) 9 30 (width) 9 12 (height) cm

was custom-built to elevate a Petri dish to minimize colony

shadows reflecting from a white Teflon plate that was

placed at the bottom of the box, which was used to increase

the apparent reflectance of thin-layered colonies on the

semi-transparent agar. The working distance from the

objective lens to the Petri dish was about 40 cm. On-

camera binning was set to 2 (spatial) 9 2 (spectral) with a

30-ms integration time. The integration time of the system

was adjusted to maximize the apparent reflectance of a

Spectralon� calibration panel (described below) without

saturating. The resulting hyperspectral image data cube had

the size of 688 (W) 9 500 (H) 9 520 (wavelengths)

before removing extreme wavelength bands during image

preprocessing.

Row1:    O26, O45, O111, O121 
Row2:  O103, O45, O111, O121 
Row3: O145, O45, O111, O121 

Column1:   50 µL aliquot 
Column2: 100 µL aliquot 

(a)  (b)      (c)

Fig. 2 Mixed cultures: image mosaics (color-composites) of a reflectance, b absorbance images, and c ROIs (red O26, green O45, blue O103,

yellow O111, cyan O121, and magenta O145) (Color figure online)
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Multivariate hyperspectral image analysis:

pre-processing

Multivariate hyperspectral image analysis (MHIA or in

short multivariate image analysis: MIA) extends the mul-

tivariate data analysis techniques widely used in chemo-

metrics and spectroscopy to hyperspectral image analysis

for segmentation, classification, detection and prediction.

Pre-processing is an important first step in MHIA because

hyperspectral images typically suffer from spectral and

spatial abnormalities such as random noise, glints, shad-

ows, and measurement errors. Data pre-processing methods

used in this study included normalization, size and noise

reduction, image mosaicing, transformation such as con-

version to absorbance, feature extraction and selection such

as PCA, differentiation, and correction of spectral varia-

tion. Normalization, reduction, image mosaicing and

transformation operations were applied to all pixels. But,

the other operations were applied to the pixels only within

regions-of-interest (ROIs) confined to colonies.

Measured reflectance values were calibrated (i.e. nor-

malized) to relative reflectance R with a 75 % reflectance

Spectralon� target (13 9 13 cm, SRT-75-050, Labsphere,

North Sutton, NH, USA) [14]. The spectral dimension of

each image was reduced to 473 spectral bands ranging

from 400 to 1,000 nm by removing extreme wavelength

bands. Thus, the resulting image size became 688

(W) 9 500 (H) 9 473 (k). Finally, spectral noise was

reduced by a Savitzky-Golay smoothing filter (window

size: 25; order of moment: 4) at each pixel position.

After the aforementioned operations, the calibrated

hyperspectral images were stitched together into a single

image mosaic. The images from the same dilution were

added to each column of the mosaic from left (less cells) to

right (more cells). The reflectance image mosaic was

transformed to absorbance (log10(1/R)) in order to reduce

non-linearity in reflectance measurements, and absorbance

was used for the model development and validation. Fig-

ures 2 and 3 show each color-composite image mosaic of

calibrated reflectance and absorbance images with mixed

(a) Reflectance, R 10(1/R       (b) Absorbance, log ) (c) ROIs

OO2266 

OO4455

OO110033 

OO111111

OO112211

OO114455 

50 µL aliquot  100 µL aliquot 50 µL aliquot 100 µL aliquot 50 µL aliquot  100 µL aliquot

Fig. 3 Pure cultures: image mosaics (color-composites) (Color figure online)
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and pure cultures, respectively. In Fig. 2, the first row on

each mosaic consisted of plates with mixed cultures of

O26, O45, O111, and O121, the second row with O103,

O45, O111, and O121, and the third row with O145, O45,

O111, and O121. In Fig. 3, the hyperspectral images

obtained from a positive control set of pure cultures were

similarly pre-processed and arranged into a different

mosaic of 12 hyperspectral data cubes with 6 rows (sero-

groups) and 2 columns (dilutions).

The ground-truth ROIs representing the true identity of

each pixel and colony were created to build a spectral

library and evaluate the predictive performance of classi-

fication models (see Figs. 2c, 3c). The ROIs were semi-

automatically obtained with an interactive thresholding

tool in Fiji (an open source image processing package

based in ImageJ). Each image needed a different threshold

value. So, the Fiji software was used to get the best seg-

mentation result from each image by trial and error. The

428-nm image was used for colony ROI segmentation

because 428 nm had good contrast between colony and

background agar pixels. Each colony region was success-

fully segmented out by this process with some exceptions:

glints and touching objects. Glint pixels with specular

reflection were not included in the ROIs and a blob of

touching objects was separated with the ROI tool in ENVI

software (Exelis Visual Information Solutions, Boulder,

CO, USA).

In the case of mixed cultures, the class of each ROI was

initially predicted by multiple classification models and

then adjusted manually using the ENVI software at each

colony. The goal of this process was to create ground-truth

ROIs from the images. The first step was to apply 80 dif-

ferent classification models including the ones mentioned

in this paper in order to predict colony identities, the sec-

ond step was to analyze the prediction results and pick the

best ones, and then the final step was to manually adjust the

prediction results with the ENVI software. Color, size,

shape, texture and any discernible features were utilized to

manually assign and re-assign a correct class to each col-

ony (and all pixels in each colony). Positive controls of

pure cultures were also referred for creating correct class

labels on the images of mixed cultures. Without doubt, this

heuristic process to create a ground-truth class map of the

ROIs was tedious and prone to errors when a lot of new

data would be presented to the classification models. As

future research, one possible solution to this ROI-creation

problem is to perform genetic and/or biochemical tests in

order to determine true identities of only a few represen-

tative colonies. Spectra in absorbance from 400 to

1,000 nm were extracted from the ROIs on a per pixel basis

with an in-house program written in MATLAB R2012a

(The Mathworks, Natick, MA, USA). When extracting

spectral data from pixel locations defined by the ROIs, the

data were unfolded into an M 9 N data matrix X (predic-

tors) whose values were associated with M observations

(number of samples in pixels) in rows and N variables

(wavelengths) in columns. A response vector y of class

labels from 1 to 6 was also created for validation.

The data pre-treatment methods were applied as part of

pre-processing to predictors X. The pre-treatment methods

Samples: Agar plates 
with bacterial colonies 

Hyperspectral image 
acquisition

Intensity calibration to 
relative reflectance 

Pre-processing at pixel level: Size and 
noise reduction, image mosaicing (only if 
necessary), transformation to absorbance 

Pre-processing at colony level: 
Segmentation and ROIs 

Spectral data extraction and unfolding data 
to a data matrix 

Pre-processing: MSC or SNVD, first 
derivative, spectral smoothing (moving 

average), mean centered

For training: principal component (PC) 
loadings and scores computed from a 

calibration set 
For testing: calibrated PC loadings and 

scores applied to a prediction set 

Prediction via Mahalanobis distance 
classifier or k-nearest neighbor (kNN) 

classifier 

Projection of predicted class labels back 
onto images 

Post-processing: Decision making at 
colony level 

Fig. 4 Flowchart of multivariate hyperspectral image analysis for classification and prediction of colonies
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in this study included none (absorbance only), multiplica-

tive scatter correction (MSC), standard normal variate and

detrending (SNVD), first derivative with a gap width of 11

points, moving average smoothing with a gap width of 11

points before differentiation, and MSC-corrected first

derivative, and SNVD-corrected first derivative. The

application order of the pre-treatment methods was MSC

(or SNVD), moving average, and differentiation when all

methods were used. In addition, PCA was applied to the

pre-treated data, and classification was done in the reduced

feature (score) space obtained by the PCA. Thus, the

number of principal components (PCs) used for classifi-

cation was also considered an important operating param-

eter and chosen to be 12. The optimal number of PCs was

studied in a previous study [18], where the minimum

requirement was 6 PCs and then the prediction perfor-

mance was maxed out from 12 PCs.

Multivariate hyperspectral image analysis:

classification models and prediction

Multivariate classification models were applied to new

independent hyperspectral images of pure cultures and

mixed cultures to predict the identity of each colony from

pixel-level prediction, where an image was segmented into

individual colony segments with similar spatial and

spectral properties. The multivariate classification models

used in this study were previously developed using a

training (interchangeable with calibration) set obtained

from 24 spread plates of pure non-O157 STEC serogroup

cultures obtained in 2011. Four classification models cho-

sen for this study were based on (1) MSC-corrected moving

average (MSC1), (2) MSC-corrected moving average and

then first derivatives and (MSC2), (3) SNVD-corrected

moving average (SNV1), and (4) SNVD-corrected moving

average and then first derivatives (SNV2). The gap width

for first derivatives and moving average was 11 points. The

training set consisted of 1,421 ROIs (i.e. colonies) with

51,173 pixels (i.e. observations or samples). For both

model development from a training set and validation from

a test set, all spectral data were treated similarly by the

aforementioned data pre-processing techniques and unfol-

ded into X. The classification models were saved as files by

only including PC scores and loadings, pre-treated mean-

centered vectors of each serogroup class, pre-processing

methods associated with each model and operating

parameters for classifiers such as k in kNN. Multivariate

hyperspectral image analysis for classification and predic-

tion is summarized in Fig. 4. The final decision making

rule was applied at colony level by the winner-take-all

strategy (simple majority voting) of prediction results at

pixel level.

Table 1 Number of ground-truth-regions-of-interest colonies and pixels for mixed cultures

Serogroup Number of

ROI pixels

Number of

ROIs (colonies)

Average colony

size (pixels)

STD of colony

size (pixels)

MIN of colony

size (pixels)

MAX of colony

size (pixels)

O26 2,256 46 49 18.2 20 99

O45 3,982 37 108 17.5 69 137

O103 1,200 28 43 9.8 26 74

O111 3,122 102 31 15.4 3 87

O121 4,699 95 50 11.2 24 72

O145 1,120 23 49 22.1 9 100

Total 16,379 331 55a 15.7a

a Mean values

Table 2 Number of ground-truth-regions-of-interest colonies and pixels of pure cultures (positive controls)

Serogroup Number of

ROI pixels

Number of

ROIs (colonies)

Average colony

size (pixels)

STD of colony

size (pixels)

MIN of colony

size (pixels)

MAX of colony

size (pixels)

O26 8,706 223 39 17.9 2 99

O45 9,006 92 98 19.2 27 142

O103 4,741 114 42 15.8 9 105

O111 3,758 142 27 14.5 2 74

O121 6,106 162 38 11.5 1 63

O145 4,600 121 38 9.6 13 64

Total 36,917 854 47a 14.8a

a Mean values
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Multivariate hyperspectral image analysis: validation

There were two independent validation (interchangeable

with test) sets of the mixed and the pure cultures to mea-

sure the performance of the multivariate classification

models in classification accuracy. The classification accu-

racy was the rate of correctly classified samples, which was

assessed at each pixel and colony from a confusion matrix.

Other performance metrics such as omission error, com-

mission error, user’s accuracy and producer’s accuracy

were also used to assess the performance of each sero-

group. The validation set of mixed cultures was used to

predict the performance of classification models in more

realistic growth conditions where cells of different sero-

groups competed against one another. The other validation

set of pure cultures was also used to affirm the predictive

performance of the models.

Results and discussion

Sample size and colony morphology

The validation set of mixed cultures consisted of 331 colo-

nies and 16,379 pixels. The sample information of the

mixed-culture validation set is summarized in Table 1. The

estimated size of each pixel was 0.197 mm (horizon-

tal) 9 0.211 mm (vertical). Thus, the area of each pixel was

approximately 0.042 mm2. From this pixel size, the esti-

mated average size of the colonies was 2.31 mm2 (55 pixels).

O26 O45 O103 O111 O121 O145

(a) Reflectance (color-composite): Example colonies 

(b) Absorbance (color-composite): Example colonies 

(c) Variability: Color difference of O111 colonies 

(d) Appearance differences of colonies 

O121 O111 

O26 

O121 O103 

O111 

O45 

O121 

O111 

O145 

O26 O45 O103 O111 O121 O145

Fig. 5 Color composite examples of colonies (Color figure online)
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The standard deviation of colony size was 0.659 mm2 (15.7

pixels). The smallest colony was 0.13 mm2 (3 pixels) and the

largest was 5.75 mm2 (137 pixels). The average colony

forming unit of mixed culture plates was approximately 55.

The serogroup showing the largest colony size was O45 with

4.54 mm2 (108 pixels) on average per colony whose size was

more than twice as large as the others. The smallest sero-

group was O111 with 1.34 mm2 (32 pixels) per colony.

Serogroups O26, O103, O121 and O145 were similar with

about 2.1 mm2 (50 pixels) per colony.

The other validation set with the positive controls of pure

cultures consisted of 854 colonies and 36,917 pixels. The sample

information of the pure-culture validation set is summarized in

Table 2. The average colony forming unit of pure culture plates

was approximately 71. The appearances of the colonies on the

plates of pure cultures were similar to mixed cultures.
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Fig. 6 Mean absorbance spectra of non-O157 STEC in pure and mixed cultures
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The circular forms (i.e. colony shapes) were observed

from all colonies. Outer boundaries of O121 colonies were

more distinctive and less fuzzy than the others. The color

of O45 colonies was almost black and visually very dif-

ferent from the other serogroups. Thus, O45 colonies can

be used as reference markers when evaluating the perfor-

mance of the models against unknown colonies. Figure 5

shows the examples of colony appearance typically

observed from the measured reflectance and absorbance

(transformed from reflectance) images. The color of all

colonies except O45 (dark green to black) and some of

O111 colonies (grayish blue tone similar to the agar

background) was purple varying from bright to dark. The

center area of each colony was darker than the perimeter.

O111 colonies were grayish color on the agar plates with

less cell concentration (left column images of the mosaic)

and light purple color on the agar plates with more cell

concentrations (right column images of the mosaic). The

detailed appearance characteristics of each colony are not

discussed in this study. A further study is necessary to find

the importance factors such as texture, surface causing the

differences in colony appearance and to incorporate them

into the multivariate classification models.

Spectral analysis

Figure 6a shows the mean spectra of the mixed cultures. As

shown in the figure, all spectral responses at wavelengths

longer than about 750 nm were almost identical. Serogroup

O111 had almost a flat spectral response in the range from

500 to 650 nm whereas serogroups O26, O45, O103 and

O145 had distinctive absorbance peaks at near 535 nm and

serogroup O121 had its peak at 550 nm. Serogroup O45

had a distinctive spectral response due to its large absor-

bance peak at 535 nm and a broad spectral shoulder from

600 to 650 nm. Serogroups O26, O103 and O145 had

similar spectral shapes but different absorbance values in

the range approximately from 450 to 650 nm. The colony

appearances shown in Fig. 5a confirmed the differences in

absorbance of serogroups O26, O103 (lighter pink) and

O145 (darker pink).

Figure 6b shows the mean spectra of each serogroup

obtained from the ROIs of the training and validation sets

including both pure and mixed cultures. Overall except O26,

the spectral responses of the two validation sets were more

similar than the training set, which confirmed the previous

study finding that replication of experiments was the largest

uncertainty to the predictive performance of the classifica-

tion models. The 600–700 nm shoulders of the pure O26

cultures disappeared when O26 was mixed. One possible

explanation for why O26 in mixed cultures showed the

spectral difference between 600 and 700 nm was the bac-

terial competition for survival and growth [19, 20]. Although

no quantitative analysis was made to measure the differences

or variability between the training and validation sets, we

assumed, from Fig. 6b, that the differences in mean-spectral

responses between the training and validation sets were not

large enough to re-train the models.

Prediction results

A total of 16 prediction models (interchangeable with

classification models) from four preprocessing methods

(MSC1, MSC2, SNV1 and SNV2), two classifiers

Table 3 Overall classification accuracy (%) for pure non-O157 STEC cultures

Classifier MSC1a MSC2b SNV1c SNV2d Average

Mahalanobis distance: pixel level 97.13 97.11 97.18 97.29 97.18

Mahalanobis distance: colony level 99.30 99.30 98.83 99.41 99.21

kNN (k = 3): pixel level 96.00 97.15 98.23 97.46 97.21

kNN (k = 3): colony level 99.18 99.65 99.88 99.88 99.65

Average 97.90 98.30 98.53 98.51 98.31

a Multiplicative scatter correction (MSC)-corrected moving average
b MSC-corrected moving average and then first derivative
c Standard normal variate and detrending (SNVD)-corrected moving average
d SNVD-corrected moving average and then first derivative

Table 4 K-nearest neighbor confusion matrix prediction results on a

pixel level for mixed cultures of non-O157 serogroups

Prediction (%) Ground Truth (%)

O26 O45 O103 O111 O121 O145

O26 95.80 0 11.46 0 0 8.07

O45 0 100 0 0 0 0

O103 1.90 0 88.54 0 0 0

O111 0 0 0 100 0 0

O121 0 0 0 0 100 0

O145 2.30 0 0 0 0 91.93

SNVD-corrected moving average and then first derivative prepro-

cessing, k = 3
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(Mahalanobis distance and kNN), and two detection levels

(pixel and colony) were evaluated with classification

accuracy against the two validation sets of pure and mixed

cultures, respectively. Table 3 shows the overall classifi-

cation accuracies of each prediction model against the pure

cultures. All 16 prediction models produced over 97 %

prediction performance. The average classification accu-

racy was 98.31 %. The colony-level decision making

algorithm was approximately 2 % better than the pixel-

level decision making. The performance variability among

the four preprocessing models was less than 1 %. The

performance difference between two classifiers was trivial

(0.23 %). The best model was SNV1 or SNV2 with kNN

and colony-level decision making.

When the performance of the same 16 models was

measured against the mixed culture data, the best perfor-

mance was obtained from the model adopting SNV2

(SNVD-corrected first derivative with a gap width of 11

points, moving average with a gap width of 11 points) and

kNN (k = 3). First, the performance of pixel-level classi-

fication is summarized in Table 4. The overall classifica-

tion accuracy at pixel level was about 95.6 % with Kappa

coefficient 0.9457. All ROI pixels of serogroups O45,

O111 and O121 were classified with 100 % accuracy. The

classification accuracy for serogroup O103 was the worst at

88.54 %. About 11 % among ROI pixels of serogroup

O103 were incorrectly classified as serogroup O26. About

8 % among ROI pixels of serogroup O145 were also

misclassified as serogroup O26. In terms of average accu-

racy that was an average of user’s and producer’s accura-

cies, the performance for serogroup O26 was the worst

with 89 % average accuracy whereas both serogroups

O103 and O145 showed about 92 % average accuracies,

respectively (Table 5). The average accuracy of serogroups

O45, O111, and O121 was 100, 98, and 100 %, respec-

tively. Second, the decision making algorithm using col-

ony-level classification misclassified 8 colonies out of 331

(97.6 % of overall classification accuracy), as shown in

Fig. 7. Five colonies were falsely predicted as serogroup

O26 on the agar plates that were not supposed to have O26

colonies. Two O103 colonies and one O145 colony were

falsely predicted as well. Figure 7b showed that most

misclassification errors were from the 100 lL plates.

Although it is largely unknown why this happened and

Table 5 K-nearest neighbor classification prediction error and accuracy on a pixel-level for mixed cultures of non-O157 serogroup cultures

Serogroup Commission

error (%)

Omission

error (%)

User’s

accuracy (%)

Producer’s

accuracy (%)

Average

accuracy (%)

O26 17.52 4.20 95.80 82.48 89.14

O45 0 0 100 100 100

O103 3.78 11.46 88.54 96.22 92.38

O111 3.84 0 100 96.16 98.08

O121 0 0 100 100 100

O145 8.28 8.07 91.93 91.72 91.83

(a) Predicted colony types displayed with 
color legends 

(b) Misclassified colonies 
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O121 

O145 
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O121 
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O145 

O26 

Fig. 7 Prediction results at

colony level: inoculated

serogroups listed with color

legends in (a) and colonies

circled with misclassified labels

in (b) (Color figure online)
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whether this trend will be repeated with more experiments,

one possible explanation is morphological or phenotypic

changes of the colonies due to the more bacterial compe-

tition in higher-density cell populations than 50 lL plates.

Conclusion

This study showed the potential of visible and near-infrared

hyperspectral imaging for rapidly identifying colonies of

the big six non-O157 STEC serogroups on Rainbow agar

plates inoculated with mixed cultures. Spatial and spectral

data analysis revealed that the differences in appearance of

the six non-O157 STEC serogroup colonies were mainly

due to the differences in absorption bands and color tones.

Other features affecting colony morphology might have

influenced the differences in colony appearance but this

topic was not pursued in the study. Spectral characteristics

at near-infrared wavelengths from 750 to 1,000 nm were

almost identical and thus the discrimination power of the

near-infrared spectral range was trivial. The color was the

major feature exploited in the classification model. In this

study, the multivariate classification models developed and

optimized using a training set of pure spread plates were

validated against two independent test sets with pure and

mixed cultures. Sixteen different models were compared

and produced over 97 % classification accuracies against

the validation set of pure cultures whereas the average

classification accuracy of the models on the training set

was about 95 % at colony level. The best model, based on

SNVD, first derivative, moving average, and k-nearest

neighbor classification (k = 3) of scores in the principal

component subspace spanned by 12 PC, was selected and

applied to the validation set of mixed cultures. The clas-

sification accuracy of the model against the mixed cultures

was 95 % at pixel level and 97 % at colony level. The

developed model was proven to be still valid even for the

independent samples although the size of a validation set

with mixed cultures was small and only one experiment

was performed. The validation was based on a heuristic

image analysis that manually determined the ground-truth

identification of each colony. Thus, further research is

needed to validate the classification models in terms of

positively identified colonies using confirmatory testing

such as latex agglutination tests or PCR. A few more

experiments need to be conducted. Also, the classification

models need to be validated with bacterial cultures directly

extracted from a food matrix such as ground beef.
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