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Abstract Cellular signaling is key for organisms to sur-

vive immediate stresses from fluctuating environments as

well as relaying important information about external

stimuli. Effective mechanisms have evolved to ensure

appropriate responses for an optimal adaptation process.

For them to be functional despite the noise that occurs in

biochemical transmission, the cell needs to be able to infer

reliably what was sensed in the first place. For example

Saccharomyces cerevisiae are able to adjust their response

to osmotic shock depending on the severity of the shock

and initiate responses that lead to near perfect adaptation of

the cell. We investigate the Sln1–Ypd1–Ssk1-phosphorelay

as a module in the high-osmolarity glycerol pathway by

incorporating a stochastic model. Within this framework,

we can imitate the noisy perception of the cell and interpret

the phosphorelay as an information transmitting channel in

the sense of C.E. Shannon’s ‘‘Information Theory’’. We

refer to the channel capacity as a measure to quantify and

investigate the transmission properties of this system,

enabling us to draw conclusions on viable parameter sets

for modeling the system.

Keywords S. cerevisiae � Osmoadaptation �
Phosphorelay � HOG pathway � Information theory

Introduction

In their natural habitats, organisms are facing numerous

and sometimes severe changes in environmental condi-

tions. Additionally to this extrinsic stochasticity, cells

themselves act and function in a stochastic manner

(Shahrezaei and Swain 2008; Acar et al. 2008). Efficient

strategies for sensing variations in the environment despite

intrinsic fluctuations are crucial for the immediate survival

as well as a beneficial long-term adaptation. For both

stresses and stimuli, cells have developed a wide range of

signal transduction pathways to fulfill this function. These

pathways transmit the gathered outside information to the

decision-making centers of the cell, where appropriate

responses can be initiated. Taking the place as a model

organism, Saccharomyces cerevisiae serves to investigate

and better understand these highly evolved mechanisms.

One can observe a plethora of signaling motifs in yeast that

are common in nature and need to be understood com-

prehensively in structure, function and interactions.

One of the most intensively studied signal transduction

pathways is the high-osmolarity glycerol (HOG) pathway,

both from an experimental (e.g. Posas et al. 1996; Hoh-

mann 2002; Macia et al. 2009; Patterson et al. 2010) as

well as a computational side (e.g. Klipp et al. 2005;

Muzzey and Ca 2009; Petelenz-Kurdziel et al. 2013; Patel

et al. 2013). The pathway provides the cell with answers to

an increased concentration of osmolytes in the environ-

ment. This concentration can be lethal for the cell as it

changes pressure on the cell wall, water exchange and thus

the cell volume as well as chemical reactions within the

cell. For the cell to survive, a complex system of adaptation

processes is initiated. An immediate answer is the closure

of Fps1 channels, preventing the further outflow of glyc-

erol, the osmolyte being accumulated within the cell. The
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further adaptation is regulated over the HOG pathway

facilitating a transcriptional answer, ultimately leading to

glycerol production and near perfect long-term adaptation

(Muzzey and Ca 2009). For a review of the pathway we

refer to Hohmann (2009).

When facing different stress levels, the cell exhibits very

distinct profiles in Hog1 activation and cellular response.

This can in part be attributed to feedbacks in the system

and the complexity of interacting mechanisms. Several

signal processing techniques have been applied to charac-

terize the response of the HOG pathway (e.g. Mettetal et al.

2008; Hersen et al. 2008). But even though those studies

have common aims towards a better understanding of how

signaling in complex systems works and enables adapta-

tion, the stochastic nature within the signaling itself has not

been focused on. We explored the idea of this stress answer

being part of a fidelity problem to the cell. Ultimately this

would mean that by encoding and transmitting the extra-

cellular signal appropriately, the cell can already distin-

guish a number of input levels for further processing. For

this we focused on the Sln1–Ypd1–Ssk1-phosphorelay, an

extended two-component signaling system that forms the

first module of the HOG pathway (Maeda et al. 1994; Stock

et al. 2000). Observing the cell’s ability to discriminate

profiles already in this first signaling instance will add a

further ‘‘stochastical layer’’ to the study on input-output

relations (Shinar et al. 2007) of these systems.

Analyzing properties of signal transduction in noisy

systems suggests the application of a mathematical

framework in the sense of Shannon’s Information Theory

(Shannon 1948). This famous theory (with its long history

in engineering) was successfully integrated in neuro-biol-

ogy already several years ago, where it has since become a

standard tool to study neuronal information processing

(Borst and Theunissen 1999). Due to the stochastic nature

of transcriptional processes, information theoretical con-

cepts have also been extensively used to study information

flow in gene expression (Tkačik et al. 2009; Walczak et al.

2010; Tkačik et al. 2012), drawing in addition the parallel

to positional information (Tkacik et al. 2008; Dubuis et al.

2013). With all that recent research in mind, it seems

immediately appealing to also study biochemical signaling

processes within the same framework. Examples have been

reviewed in Waltermann and Klipp (2011) and Rhee et al.

(2012). Information theory provides fundamental bound-

aries and restrictions that are put on the reliable transmis-

sion of messages due to noise, namely the ‘‘capacity’’ of

channels. In this study we applied this measure to the

analysis of the phosphorelay and used it to gain deeper

insight into the system.

Using Gillespie’s well-known ‘‘Stochastic Simulation

Algorithm’’ (SSA) (Gillespie 1977) we built a stochastic

model of the phosphorelay to sample a solution of the

chemical master equation for this system. We investigated

the influence of the model parameters to inherent noise and

thus ultimately the limit to which transmission of reliable

messages over the phosphorelay could be possible.

Materials and methods

Model of the Sln1 branch of the HOG-pathway

The cellular response of S. cerevisiae to osmotic stress

from the environment has been and is still widely studied in

Systems Biology (Posas et al. 1996; Hohmann 2002;

Schaber et al. 2012; Baltanás et al. 2013). This is partly due

to the interesting motifs involved (MAPK cascade, cross-

talk to other pathways, feedback mechanisms, etc.), but

also in order to answer more general questions about how

cells perceive their environments. The involved signal

transduction pathway acting on osmolyte concentrations is

the HOG pathway. It senses external osmolytes via two

different mechanisms: the Sho1-branch and the Sln1-

branch. For applying our framework we focused on the

regulating two-component phosphorelay of the Sln1-

branch that controls an integral part of the Hog1 activation.

In the following, we introduce the molecular structure and

function that is used to build a stochastic model of this

regulatory system.

As visualized in Fig. 1, the phosphorelay consists of three

proteins of interest: Sln1, Ypd1 and Ssk1. They form a bio-

chemical signal transduction chain that belongs to the family

of ‘‘two-component regulators’’ that are a common feature in

prokaryotic signaling, but also found in eukaryotes.

Fig. 1 Schematic of the phosphorelay in the Sln1-branch of the HOG

pathway
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Sln1 is a trans-membrane protein that reacts on the

turgor pressure put on the cell wall. In the non-stressed

situation it constantly auto-phosphorylates His-576 under

the consumption of ATP. In our model this rate (k1) plays a

fundamental role as it is considered the encoder of the

(osmotic) input. The phosphate group is transferred to the

response regulator domain Asp-1144 of the protein,1 from

where it can be further relayed to His-64 of the interme-

diate signaling protein Ypd1. This is mediated by the

(reversible) formation of a complex Sln1-P-Ypd1. Because

the phosphate transfer within the complex happens at a fast

rate (Janiak-Spens et al. 2005), this step will not be mod-

eled explicitly.

The intermediate protein Ypd1 is a more abundant

although smaller molecule. It comes in a copy number of

roughly 6,300/cell2 that can enter the nucleus freely.

Compared to the other species of our model (Sln1: *650,

Ssk1: *1,200 molecules) this is a relatively high copy

number.3 This might be due to the fact that the cell needs to

circumvent a bottleneck in information shuttling. Ypd1 is

able to interact with both Ssk1 in the cytosol as well as

nuclear Skn7 (Li et al. 1998; Lu et al. 2003) to transfer the

phosphate to the respective response regulator domain, but

a transfer to Ssk1 is strongly favored as demonstrated in

Janiak-Spens et al. (2005). The phosphoryl group was not

observed to be transported back to Ypd1.

Ssk1 is the protein that is used in our model as an output

in its un-phosphorylated form by catalyzing the phos-

phorylation reactions of the downstream MAPK cascade

leading towards the double phosphorylation and thus acti-

vation of Hog1.

In an unstressed environment, Ssk1 will constantly be

phosphorylated and its activating function thereby inhib-

ited. Upon osmotic shock, Sln1 acts on the variation of

turgor pressure by a change in its conformation (Tao et al.

2002). Its auto-phosphorylation rate will be decreased and

thus successively also the inhibition of Ssk1. Ssk1 becomes

free to catalyze the downstream reactions and activates a

chain of amplification, signaling the presence of stress. The

model uses the probability distribution of this species as the

relevant observable for the system. Its fidelity defines how

detailed the response of the cell will be.

A stochastic model of the phosphorelay system has been

implemented with a version of the Gillespie algorithm

(Gillespie 1977) that allows for a dynamic Monte Carlo

sampling of the probability distributions for the considered

species. For the implementation, we used the system of

reactions that was outlined in Fig. 1:

Sln1�!k1
Sln1-P ð1Þ

Sln1-Pþ Ypd1 �
k2;on

k2;off

Sln1-P-Ypd1 ð2Þ

Sln1-P-Ypd1 �
k2;off

k2;on

Sln1þ Ypd1-P ð3Þ

Ypd1-Pþ Ssk1�!k3
Ypd1þ Ssk1-P ð4Þ

Ssk1-P�!k4
Ssk1 ð5Þ

The value for the association rate of the complex Sln1-P-

Ypd1 was chosen to be k2;on ¼ 5 � 106 M�1 s�1 and the

dissociation constant is kept at Kd ¼ k2;off

k2;on
¼ 300 nM; thus

defining k2;off : Preliminary results showed that the inter-

mediate rate k3 exhibits a minor impact on our analysis and

can (for simplicity) be set to an appropriate value that

ensures signal transmission.

Information theory

To quantify the information transmission within the phos-

phorelay branch of the signaling cascade, we considered the

biochemical relay as a noisy channel in the sense of Infor-

mation Theory as developed by Shannon (1948). This prob-

abilistic mathematical framework provides ‘‘channel

capacity’’ as a measure that can be used to evaluate how well

different input signals are still distinguishable after the signal

has been transduced. We aim to quantify and evaluate the

system’s capabilities of transmitting information by observ-

ing its ability to respond to certain inputs in the presence of

noise. In a technical setting, this is the limit to which messages

can be transmitted reliably. It is important to keep in mind that

with capacity we can set an upper bound on information

transmission. The biological implications however can be

very complex and possibly even include the neglect of

information. Nevertheless it has been shown that biological

systems typically evolved by optimizing efficiencies and

often work in near-optimal regimes.

Here we give a brief introduction to the main concepts

of the framework, embedding them into our biological

setting. For more detailed information we refer to Cover

and Thomas (2012).

As a suitable representation for measuring ‘‘information,

choice and uncertainty’’ of a random variable X, Shannon

deduced the so called (Shannon) entropy H. For this he

defined important properties of our (intuitive) understand-

ing of information and identified H as the only function

satisfying these:

1 This is believed to happen between dimerized Sln1 molecules as

kind of an exchange instead of intra-molecular (Qin et al. 2000).
2 Numbers taken from ‘‘http://www.yeastgenome.org/’’.
3 In our model, this enabled us to choose the shuttling rate k3 in a non

restrictive but computationally more efficient manner.
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HðXÞ ¼ �K
X

x2X

PðxÞ � logb PðxÞ ð6Þ

where Pð�Þ is the associated probability distribution of the

random variable X (see Shannon 1948, Appendix II). The

base b of the logarithm is arbitrary and can be modified by

K for convenience and interpretation. This constant K rep-

resents a choice of unit to the entropy.4 Following the

general convention, we measure entropies in bits, referring

to a base of 2 for the logarithm [K ¼ 1= logbð2Þ]. Intui-

tively 1 bit could be visualized by the toss of a fair coin: the

equal probability of ‘‘heads’’ and ‘‘tails’’ as the outcome of

the toss gives us two equally good choices for predicting

the toss, reflecting the uncertainty about the random vari-

able measured by the entropy. Manipulating the coin to

favor one outcome will lower our uncertainty for the pre-

diction (and thus the choice we are likely to make), but also

the information that could be gathered by tossing the coin

provided we know the probability distribution. Applying

this to a set of possible external state variables for a cell

(such as nutrients, temperature or in our case osmotic

conditions), we get a measure of how uncertain our envi-

ronment is and how informative measuring it will be.

This notion of information can be extended to condi-

tional entropy as follows. Consider two (not necessarily

independent) random variables X and Y. We can measure

our average uncertainty about Y when knowing X by

writing:

HðYjXÞ ¼ �
X

x2X;y2Y

Pðx; yÞ � log2 PðyjxÞ ð7Þ

where PðX; YÞ denotes the joint distribution and PðY jXÞ the

conditional distribution of Y given X. This measures the

entropy of the output, when the input is known. This can be

used to define mutual information, a measure commonly

used to quantify how much information one random vari-

able carries about the other.5

IðX; YÞ ¼ HðXÞ � HðXjYÞ ð8Þ

¼ HðYÞ � HðY jXÞ ð9Þ

For our purposes, another (although equivalent) interpre-

tation of mutual information is more convenient. Using

Eq. (9), we can describe it as ‘‘the amount of information

received minus the uncertainty that still remains due to the

noise in the system’’. This scenario can be directly applied

to the situation that we have in an experimental setup. One

would evaluate a noisy output (e.g. the fluorescence of a

tagged protein) to a certain stimulus (e.g. stress level, input

dose). Once the probability distribution for the (natural)

input has been defined or inferred (experimentally a nearly

impossible task), we can evaluate how much information

our output still contains about the input, despite the

inherent noise. The conditional distribution PðY jXÞ for

such a scenario defines rules for the transmission through

this biochemical channel.

The next natural step is to maximize this mutual infor-

mation. If our (biological) system is given, its fixed

transmitting properties [conveyed by PðYjXÞ] might have

evolved to be optimally adapted to a certain input distri-

bution and perhaps a weighting on how important the

reaction to a certain level is. This amounts to the formal

definition ‘‘channel capacity’’, namely

C ¼ max
PðXÞ

IðX; YÞ:

It is important to note that this could also be done by

optimizing the transmission probabilities themselves, but in

our case this will be a fixed quantity for the ‘‘channel’’ as

visualized in Fig. 2.

In a biological setting this can be interpreted as the pathway

repeatedly sensing environmental conditions and stresses that

could for example be provided in experimental setups. Mea-

suring this channel capacity then means answering the ques-

tion ‘‘How much can the receiver of a noise-distorted message

tell about what was originally sent by the encoder, given this

transmitting channel’’. Encoder for us is the set of Sln1 pro-

teins located in the cell membrane. The signal of extracellular

salt concentration is encoded to a level of phosphorylation via

Fig. 2 Schematic diagram of the biochemical channel. Different

inputs (e.g. environmental cues) are encoded and transmitted through

the channel. Due to noise added during the process of transmission,

we can only observe probability distributions as the received signal

4 The related Boltzmann entropy as used in statistical physics for

example sets K ¼ kB (the Boltzmann constant) and employs the

natural logarithm loge :
5 Note that this is symmetric by definition.
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modulation of their kinase activity. The subsequent dephos-

phorylated Ssk1 acts as the decoder receiving the transmitted

signal. In its dephosphorylated form it can catalyze the phos-

phorylation of the downstream MAPkinase pathway leading to

the double phosphorylation (and thus activation) of Hog1.

For finite inputs and the given transmission probabilities,

we can use a numeric optimization algorithm developed

concurrently by Arimoto (1972) and Blahut (1972) to calcu-

late the channel capacity (also see Cover and Thomas 2012).

Again this quantity is given in bits, as in this way transmitting

1 bit corresponds to measuring an on/off response represent-

ing two states of the environment (switch-like behavior).

Capacities above 1 bit enable a channel to actually distinguish

more than just ‘‘on’’ and ‘‘off’’ and react accordingly (Fig. 3).

Remark Although our usage of the framework focused on

other features, it is interesting to note that a major advantage

of Information Theory is that in order to characterize and

evaluate a (biological) system, one doesn’t need to consider

all the details within the transmitting channel. In experiments

where the input can be well-defined in addition to a proper

output-statistic of the ‘‘channel’’, one can draw conclusions on

function, structure and boundaries by using this theory (see

e.g. Cheong et al. 2011; Rhee et al. 2012).

Results

We implemented the proposed phosphorelay model with

the Gillespie ‘‘SSA’’ (Gillespie 1977) in order to simulate a

sufficient number of trajectories. Figure 4 illustrates one

typical simulation run. As expected, we observed charac-

teristic dynamics for each species depending on the chosen

parameter set. By using the stochastic framework, we

introduced noise into the system as well, enabling us to

examine its properties of signal fidelity.6 To observe the

output we sampled its probability distributions as a func-

tion of time depending on a defined input,7 simulated with

an adequate number of runs. We varied the two crucial

parameters for input (k1) and output (k4) within the system

to observe the dependence of information transmission on

them.

For analyzing the phosphorelay, first a functional system

needs to be ensured by simulating its behavior in the non-

stressed environment and thus its steady state. Subse-

quently the system’s capacities can be evaluated by our

chosen framework. The results of these two steps are then

combined.

Fig. 4 Stochastic simulation run of the model (the higher abundant

protein Ypd1 is omitted). Here we observe an unstressed steady state

after about 70 s. Starting from this state the systems’ signal

propagation properties can be examined by applying stress. Here

we focus on the analysis of the noise emerging in the system.

Matching the timing in transduction to biological behavior could

provide further insight

Fig. 3 Schematic of how channel capacity is measured over time.

Various stimuli s (colors) are simulated and the conditional response

r is measured over time. Observing the dynamical behavior of the

output-distribution, we can calculate the respective channel capacity

numerically with the Arimoto–Blahut algorithm. (Color figure online)

6 ‘‘Fidelity’’ in this sense refers to a measure on how accurate the

signaling can reproduce the input signal.

7 This input being a percentage of the auto-phosphorylation rate k1 of

Sln1, depending on the stress level.
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Phosphorylation of Ssk1 in unstressed steady state

Aiming at an operational signal transduction in the cell we

first require that if our environment exhibits no stress, also

no signal (or only a basal level) is transmitted. Thus we

demand that a high percentage ([80 %, or arguably even a

higher threshold) of our signaling output Ssk1 remains

phosphorylated in unstressed environmental conditions.

This ensures that the relay is not constantly activating the

downstream signaling MAP kinase and thus doesn’t keep

the cell stressed without an immediate need for it. This is

crucial to be taken into account since a permanent activa-

tion of the pathway can be lethal to the cell (Maeda et al.

1994). The threshold we are setting selects for feasible

rate-combinations between phosphorylating Sln1 (k1) and

dephosphorylating Ssk1 (k4). Figure 5 illustrates two pos-

sible scenarios for the simulations, one activating the

downstream signal constitutively and the other exhibiting a

functional non-stressed behavior.

It is imperative that if k4 is set to a low enough value,

phosphorylation will always exceed the dephosphorylation

and provide the inhibited signaling in steady state as

expected. So there is no lower boundary on k4 that violates

the functionality, only one on information transmission as

explained in ‘‘Computation of channel capacities’’ section.

For the moment it will be the upper limit on the dephos-

phorylation rate that is of interest to us. After simulating

the model for a sufficiently long time to reach the steady

state, the feasibility of the parameters can be evaluated

using the said threshold.

As can be seen in Fig. 6, we observed that the steady

state behavior already sets a very strict upper boundary on

the rate combinations of k1 and k4. Within the simulated

range, k4 could only be chosen at a magnitude lower than

the input rate. In addition to that it only took a marginal

difference in k4 to shift the equilibrium towards a non-

functional system. The finding of this severe restriction

becomes clearer if we expand the range of the parameter.

Figure 7 illustrates this view in this broader perspective.

Analyzing the parameter space with regard to the steady

state behavior in non-stressed environments forms the first

part of restricting the possible parameterization aiming

towards a functional model. Alternatively, this analysis

could be done by observing the mean value of the output,

Fig. 5 Trajectories of steady state simulations for the output (Ssk1,

dark blue) with k1 ¼ 2 s�1 and two different values of k4. a A

combination that activates the downstream pathway constitutively

due to a high level of dephosphorylated Ssk1 and is hence not fit for

transmitting the signal. b A ‘‘feasible parameter combination’’,

exhibiting only a basal level of dephosphorylated Ssk1 in steady state.

This allows for a functional pathway and can be further investigated.

a k4 ¼ 0:5 s�1. b k4 ¼ 0:25 s�1. (Color figure online)

Fig. 6 Detailed view of the percentage of phosphorylated Ssk1 in

steady state simulations depending on input and output rates (k1 and

k4). We can restrict the feasible parameter sets to the ones exhibiting

only a basal level of signaling, corresponding to a basal level of

phosphorylated Ssk1 in steady state
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corresponding to simulations of differential equations for

this system. This would enable an analytical view on the

problem, but it also would deny the possibility to exploit

the noise that we observe. We used these steady state

simulations as part of the subsequent analysis of channel

capacity.

Computation of channel capacities

As described in ‘‘Information theory’’ section, we can

measure the channel capacity of the phosphorelay using the

proposed setup (see Fig. 2). For this, we simulated the

system with increasing stress levels. In the model, this

means that depending on the level of stress, the initial

phosphorylation rate k1 is linearly downscaled until a basal

level of activation is reached. This influence of the turgor

pressure on the ensemble of Sln1 molecules is an important

assumption that will be discussed later. We sampled the

probability distribution of the output species Ssk1 over

time depending on the parameter sets used for simulation.

By doing this, we simulated the transmission probabilities

PðY jXÞ that define the channel. We then could have com-

puted the conditional entropies as in Eq. 7 if we considered

a certain distribution PðXÞ for the input.

This leaves us with the optimization problem of finding

the input distribution that achieves the capacity, i.e. that fits

the channel. We do this by employing the Arimoto–Blahut

algorithm that finds the maximum capacity as well as the

achieving input distribution numerically. Interpreting these

optimal input distributions is interesting although not part

of the analysis here. Generally it will look sharper than it

could be the case in a natural setting, which is also due to

the binning process that we get by choosing a number of

inputs (for numerical reasons) instead of a continuous

range of concentrations. The number of inputs that we

subjected the system to is determining an upper boundary

to the capacity as can be seen by Eq. 8. Although this is the

case, capacity will usually saturate at a much lower level

because of the noise that the system exhibits. This has been

visualized in Fig. 8.

The maximum value for information transmission were

found at a low activating rate k1: Increasing this parameter

introduces a higher variability and thus more noise in the

system as can be seen in Fig. 8. Although the absolute

amount of capacity has to be debated (see ‘‘Discussion’’

section), a capacity of 3 bit means that the cell could

potentially identify a number of 8 distinct signals. Looking

at the landscape of capacities, we observe in the system

exhibit a sharp transition in lower regimes of k4: This

Fig. 7 Mapping illustrating restrictions on the output rate k4. In non-

stressed steady state, only the values exhibiting more than 80 % of

phosphorylated Ssk1 produce a feasible behavior of the system. This

provides only a narrow range for choosing k4 as can be seen from the

figure

Fig. 8 Capacity as a function of the input rate k1 and the output rate

k4. a We observe a steep gradient for the capacity in the regime of a

low dephosphorylation rate k4, implying a strong sensitivity in this

parameter. b The combination with the results of ‘‘Phosphorylation of

Ssk1 in unstressed steady state’’ section (see contoured area), the

analysis restricts our parameter space strongly
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suggests a sensitivity of the system that the cell will have to

either overcome or use to its advantage.

By connecting the analyses for steady state phosphory-

lation and the channel capacity, we observe a narrow

margin (Fig. 8) that is viable for simulating the phospho-

relay model. This will be discussed in the following.

Discussion

We performed an analysis of the phosphorelay module

within the HOG pathway by interpreting the system in an

information theoretical way as a channel that transduces

environmental cues to inner-cellular decision centers. Our

aim was to identify how, given a stochastic biochemical

nature, the phosphorelay system translates an input

(decreasing phosphorylation of Sln1) into its output

(dephosphorylated Ssk1). We focused on the question of

fidelity that this system can achieve despite inherent noise.

Enabling fidelity

We observe that the fidelity and thus diverse response

patterns of the HOG pathway could potentially already

have its origin in the first step of osmo-sensing studied by

us. The capacities that could be achieved with the phos-

phorelay, provided a suitable input function, exceed an on/

off response that would correspond to a capacity of 1 bit.

We consider this with several implications.

With our analysis we gain a method of estimation on

how to restrict the parameter space of the model. Here we

regard 1 bit as a lower bound on information capacity. If

this would not be achievable by the system under the

configuration in question, a functional adaptation of the

cell to the osmo-stress would not be possible. Thus, we can

draw the conclusion of disregarding parameter sets with

capacity below 1. The capacity that exceeds this boundary

nevertheless is not necessarily used by the cell. As dis-

cussed below, the mechanism of the input plays an

important role in this regard. But we also need to consider

the distribution of the external variables as well. Bowsher

and Swain (2012) used a concept related to that of mutual

information, called ‘‘informational fraction’’. Similar to our

output of the Arimoto–Blahut algorithm, they draw con-

clusions on how the pathway could potentially have

evolved to adapt the cell to a certain scenario of environ-

mental state distributions.

Capturing efficiency

Furthermore, we observed a pattern of information capacity

that prefers low reaction rates over faster ones. Although

slowly, capacity decreases towards a higher auto-

phosphorylation rate k1: This can be explained by the

increase of variability (and thus a lower signal to noise

ratio) at higher rates. This observation underlines the

intuitive notion that cells also try to optimize their energy

consumption. Since the first reaction of Sln1 auto-phos-

phorylation is constantly consuming ATP in order to keep

Ssk1 phosphorylated downstream, lower rates could be

preferred for efficiency. As the results of our study have

shown, a distinct signal transduction in a reasonable time

window is still manageable by the cell. Further study of the

rates could validate this finding, as it would also be very

interesting to observe such an optimization in an experi-

mental setup. In our study, we observed a steep behavior in

the slope of Capacity of the channel (see Fig. 8). This

means that within that small region, we change very

quickly from no information transmission to a good signal

transduction for the system. This sensitivity allowed us to

put very sharp boundaries on the parameter space, thereby

explaining the regimes of functionality in our model

without the need of fitting it to data.

Choosing the input

When we performed our simulations, we assumed a linear

input that turgor pressure has on the phosphorylation of

Sln1, namely the linear decrease in k1: Although there is

still ongoing research on the topic (Tanigawa et al. 2012),

the mechanism itself has not been characterized compre-

hensively. Neither has the stochastic influence of the whole

ensemble of Sln1 sensing the external signal been studied.

So the question remains: is the linearization of the input

function a valid assumption? This question will have to be

answered experimentally. Our analysis can show that many

different choices for this input can result in a similar

behavior. In the extreme case, the input to Sln1 would be

an ‘‘on/off’’ for the phosphorylation rate. As can be seen

from Eq. 8, this would limit the absolute value of capaci-

ties with an upper bound,8 but neither the observations on

functionality nor a (even if minimal) information trans-

mission will be impaired.

Whether these findings will hold in a living cell remains

to be seen in an experimental setup. But the beauty of the

applied methods is that they are not restricted to analyzing

a mathematically modeled system, but can instead also be

used to evaluate mechanisms and motifs solely based on

observing the noisy input–output-relation as an information

transmission problem. Provided it is possible to sufficiently

capture the stochastical nature experimentally, we believe

that this is a powerful tool to find functions and charac-

terize biological systems and ultimately connect theoretical

and experimental work.

8 In the extreme case with 1 bit.
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Muzzey D, Ca Gómez-Uribe, Mettetal JT, van Oudenaarden A

(2009) A systems-level analysis of perfect adaptation in yeast

osmoregulation. Cell 138(1):160–71. doi:10.1016/j.cell.2009.

04.047

Patel AK, Bhartiya S, Venkatesh KV (2013) Analysis of osmoadap-

tation system in budding yeast suggests that regulated degrada-

tion of glycerol synthesis enzyme is key to near-perfect

adaptation. Syst Synth Biol. doi:10.1007/s11693-013-9126-2

Patterson JC, Klimenko ES, Thorner J (2010) Single-cell analysis
reveals that insulation maintains signaling specificity between

two yeast MAPK pathways with common components. Sci

Signal 3(144):ra75. doi:10.1126/scisignal.2001275

Petelenz-Kurdziel E, Kuehn C, Nordlander B, Klein D, Hong KK,

Jacobson T, Dahl P, Schaber J, Nielsen J, Hohmann S, Klipp E

(2013) Quantitative analysis of glycerol accumulation, glycoly-

sis and growth under hyper osmotic stress. PLoS Comput Biol

9(6):e1003,084. doi:10.1371/journal.pcbi.1003084

Posas F, Wurgler-Murphy SM, Maeda T, Thai TC, Saito H (1996)

Yeast HOG1 MAP kinase cascade is regulated by a multistep

phosphorelay mechanism in the SLN1–YPD1–SSK1 ‘‘two-

component’’ osmosensor. Cell 86(6):865–875

Qin L, Dutta R, Kurokawa H, Ikura M, Inouye M (2000) A

monomeric histidine kinase derived from EnvZ, an Escherichia

coli osmosensor. Mol Microbiol 36(1):24–32

Rhee A, Cheong R, Levchenko A (2012) The application of

information theory to biochemical signaling systems. Phys Biol

9(4):045011. doi:10.1088/1478-3975/9/4/045011

Schaber J, Baltanas R, Bush A, Klipp E, Colman-Lerner A (2012)

Modelling reveals novel roles of two parallel signalling

pathways and homeostatic feedbacks in yeast. Mol Syst Biol

8:622. doi:10.1038/msb.2012.53

Shahrezaei V, Swain PS (2008) The stochastic nature of biochemical

networks. Curr Opin Biotechnol 19(4):369–374. doi:10.1016/j.

copbio.2008.06.011

Shannon CE (1948) A mathematical theory of communication. Bell

Syst Tech J 27(3):379–423

Shinar G, Milo R, Martı́nez MR, Alon U (2007), Input output

robustness in simple bacterial signaling systems. Proc Natl Acad

Sci USA 104(50):19931–19935. doi:10.1073/pnas.0706792104

Stock AM, Robinson VL, Goudreau PN (2000) Two-component

signal transduction. Annu Rev Biochem 69(1):183–215

Tanigawa M, Kihara A, Terashima M, Takahara T, Maeda T (2012)

Sphingolipids regulate the yeast high-osmolarity glycerol

response pathway. Mol Cell Biol 32(14):2861–2870. doi:10.

1128/MCB.06111-11

Tao W, Malone CL, Ault AD, Deschenes RJ, Fassler JS (2002) A

cytoplasmic coiled-coil domain is required for histidine kinase

activity of the yeast osmosensor, SLN1. Mol Microbiol

43(2):459–473

Tkacik G, Callan CG, Bialek W (2008) Information flow and

optimization in transcriptional regulation. Proc Natl Acad Sci

USA 105(34):12,265–12,270
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