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Abstract Oscillatory responses are ubiquitous in regula-

tory networks of living organisms, a fact that has led to

extensive efforts to study and replicate the circuits

involved. However, to date, design principles that underlie

the robustness of natural oscillators are not completely

known. Here we study a three-component enzymatic net-

work model in order to determine the topological require-

ments for robust oscillation. First, by simulating every

possible topological arrangement and varying their

parameter values, we demonstrate that robust oscillators

can be obtained by augmenting the number of both nega-

tive feedback loops and positive autoregulations while

maintaining an appropriate balance of positive and nega-

tive interactions. We then identify network motifs, whose

presence in more complex topologies is a necessary con-

dition for obtaining oscillatory responses. Finally, we

pinpoint a series of simple architectural patterns that pro-

gressively render more robust oscillators. Together, these

findings can help in the design of more reliable synthetic

biomolecular networks and may also have implications in

the understanding of other oscillatory systems.

Keywords Robustness � Oscillatory systems � Network
motifs

Introduction

Oscillatory responses arise in a wide variety of natural and

artificial systems, such as population dynamics (Frank

et al. 2011), nanomechanical oscillators (Okamoto et al.

2013), and electronic circuits (Pershin and Ventra 2010). In

biomolecular regulatory networks, oscillatory systems

control many vital functions, including circadian rhythms

(Zhang and Kay 2010), glycolysis (Chandra et al. 2011),

DNA damage response (Batchelor et al. 2008), among

others (Tiana et al. 2007). Given this ubiquitousness, it is

no surprise that oscillatory systems have been extensively

studied for a long time (Tyson et al. 2008). While we now

thoroughly understand the most simple oscillators (Ferrell

et al. 2011), and are even able to implement them in pre-

dictable systems such as electronic circuits, the require-

ments for robust oscillations in biomolecular networks are

yet to be identified. Furthermore, in contrast to the envi-

ronment in which artificial oscillators operate, biomolecu-

lar regulatory networks often operate under uncertain

conditions and considerable levels of biomolecular noise

(Velar et al. 2002). Robustness, the ability of a system to

maintain functionality under perturbations, is therefore of

paramount importance in any biomolecular regulatory

network.

Despite the complexity of the task, during the last dec-

ade there have been significant advances in building syn-

thetic biochemical oscillators, some of them towards

replicating the inherent robustness of natural systems

(Purcell et al. 2010; Bashor et al. 2010; Toettcher et al.

2010; Kim and Winfree 2011). Synthetic functional circuits

incorporating oscillators as time-keepers have also been

developed (Danino et al. 2010; Mondragon-Palomino et al.

2011; Franco et al. 2011; Khalil and Collins 2014). Still,

there is not yet a thorough and comprehensive set of
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guidelines for engineering robust oscillators. Several

studies have made contributions towards identifying some

design principles for oscillatory behaviour. Network

motifs-recurrent patterns of interactions believed to form

the building blocks of any complex network (Milo et al.

2002; Yeger-Lotem et al. 2004; Barabasi and Oltvai 2004;

Alon 2007; Kim et al. 2010)—have also been highlighted

to some extent for oscillators (Ferrell et al. 2011; Wagner

2005; Novak and Tyson 2008; Tsai et al. 2008; Burda et al.

2011; Lomnitz and Savageau 2014; Noman et al. 2015;

Semenov et al. 2015).

In this work, we aim at revealing the requirements for

biomolecular networks to function as robust oscillators.

Particularly, we investigate topological features related to

oscillatory responses of a three-component enzymatic

network. We do so by conducting extensive numerical

simulations of every possible topological arrangement.

Previous related work focused on exploring a limited

number of topological variations of three-node oscillators

(Tsai et al. 2008; Ananthasubramaniam and Herzel 2014).

Our approach, however, is not biased towards any specific

architecture since we evaluate the robustness of every

possible three-component network. Similar studies have

also been carried out, but for analyzing adaptation (Ma

et al. 2009), switch-like responses (Shah and Sarkar 2011)

and patterning in response to morphogen gradients (Cot-

terell and Sharpe 2010).

We begin by briefly describing our model, the simula-

tion setup and the method used to estimate the corre-

sponding oscillatory robustness. Next, we analyze the

distribution of the oscillatory robustness over the complete

set of topologies and characterize the dependence of the

robustness on a selected number of topological features.

Afterwards, we identify some network motifs, i.e. recurrent

oscillatory subnetworks that underlie oscillatory behavior.

Finally, we obtain a series of architectural patterns that are

recurrent only in the most robust oscillatory topologies.

Additional details about the simulation procedure and

motif selection can be found in the Electronic Supple-

mentary Material (ESM) file.

Material and methods

Computational model: general three-component

enzymatic network

We use an ordinary differential equation (ODE)-based

model of an enzymatic three-component network, similar

to the one used by Ma et al. (2009). Every component

shown in Fig. 1, labeled A, B or C, represents an enzyme.

Each one of them has a fixed concentration normalized to

1, and can be present in two forms: active (represented by

the letter itself, i.e. A) and inactive (represented by the

complement, i.e. 1 � A). Only the active form of an

enzyme is allowed to have an influence over the other

components. This influence, if present, can be an activating

or inhibiting interaction. An activating interaction cat-

alyzes the conversion of an enzyme’s inactive form into the

active form. For example, an activating interaction of

component A over component B, denoted by A ! B, means

that the active form of A converts inactive B into its active

form. This reaction is modeled by the following Michaelis–

Menten rate equation:

R BA
inactive ! BA

active

� �
¼ kABAð1� BÞ

ð1� BÞ þ KAB

; ð1Þ

where A is the normalized concentration of active A, and

(1 � B) is the normalized concentration of inactive B.

Likewise, an inhibiting interaction of component A over

component B, denoted by A a B, means that the active

form of A converts active B into inactive B, with a rate

equation given by:

R BA
active ! BA

inactive

� �
¼ k0ABAB

Bþ K 0
AB

: ð2Þ

The effect of multiple interactions over one component

is additive. For example, if component C is positively

regulated by components A and B, its reaction rate is:

R C
A;B
inactive ! C

A;B
active

� �
¼ kACAð1� CÞ

ð1� CÞ þ KAC

þ kBCBð1� CÞ
ð1� CÞ þ KBC

:

ð3Þ

A feedback loop is defined as a chain of interactions

(positive or negative) that begins and ends at the same

component. For example, an activating interaction of com-

ponent A over component B, an inhibiting interaction of

component B over component C, and an activating interac-

tion of component C over component A, is denoted by

A ! B a C ! A. The resultant effect of component A over

itself, through components B and C, is an inhibiting one.

Fig. 1 Schematic of the three-component generic enzymatic network

with background constitutive reactions. Solid lines represent always

present interactions: activation (pointed arrowhead) or inhibition

(crossbar-ended). Dashed lines represent possible activation, inhibi-

tion or no interaction
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An enzyme can also activate or inhibit itself (autoreg-

ulation). For example, an activating (inhibiting) interaction

of component A over itself, denoted by A ! A (A a A),

means that the active form of A converts inactive (active)

A into its active (inactive) form.

Background constitutive reactions are also taken into

account. For every component i, there are constant–con-

centration enzymes, denoted by Ei and Fi, which catalyze

the background activating and inhibiting reactions,

respectively. The kinetic rates of these background reac-

tions are independently tunable for each component i.

Consequently, the general rate equation for component

B is:

dB

dt
¼

X

i

kXiBXið1� BÞ
ð1� BÞ þ KXiB

�
X

i

k0YiBYiB

Bþ K 0
YiB

; ð4Þ

where Xi ¼ A;B;C or EB are the activating enzymes

(positive interactions), and Yi ¼ A;B;C or FB are the

inhibiting enzymes (negative interactions).

A network topology emerges after setting each possible

network interaction (dashed lines in Fig. 1) to either activa-

tion, inhibition or no interaction. A total of 3284 three-

component architectures resulted after discarding symmetric

equivalents and not fully connected topologies. Each one of

these architectures was worked out by computationally

searching for oscillatory responses using random parameter

sampling (3� 105 samples per topology). A custom software

package to detect oscillatory responses, based on periodicity

of the Euclidean distance in state space,waswritten (formore

information see Supplementary Material, Section 1).

Oscillatory robustness

We are mainly interested in how likely is it for a network to

oscillate. For the three-component topology defined above,

two features can be selected to get oscillatory responses:

the network architecture and the system parameters.

Herein, the robustness of a topology is defined as the

probability of getting an oscillatory response with that

topology by randomly selecting the parameter set, i.e.:

rtopology ¼ Pðoscillatory response j topologyÞ: ð5Þ

The experiment, which consists of repeatedly choosing a

parameter set and checking whether the system oscillates

or not, corresponds to Bernoulli trials. Hence, the maxi-

mum likelihood estimator of the robustness defined above

corresponds to:

r ¼ Nosc

Nsamples

; ð6Þ

where (Nosc) is the number of oscillatory responses

obtained and (Nsamples) is the total number of simulations

conducted for that topology. A similar definition (favorable

outcome divided by total number of simulations) has been

used before in related studies (Wagner 2005). One can

show theoretically that the relative estimation error is a

function of both the robustness value itself and the number

of samples, and that values of r greater than 0.001 have less

than 5.77 % error. Numerical analysis also supports the

aforementioned dependency (see Supplementary Material,

Section 2).

Parameter values and simulations

Parameters kXY and KXY have been sampled from log-uni-

form distributions, with intervals of [10�1,10] for kXY and

[10�3,102] for KXY . Up to 3� 105 samples were taken for

every pair (kXY ;KXY ), and the same number of simulations

were carried out for each topology. The whole procedure

was repeated for different values of Ei and Fi: 0, 0.001,

0.01, 0.05 and 0.5. In summary, 3� 105 simulations were

conducted for each one of the 3284 topologies and for 5

different values of Ei and Fi, all adding up to approxi-

mately 5� 109 simulations.

Computational tools

Simulations were carried out using the PyDSTool library in

Python, which in turn can use Dopri (Dormand–Prince) and

Radau (implicit Runge–Kutta) integrators (Clewley et al.

2007). The stiff integrator Radau was preferred, and the

non-stiff Dopri integrator was only used when the former

failed. An initial round of simulations was needed to

determine that, on average, the Radau integrator performed

much faster and failed less.

Simulations were run in a 32-node cluster built on the

Rocks Cluster software distribution (Rocks 2013). Analy-

sis, such as the determination of amplitude and period of

oscillations and the generation of undirected graphs, was

done using Numpy, Scipy (Scipy 2013) and Matplotlib

(Matplotlib 2013). Hive plots were drawn using Martin

Krzywinski’s Linnet package (Krzywinski et al. 2012).

Results

Distribution of the robustness for oscillatory

topologies

First, we analyze the distribution of the robustness among

the oscillatory topologies, with the goal of answering the

question: how robust can an oscillatory network be? More

than half of the identified three-component topologies were

able to oscillate, 1665 out of 3284 (Fig. 2). However, only
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7.13 % of the oscillatory architectures presented robustness

larger than r ¼ 0:01, and even larger values (r[ 0:02)

seemed to be a property of just a handful of topological

structures (1.67 %).

Features of robust oscillatory topologies

Another question of importance about the three-component

networks is: are there any architectural features that char-

acterize the most robust topologies? To answer this, a

detailed comparison of network architectures according to

diverse topological features is performed. To begin with,

topologies are lined up based on their total number of

interactions, i.e. network complexity (Fig. 3a). Even

though a couple of topologies with three interactions are

able to oscillate, the most robust ones need a minimum of

five. Next, topologies are grouped by the nature of the

interaction—positive or negative (Fig. 3b, c). The most

robust topologies present from two to four positive inter-

actions, and from three to four negative ones. When

organizing the topologies by the type of autoregulations

present, extra insight is also gained (Fig. 3d, e). Topologies

require to have at least one positive autoregulation for

robust oscillation. On the contrary, negative autoregulation

interactions are absent in robust topologies. Our result for

positive autoregulation agrees with earlier studies which

also demonstrated numerically (Tsai et al. 2008) and

experimentally (Kim and Winfree 2011; Stricker et al.

2008; Tigges et al. 2009) the importance of positive

autoregulation. In terms of having negative feedback loops

in the network, at least one loop is required, with most

robust topologies using at least two (Fig. 3f). It is worth

noting that a negative feedback loop was found to be a

necessary but not sufficient condition for oscillation, since

not all the topologies with negative feedback (a total of

2021) were able to oscillate. Furthermore, addition of a

negative feedback loop to a topology does not always lead

to an increase in robustness (Lomnitz and Savageau 2014)

(Supplementary Fig. S3B).

Regarding all topological features analyzed, the

robustness median (short horizontal line) does not present

remarkable dependence. This confirms the fact that robust

topologies are outliers and that most topologies, even when

able to oscillate, do it for just a few parameter sets (see also

Fig. 2b). Interestingly, two architectural features, the net-

work complexity and the number of feedback loops, are

able to define groups where almost all the topologies pre-

sented oscillations (dotted lines in Fig. 3a, f). Summariz-

ing, even though robust topologies are only a small fraction

of all oscillatory topologies, there are clear architectural

features that are required for this behavior and that can be

used as design guidelines for robust oscillators.

Motifs for oscillatory behavior

We also investigate the influence of highly significant

‘‘core’’ topologies, or motifs. For this purpose, we start

with the simplest architectures, two- and three-component

networks with minimum number of interactions, and

searched for their presence among the more complex

topologies. At the end, we obtain a set of eight motifs

(Fig. 4) with the following characteristics: (1) no motif

includes any other motif in the set, and (2) every three-

component oscillatory topology includes at least one motif.

A simple visual inspection of the motifs reveals a common

pattern: a negative feedback loop. In fact, each motif can

be seen as a ‘‘sophisticated’’ version of this pattern.

Importantly, a two-component network analysis (Supple-

mentary Fig. S3A) reveals that the negative feedback loop

alone (i.e. with two interactions) cannot sustain oscilla-

tions; a fact also shown in previous studies (Ferrell et al.

2011; Novak and Tyson 2008; Lomnitz and Savageau

2014). In our simulations, only three two-component con-

figurations are able to oscillate (Supplementary Fig. S3B).

From the negative feedback loop, oscillations are achieved

either by adding a positive autoregulation interaction to one

of the components (Motifs 1, 2 in Fig. 4) or by inserting a

third component in the positive branch of the feedback loop

(Motifs 3, 4). Motif 1 is a well-known circuit, the ‘‘am-

plified negative feedback oscillator’’, where the key char-

acteristic is to obtain significantly faster activator than

repressor dynamics (Stricker et al. 2008; Tigges et al.

2009; Purcell et al. 2010; Lomnitz and Savageau 2014).

Motif 2, on the other hand, is less common in the literature,

and it accounts more for not-so-robust topologies (median

Fig. 2 Robustness histogram for the 1665 oscillatory topologies

found out of the 3284 three-component topologies identified.

Oscillatory robustness is calculated as the fraction of parameter sets

that yielded oscillatory responses parameters were randomly sampled

3� 105 times per topology. Only a reduced fraction of topologies

(1.67 %) presented an appreciable level of robustness (r[ 0:02)
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robustness 7:1� 10�3 for Motif 1 and 7:1� 10�4 for Motif

2). Motifs 1a, 1b, 2a, 2b can be seen as derived from Motifs

1, 2, after inserting a third component in the autoregulation

reaction. These derived topologies are related to the

oscillatory behaviour of some networks; however they fail

to account for the most robust networks. Motif 3 has been

Fig. 3 Oscillatory robustness as determined by topological features.

Blue circles represent the robustness of oscillatory topologies.

Horizontal lines at 0.02 isolate the most robust topologies. Short

horizontal lines crossing each column indicate the median value of

the group robustness. Dotted lines show the fraction of topologies that

present oscillations in each group. Topologies are grouped by their

a number of total interactions, b number of positive interactions,

c number of negative interactions, d number of positive autoregula-

tions, e number of negative autoregulations, and f number of negative

feedback loops. (Color figure online)

Fig. 4 Network motifs in oscillatory topologies. Left motifs for

oscillatory behavior. Right bar charts for oscillatory robustness, where

a vertical line represents a topology lined up according to its

robustness. A red vertical line represents the median of the robustness

of the topologies in the bar. All topologies along one bar included the

adjacent motif. Very few non-oscillatory topologies included any of

these motifs when concentrations for basal interactions were different

from zero, hence these motifs readily allow us to distinguish between

oscillatory and non-oscillatory topologies. (Color figure online)
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used to model the circadian rhythm of cyanobacteria (Tiana

et al. 2007) and the embryonic cell cycle of Xenopus

(Ferrell et al. 2011). Motif 4, which is topologically iden-

tical to the ‘‘repressilator’’, was employed in one of the first

successful attempts to implement synthetic networks of

transcriptional systems (Elowitz and Leibler 2000), and

more recently, has also been identified as part of the cir-

cadian clock of Arabidopsis (Pokhilko et al. 2012).

Observing Motifs 3, 4, both present a similar activation

effect of component A on B via C, nonetheless through a

different mechanism. It is also worth noting that, when

characterizing each motif by the median of the robustness

of the topologies they accounted for, Motifs 1, 4 are related

to the most robust oscillatory topologies. Overall, this

analysis shows that the sole presence of a handful of simple

topologies can, in advance, help us explain the oscillatory

behavior of more complex networks.

Architectural patterns in robust oscillatory

topologies

With core topologies for oscillatory networks determined,

we aim at identifying architectural patterns recurrent in the

oscillatory topologies with larger robustness. We construct

new patterns by adding one interaction at a time to motifs

shown in Fig. 4, and then compare them using the median

value of the oscillatory robustness of the topologies that

include these new patterns (Supplementary Fig. S4).

Architectures with the highest median are chosen as con-

figurations for robust oscillation. Since Motif 1 outper-

forms the other motifs in reproducing the most robust

topologies (Fig. 4), it is unsurprising that architectures for

robust oscillation descend from it (Fig. 5, top). The

increment in median robustness is evident as we increase

the number of interactions (Fig. 5, middle), but to the

expense of representing a smaller set of topologies (Fig. 5,

bottom). The architecture in Fig. 5b can be found in the

context of the p53-Mdm2-NUMB trilogy (Shin et al.

2011). The architecture in Fig. 5c, in addition of being a

two-step improvement over Motif 1, can also be considered

as a combination of Motifs 1 and 4. Notably, by using the

design guidelines derived from the analysis of Fig. 3, we

can also obtain the architectures shown in Fig. 5b, c. Thus,

this analysis elicits simple architectural patterns that are

related to robust oscillatory behavior.

Influence of basal interactions

Finally, we test the influence of the concentration of basal

enzymes on our results. In addition to the value of 0.01 for

concentration of Ei and Fi (which corresponds to the results

presented in this article), we repeat our analysis for values

of 0.5, 0.05, 0.001 and 0 (absence of basal interactions).

Even though the exact robustness values vary as we change

Ei and Fi, the qualitative conclusions obtained for Ei ¼
Fi ¼ 0:01 still prevail for larger concentration values.

When basal interactions approach to 0, however, none of

the identified oscillatory motifs shown in Fig. 4 prompted a

well defined separation between oscillatory and non-

oscillatory topologies, such as observed for Ei ¼ Fi ¼ 0:01

(Supplementary Fig. S5). From this analysis, it is observed

that the level of the enzyme concentrations related to basal

interactions, as long as different from zero, present little

qualitative influence on the results discussed before.

Discussion

Synthetic biologists have been designing increasingly

complex biomolecular networks with desired functionality.

However, this design process has been performed without

an explicit set of design rules or guidelines, such as the

ones found in the area of engineering. The present work

aims at identifying such guidelines for obtaining robust

oscillations in biochemical circuits. We do so by per-

forming an extensive amount of computer simulations.

Numerical models are proving to be extremely useful in

synthetic biology design, because they allow us to easily

test several topologies in silico. However, we note that

proposing a model is much easier than validating it at the

laboratory (Kim and Winfree 2011).

Our model comprises three biochemical components

influencing one another through enzymatic Michaelis–

Menten interactions, and includes the effect of activating,

inhibiting and autoregulating interactions. We allow for the

presence of background enzymes that constitutively acti-

vate or deactivate each one of our three biochemical spe-

cies. This is analogous to a transcriptional network subject

to protein production and degradation. In this case, there

will be a constitutive decrease of protein concentration

when production stops, and an increase up to a finite value

when production is maximal. We allow for the kinetic

parameters of background reactions to be different when

interacting with A, B, and C. We note that in our simula-

tions the existence of the motifs identified in Fig. 4

depends on the presence of these background enzymes, but

not on the precise value of their concentration.

We performed simulations of every possible three-

component topology. Past studies that dealt with design

principles of robust oscillators focused on a limited number

of previously known architectures. Our approach, on the

other hand, ignores the bias towards current knowledge and

attempts to find every possible topological mechanism for

oscillatory behaviour. Interestingly, the most robust basic

motifs found in this study do correspond to previously

known architectures (Purcell et al. 2010; Elowitz and
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Leibler 2000). Our results, however, show that it is possible

to improve their robustness by adding the appropriate

number and type of interactions (Fig. 3).

Other types of molecular interactions could also be

explored using our approach, while leveraging the

software developed in this study. In the last years, a

significant number of ‘‘orthogonal’’ (non cross-interact-

ing) transcriptional activators and repressors have been

identified and used to construct basic synthetic biolog-

ical circuits (Rhodius et al. 2013; Stanton et al. 2014;

Nielsen and Voigt 2014). It would therefore be inter-

esting to perform the analysis presented here with

transcriptional regulation based on Hill functions.

However, we expect the precise molecular mechanism

of interactions not to have a big influence on the gen-

eral conclusions of our study, even though the precise

robustness values will most likely change. This is

supported up to some extent by a recent study con-

ducted by Lomnitz and Savageau (2014), in which the

authors analyze oscillations in three transcriptional two-

component networks. The qualitative conclusions of

their comparison are in good agreement with our results

for two-component networks (Supplementary Fig. S3B),

despite the differences in our models.

Our study was concerned with the oscillatory robust-

ness of each three-component topology, which we define

as the probability of achieving oscillations given the

architecture. Theoretical analysis, as well as numerical

calculations, show that we are able to get a good estimate

of this robustness as long as the robustness value itself is

not excessively small (Supplementary Fig. S1 and dis-

cussion). The number of parameters of a topology does

not seem to have a big influence on the robustness esti-

mation error. However, we could have potentially missed

some interesting phenotype that is restricted to a small

region in the parameter space, and the probability of this

to happen increases with the number of parameters. Are

these phenotypes relevant for biological systems if their

range is limited? This probably will depend on the

specific case, but our robustness metric is, by definition,

not concerned with such phenomena. To address those

kind of issues, Lomnitz and Savageau (2014) proposed a

method that decomposes the parameter space into finite

regions of interest. We also note that there is a great

insight to be gained by analyzing the parameters that

produce oscillations in a topology, and the amplitude,

period, and phase of the resulting oscillatory response.

Not only can this shed light into which parameter con-

figuration makes a topology oscillate, but also into how

‘‘tunable’’ a topology is, that is, how much the oscillatory

response can be controlled by changing the parameters of

the network. Tunability, as well as robustness, is a highly

Fig. 5 Architectures for generating robust oscillatory behavior. Top

Motif 1 and two architectural patterns for robust behavior that

descended from it. Middle bar charts indicate oscillatory robustness

for motif on top. A red vertical line represents the median of the

robustness of the topologies that contain the architectures on the top.

Bottom hive plots highlighting in red the three-component topologies

including the architectures on top. Topology robustness is positioned on

radially distributed linear axes. Linear axes indicate number of

interactions. Two topologies that differ in one interaction are connected

by links. aMotif 1. bArchitecture for robust oscillation generated from
Motif 1 (one interaction added). c Architecture for robust oscillation

generated from Motif 1 (two interactions added). (Color figure online)
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desirable feature in synthetic oscillators (Tsai et al. 2008;

Stricker et al. 2008).

We started our analysis by studying the distribution of

the robustness among all three-component topologies. It

turns out that very few topologies are capable of robust

oscillation. So, what distinguishes oscillatory topologies

from the rest? From our study, we are able to characterize

the influence of a few basic topological features over the

oscillatory robustness, and come up with a basic set of

design principles for a network to be a robust oscillator

(Fig. 3): (1) it must have a high number of interactions, (2)

the interactions should be properly balanced between

activating and inhibiting, (3) positive autoregulation

interactions must be included, (4) negative autoregulations

must be absent, and (5) feedback loops are absolutely

necessary for obtaining oscillations, with more feedback

loops being, on average, better.

Following, we uncovered common patterns present in

the oscillatory topologies, or motifs. Initially, we focused

on patterns that are related to the basic mechanisms of

oscillatory behavior, and later we did so for the case of

robust oscillations. It turns out that every topology that

presents oscillations includes at least one of the eight

motifs shown in Fig. 4. These motifs, in turn, are based on

a simple two-component negative feedback loop which can

include either a positive autoregulation or an additional

(third) component inserted in the loop. The first one of

these motifs closely resembles several oscillatory circuits

previously found in nature. The fourth one is similar to a

widely-known synthetic circuit, the repressilator. For the

identification of patterns only present in robust oscillatory

systems, we considered every possible topology that could

be derived from those eight motifs, by adding one inter-

action at a time. The resulting patterns were compared

using a performance measure (median robustness) intended

to evaluate the robustness of the complex topologies they

are included in. We ended up obtaining the architectural

patterns shown in Fig. 5. Interestingly, the pattern in

Fig. 5c can be seen as a combination of Motif 1—the

amplified negative feedback oscillator—and Motif 4—

similar to the repressilator. Consequently, a synthetic

robust oscillator must incorporate the architectural pattern

shown in Fig. 5c.

In summary, we have unveiled underlying architectural

patterns for robust oscillation that we believe can serve as

basis for defining design charts. These results are expected

to help in the design process of robust synthetic oscillatory

networks and may as well offer additional understanding

when studying natural oscillatory systems.
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