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Abstract We developed a quantum-like model describ-

ing the gene regulation of glucose/lactose metabolism in a

bacterium, Escherichia coli. Our quantum-like model can

be considered as a kind of the operational formalism for

microbiology and genetics. Instead of trying to describe

processes in a cell in the very detail, we propose a formal

operator description. Such a description may be very useful

in situation in which the detailed description of processes is

impossible or extremely complicated. We analyze statisti-

cal data obtained from experiments, and we compute the

degree of E. coli’s preference within adaptive dynamics. It

is known that there are several types of E. coli character-

ized by the metabolic system. We demonstrate that the

same type of E. coli can be described by the well deter-

mined operators; we find invariant operator quantities

characterizing each type. Such invariant quantities can be

calculated from the obtained statistical data.

Keywords Quantum-like operational approach �
Glucose/lactose metabolism in Escherichia coli �

Adaptive systems � Quantum channel � Lifting �
Quantum operators for glucose/lactose metabolism

Introduction

Recently the mathematical formalism of quantum mechanics

and the ideology of operational description of observed data

(elaborated by N. Bohr and W. Heisenberg) were success-

fully applied outside of physics; in psychology, cognitive

science, economics (e.g. Khrennikov 2004; Busemeyer et al.

2006; Cheon and Takahashi 2010; Asano et al. 2010, 2011;

Basieva et al. 2010), see the monograph (Khrennikov 2010)

for the extended list of references. In 2010 the quantum-like

behavior and information processing were found in micro-

biology and genetics (Basieva et al. 2010). We found

experimental evidences, see Inada et al. (1996), demon-

strating that the genome processes information nonclassi-

cally exhibiting behavior similar to the quantum

interference. Hence, the powerful methods developed for

quantum physics and quantum information, see e.g. Khren-

nikov (2010), can be applied even to the description of the

mechanism of the genetic regulation in cells.

This paper contains ‘‘Appendix’’ with simple introduc-

tion to the quantum formalism and quantum information.

We want to make this paper readable for mathematically

oriented researchers in microbiology and genetics.

Our quantum-like model can be considered as a kind of

the operational formalism for microbiology and genetics.

Instead of trying to describe processes in a cell in the very

detail (e.g., Wanke and Kilian 2009), we propose a formal

operator description. Such a description may be useful

in situation in which the detailed description of processes is

impossible or extremely complicated. The usage of the

operational formalism provides a possibility to obtain the
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main probabilistic predictions without constructing a

detailed model.

Escherichia coli (E. coli) is a bacterium which has been

studied well in biology. One of interesting phenomena in

E. coli’s growth is the gene regulation of glucose/lactose

metabolism. The energy for E. coli’s activity is produced

by metabolizing sugar: glucose, lactose, etc. When E. coli

is incubated in a test tube containing both glucose and

lactose, E. coli will digest glucose first and lactose second.

Many microbiological studies demonstrated that E. coli has

a preference for carbon resources, that is, E. coli likes

glucose better than lactose. Such preference is caused by

the difference of the metabolism efficiency (or cost)

between lactose and glucose (Inada et al. 1996) (since the

operon theory was proposed in 1956–1961 (Jacob and

Monod 1961), the regulatory system of gene expression of

lactose operon has been extensively studied and the

molecular mechanism of it has been mostly elucidated

including the catabolite repression).

Recently, it was pointed out (Basieva et al. 2010) that

the complex microscopic biological dynamics of E. coli’s

metabolism violates one of basic law of classical proba-

bility theory—the law of total probability (playing a crucial

role in Bayesian analysis). It was argued that such complex

behavior can be described by models based on non-Kol-

mogorovian probability theory inspired by the quantum

phenomena (Khrennikov 2010) (such models are called

quantum-like models). In the present paper we shall show

that starting with experimental statistical data it is possible

to reconstruct basic operators of the quantum-like opera-

tional formalism for glucose/lactose regulation in genome.

An important element of our model is the usage of

adaptive dynamics (Ohya 2008; Asano et al. 2007)—

dynamics which depend nontrivially on biochemical context

(Khrennikov 2010). The quantum formalism provides a

possibility of the mathematical description of adaptive

(contextual) dynamics. This formalism was very well

developed in quantum physics and especially recently in

quantum information theory (Ingarden et al. 1997; Khren-

nikov 2010; Ohya et al. 2011). Therefore, we describe the

adaptive dynamics of the gene regulation in cells by theory of

operators in complex Hilbert spaces. The notions from

quantum information are adapted to the microbiological

context. The most important for us are the notions of the

information channel and lifting. The second one belongs to

the advanced level of quantum information theory and its

successful usage in the description of the regulatory gene

activity is an important step in the invention of the methods

of quantum information theory to microbiology.

We analyze statistical data obtained from experiments

(Inada et al. 1996), and we compute the degree of E. coli’s

preference within adaptive dynamics. It is known that there

are several types of E. coli characterized by the

metabolization system. We demonstrate that the same type

of E. coli can be described by the well determined opera-

tors; we find invariant operator quantities characterizing

each type. Such invariant quantities can be calculated from

the obtained statistical data. We do not need difficult

simulation of complex biochemical systems. We use only

simple calculation based on adaptive dynamics and its

operational representation. Our quantum-like model can

explain E. coli’s adaptive behavior.

Violation of total probability law

In this section, we show that statistical data obtained from

experiments on the gene regulation of E. coli metabolism

violate the total probability law, which is one of basic laws

in classical probability theory; see Basieva et al. (2010) for

detail. We modify the probabilistic representation (Basieva

et al. 2010) of statistical data from Inada et al. (1996) to

operate solely with conditional probabilities (as it is done

in the standard applications of the formula of total proba-

bility in, e.g., Bayesian analysis).

In order to digest lactose, E. coli must produce the

enzyme of b-galactosidase. The amount of its production is

regulated by a series of genes, called lactose operon. The

activity of E. coli’s lactose operon is estimated by the value

of Miller’s Units (MU), which is measured in the experi-

ment of b-galactosidase assay (Inada et al. 1996).

Let us consider the measurement of MU in the different

situations: E. coli grows in the test tube containing (1) only

lactose; (2) only glucose; (3) both glucose and lactose.

Table 1 shows the measured value of MU for the cases (1),

(2) and (3). We use the wild type of E. coli (W3110)

in data-(I) and -(II). The lactose/glucose concentration in

data-(I) is different from that in data-(II). The MU values in

the case of (3) are 43 and 64, respectively. It is clear from

this result that the activities of b-galactosidase in case of

(3) are as week as E. coli has strong preference for glucose.

Such property of sugar metabolism in E. coli has been

explained in biology as follows. E. coli cell has various

Table 1 Results of b-galactosidase assay in different situations:

E. coli grows in the test tube containing (1) only lactose; (2) only

glucose; (3) both glucose and lactose

data-I data-II

Type W3110 W3110

Lactose conc. (%) 0.4 1.0

Glucose conc. (%) 0.1 1.0

(1) Activity of b-galactose (MU) 2,920 2,132

(2) Activity of b-galactose (MU) 33 56

(3) Activity of b-galactose (MU) 43 64

Max. value of Miller units 3,000 2,200
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transport systems including lactose permease (LacY) and

glucose transporter (PtsG). They recognize their substrates

(glucose or lactose). If there is either sugar in the medium,

the sugar enters into cells with its concentration dependent

manner. Therefore lactose outside the cell can induce lac-

tose operon expression in concentration dependent manner,

if there is no glucose outside: Gene expression apparatus

recognizes the lactose concentration inside as high enough

to induce mRNA synthesis.

On the other hand, if there is glucose outside at the same

time with lactose, the cell can recognize glucose and lactose

concentrations outside but, glucose transport process itself

inhibits the lactose permease activity so the lactose con-

centration inside decreases. In this situation, the gene

expression apparatus can not recognize the lactose concen-

tration inside as high enough to induce mRNA synthesis.

This process can be quantitatively discussed with met-

abolic networks. However, the metabolic networks can be

very large, so that, the construction of a mathematical

model of the network and its analysis are a daunting task;

most of the kinetic parameters are unavailable. Instead of

such detailed model, we here explain an approach of

coarse-grained model which include the process of the

gene expression in the cell.

We focus on the behavior of one cell. There are many

molecules of lactose or glucose around the cell. These

molecules sometimes arrive at the surface of the cell, and

they enter into the cell through the gate of a transport

system. We call this event ‘‘E. coli’s detection’’. In this

experiment, we use two kinds of sugars, so that we con-

sider an event system {L, G}: L means the event that

E. coli detects a lactose molecule around its cell; G means

the E. coli detects a glucose molecule around its cell. We

use only two kinds of sugars in this experiment, so that, we

assume that P(L [ G) is equal to one.

Let P(L) and P(G) be probabilities of event L and G,

respectively. It is clear that, in the case of (1) where there is

only lactose in medium, these probabilities are given by

P(L) = 1 and P(G) = 0. In the case of (2), P(L) = 0 and

P(G) = 1 are given. In the case of (3), these probabilities

are proportional to the concentrations of lactose/glucose.

The probabilities for data-I are

PðLÞ ¼ 0:4

0:4þ 0:1
¼ 0:8 and PðGÞ ¼ 0:1

0:4þ 0:1
¼ 0:2:

The probabilities for data-II are

PðLÞ ¼ 1:0

1:0þ 1:0
¼ 0:5 and PðGÞ ¼ 1:0

1:0þ 1:0
¼ 0:5:

Let us consider another event system {?, -}: ? means the

event that E. coli activates its lactose operon, that is, the event

that b-galactosidase is produced through the transcription of

mRNA from a gene in lactose operon; - means the event that

E. coli does not activates its lactose operon.

In the case of (1), the only event L occurs since there are

only lactose in the medium. Therefore, we can give the

conditional probability P(?|L) with MU values in (1), for

example, we can give the probability P(?|L) for data-I as

PðþjLÞ ¼ 2920

3000
� 0:97

and that for data-II as

PðþjLÞ ¼ 2132

2200
� 0:97:

Similarly, we can give the probability P(?|G) for each

data with MU value in (2); P(?|G) for data-I is

PðþjLÞ ¼ 33

3000
� 0:01

and P(? |G) for data-II is

PðþjLÞ ¼ 64

2200
� 0:03:

Here, let us discuss the relation among the experiments

of (1), (2) and (3). If we assume that the experiment (3) is a

simple sum of (1) and (2), then the value of

MU(1) 9 P(L) ? MU(2) 9 P(G) should be equal to MU(3)

where MU(n) denotes MU values in the case of experiment

(n). However we can easily see that such relation does not

hold for each data. We remark that the experiment (3) is

not the simple sum of (1) and (2).

In classical probability theory, the following well-

known formula of probabilities, called ‘‘total probability

law’’, should hold, Khrennikov (1999).

PðþjL [ GÞ ¼ PðþjLÞPðLÞ þ PðþjGÞPðGÞ ð1Þ

Here P(?|L [ G) denotes the probability of the event ? if

either L or G occurs in the case of (3). However, it is important

to note that the probabilities calculated from obtained data do

not satisfy the above formula of total probability law; we can

calculate the value given by right-hand side of Eq. (1);

PðþjLÞPðLÞ þ PðþjGÞPðGÞ ¼ 2920

3000
� 0:8þ 33

3000
� 0:2

� 0:781

for data-(I) and

PðþjLÞPðLÞ þ PðþjGÞPðGÞ ¼ 2132

2200
� 0:5þ 64

2200
� 0:5

� 0:499

for data-(II).

Also we can calculate the value given by left-hand

side of Eq. (1) in the case of (3). So that, we can give

P(?|L [ G) for data-(I) as
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PðþjL [ GÞ ¼ 43

3000
� 0:01

and that for data-(II) as

PðþjL [ GÞ ¼ 64

2200
� 0:03:

These calculated probabilities are shown in Table 2.

The value of left-hand side of Eq. (1) is much smaller

than that of right-hand side of Eq. (1) for both data, that is,

total probability law of the Eq. (1) is violated.

This violation of total probability law is well over the

experimental errors. We can give the real values of MU(1),

MU(2) and MU(3) with an error rate d as MU(1)(1 ± d),

MU(2)(1 ± d) and MU(3)(1 ± d), respectively. If we

assume that the total probability law is hold, then the fol-

lowing equation should be hold.

MUð3Þð1� dÞ ¼ MUð1Þð1� dÞ � PðLÞ þMUð2Þð1� dÞ
� PðGÞ

From this equation, we obtain the error rate d & 0.959 for

data-(I), and error rate d & 0.889 for data-(II). In general, we

may have 20 % or sometimes 30 % standard deviations of the

real value. However this calculation shows that over 85 %

error rate is needed to satisfy the total probability law.

Here let us consider the opposite situation that E. coli

has ‘‘no preference for any sugar’’. Although such egali-

tarian E. coli is ideal and unrealistic, he must never dis-

tinguish lactose from glucose. Therefore this ideal and

unrealistic E. coli must probabilistically produce b-galac-

tosidase in proportion to the concentration of lactose. In

this case, the experiment (3) is just simple sum of experi-

ment (1) and (2), and total probability law is satisfied. We

remark that the strength of E. coli’s preference is expressed

as the difference between left-hand side and right-hand side

in total probability law.

New mathematical law computing the probability

in adaptive dynamics for glucose effect of E. coli

In this section, we briefly explain how to compute these

probabilities with adaptive dynamics and lifting theory, see

Ingarden et al. (1997), Ohya et al. (2011), Asano et al.

(2007) for the details of lifting theory).

First, let us introduce the initial state q0 ¼ jx0ihx0j, the

density operator in Hilbert space H ¼ C2 (the qubit space).

The state vector x0 is written as

x0j i ¼
1
ffiffiffi

2
p e1j i þ e2j ið Þ ¼ 1

ffiffiffi

2
p 1

0

� �

þ 0

1

� �� �

¼ 1
ffiffiffi

2
p 1

1

� �

The basis {e1 = (0, 1)T, e2 = (1, 0)T} describes the

detection of lactose or glucose by E. coli, that is, the events

L and G. The initial state q0 is the state of E. coli before the

detection of the molecules. When the E. coli recognizes these

molecules, the following state change occurs;

q0 ! qD �
Dq0D�

tr Dj j2q0

� � ¼ aj j2 ab�

a�b bj j2
� �

;

where D is an operator given by a diagonal matrix

D ¼ a 0

0 b

� �

with |a|2 ? |b|2 = 1. The operator D represents E. coli’s

adaptive effect for surroundings (concentration of lactose or

glucose), and it is called detection operator. Note that |a|2 and

|b|2 are nothing else than the probabilities for the events L and G,

that is, P(L) and P(G). The state rD : DD* means the

distribution of P(L) and P(G). In this sense, the state rD is

derived from the solution concentrations of lactose and glucose.

The state determining the activation of the operon in E. coli

depends on the detection state qD. In our adaptive dynamical

model such state is produced by the following state-change

qD ! qop �
QqDQ�

tr Qj j2qD

� � ¼ 1

aaþ bbj j2þ caþ dbj j2

� aaþ bbj j2 aaþ bbð Þ caþ dbð Þ�

aaþ bbð Þ� caþ dbð Þ aaþ bbj j2

 !

;

where Q is an operator given with complex numbers a, b, c

and d as

Q ¼ a b
c d

� �

:

This operator Q represents the state-change of lactose

operon and we call it activation operator. The correlation

between the activity of lactose operon and concentrations

of lactose/glucose is described as the lifting

E�D;QðqÞ ¼ K�QK�Dq� K�Dq ¼ qop � qD;

with a map (channel) KAq ¼ AqA�=tr Aj j2q: One can define

the joint probabilities P(? \ L) and P(? \ G) as

Table 2 Probabilities calculated from the obtained data; L means the

event that E. coli detects a lactose molecule around its cell; G means

the E. coli detects a glucose molecule around its cell; ? means the

event that E. coli activates his lactose operon, and - means not

data-I data-II

P(L) 0.8 0.5

P(?|L) 0.97 0.97

P(?|G) 0.01 0.03

P(?|L [ G) 0.01 0.03

4 M. Asano et al.
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PDðþ \ LÞ � trðE1 � E1ÞE�D;Qðq0Þ
and PDð	 \ LÞ � trðE2 � E1ÞE�D;Qðq0Þ;

PDðþ \ GÞ � trðE1 � E2ÞE�D;Qðq0Þ
and PDð	 \ GÞ � trðE2 � E2ÞE�D;Qðq0Þ;

where E1 and E2 are projection operator given by

E1 ¼ e1j i e1h j ¼
1 0

0 0

� �

; E2 ¼ e2j i e2h j ¼
0 0

0 1

� �

:

Also one can define conditional probabilities as

PDðþjLÞ � trðE1 � IÞE�D;QðE1Þ ¼
aj j2

aj j2þ bj j2
; ð2Þ

PDðþjGÞ � trðE1 � IÞE�D;QðE2Þ ¼
bj j2

aj j2þ bj j2
; ð3Þ

PDð	jLÞ � trðE2 � IÞE�D;QðE1Þ ¼
cj j2

cj j2þ dj j2
; ð4Þ

PDð	jGÞ � trðE2 � IÞE�D;QðE2Þ ¼
dj j2

cj j2þ dj j2
ð5Þ

and

PDðþjL [ GÞ � trðE1 � IÞE�D;Qðq0Þ

¼ aaþ bbj j2

aaþ bbj j2þ caþ dbj j2
; ð6Þ

PDð	jL [ GÞ � trðE2 � IÞE�D;Qðq0Þ

¼ caþ dbj j2

aaþ bbj j2þ caþ dbj j2
: ð7Þ

The above definition of the conditional probability is

different from classical one. We remark that the following

property;

PDð�jLÞ 6¼
PDð� \ LÞ

PðLÞ and PDð�jLÞ 6¼
PDð� \ GÞ

PðGÞ :

Invariant operator quantities in E. coli’s preference

obtained from a statistical data

In this section, we show how to find invariant operator

quantities in E. coli’s preference.

We give the activation operator Q by the following

decomposed form:

Q ¼ AF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PE1
ðþjLÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PE2
ðþjGÞ

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PE1
ð	jLÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PE2
ð	jGÞ

p

� �

kL 0

0 eihkG

� �

:

with real numbers kL, kG and h. Note that the above Q

satisfy Eqs. (2)–(5) for any kL, kG and h. From the Eqs. (6)

and (7), we can express the conditional probability

PD(? | L [ G) as

PDðþjL [ GÞ

¼
PE1
ðþjLÞPðLÞ

ffiffiffiffi

kL

kG

q

þ PE2
ðþjGÞPðGÞ

ffiffiffiffi

kG

kL

q

þ 2d cos h

PðLÞ
ffiffiffiffi

kL

kG

q

þ PðGÞ
ffiffiffiffi

kG

kL

q

þ 2~d cos h
ð8Þ

with

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PE1
ðþjLÞPE2

ðþjGÞPðLÞPðGÞ
p

;

~d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PðLÞPðGÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PE1
ðþjLÞPE2

ðþjGÞ
p

h

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PE1
ð	jLÞPE2

ð	jGÞ
p


:

If kL = kG and h = p/2, then the total probability law

holds;

PDðþjL [ GÞ ¼ PE1
ðþjLÞPðLÞ þ PE2

ðþjGÞPðGÞ:

However, for general kL, kG and h, the total probability law

is violated;

PDðþjL [ GÞ 6¼ PE1
ðþjLÞPðLÞ þ PE2

ðþjGÞPðGÞ:

Let us remind that the violation of total probability law

means E. coli’s preference. Therefore we can say the val-

ues of kL/kG and h describe E. coli’s preference, which is

given as an invariant quantity for the strain of W3110. It is

natural that we assume that each strain of E. coli has own

invariant quantity which describes E. coli’s character in

metabolization.

From data-I and -II of Table 2, we can determine the

operators A(I) and A(II), and we can easily confirm that A(I)

is approximately same as A(II). The operator of E. coli

W3110 is given by

A ¼ AðIÞ þ AðIIÞ

2
¼ 0:99 0:13

0:17 0:99

� �

:

Further we can obtain the values of kL/kG and h by solving

two equations which are given by assigning the

probabilities for data-(I) and data(II) to the Eq. (8);

ffiffiffiffiffi

kL

kG

r

� 0:066;

cos h � 	0:842

With A;
ffiffiffiffiffiffiffiffiffiffiffiffi

kL=kG

p

; cos h
n o

which are shown the above, we

can compute the probability PD(?|L [ G) for any D. Fig-

ure 1 shows the value of PD(?|L [ G) with respect to P(L).

As seen in Fig. 1, lactose operon is active only when

P(L) is very close to one. We can quantitatively estimate

E. coli’s glucose preference for any concentration of

lactose/glucose.
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Conclusion

We found the decomposed form of the activation operator

and the new invariant operator quantities A and B for the

type W3110 of E. coli. We determine these operators from

experimental data with the aid of a simple calculation

based on the concept of adaptive dynamics.
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Appendix: Essentials of the mathematical formalism

of quantum mechanics

The mathematical formalism of quantum mechanics

describes states of systems and observables; see book

(Khrennikov 2010) for a simple representation of quantum

mathematics for biologists and psychologists (the quantum-

like approach is based on the observation that ‘‘quantum

mathematics’’ can be applied outside quantum physics).

The basic mathematical structure of quantum mechanics

is a complex Hilbert space H: a linear space over complex

numbers (i.e., it is possible to form linear combinations of

vectors with complex coefficients) endowed with a Her-

mitian bilinear form mapping a pair of vectors w1;w2 2 H

into a complex number denoted hw1jw2i (we use Dirac’s

notation which is typical for quantum information theory).

We shall be interested in complex vectors normalized by

one, i.e., w 2 H such that kwk2 ¼ hwjwi ¼ 1: Such vectors

encode so called pure states of quantum systems.

Normalization by one is crucial for the probabilistic

interpretation of pure states. Observables (e.g., the

energy-observable or the position observable) are encoded

by Hermitian operators.

The theory is especially simple in the finite dimensional

case (which is typically considered in quantum information

theory). Here H ¼ Cn is the Cartesian product of n-copies

of the set of complex numbers C. Hence, a pure state / ¼

ðz1; . . .; znÞ; where kwk2 ¼ jz1j2 þ � � � þ jznj2 ¼ 1. Observ-

ables are given (in an orthonormal basis) by Hermitian

matrices A = (aij); here �aij ¼ aji. In the Dirac notation the

matrix elements are written as h/1jAj/2i. Coordinates of a

state vector are interpreted as probabilities.

As was mentioned, in quantum mechanics the special

Dirac symbolic notations are in use. A pure vector w is

denoted as jwi: This notation is especially useful for

eigenvectors of quantum observables. Let A be a quantum

observable, a Hermitian operator. By one of the basic

theorems of linear algebra A always has the basis consist-

ing of its eigenvectors, Aej = ajej (in the last equation we

have not yet use the Dirac notations), where ai 2 R are real

numbers and eigenvectors can be selected orthonormal,

heijeji ¼ dijð¼ 1; i ¼ j;¼ 0; i 6¼ jÞ. Suppose now that all

eigenvalues are different, aj 6¼ ai. Such operators are called

operators with nondegenerate spectra. Then in the Dirac

notations eigenvectors are written as jaii; typically the

index is omitted: jai. Hence, each state-vector can be

expanded in the form: jwi ¼
P

a cajai;
P

a jcaj2 ¼ 1.

Consider the two dimensional case H ¼ C2: Take some

Hermitian operator with eigenvalues a = 0,1; its eigen-

vectors are denoted as j0i; j1i. The aforementioned

expansion has the form:

jwi ¼ c0j0i þ c1j1i; jc0j2 þ jc1j2 ¼ 1: ð9Þ

In quantum information the vectors j0i; j1i encode 0, 1.

The vector (9) encodes superposition of 0 and 1. It is

considered as the quantum generalization of the classical

bit of information; it is called quantum bit or simply qubit.

We remark that each pure state jwi determines a Her-

mitian operator, the projector onto this state; q � jwihwj.
The last symbol is simply the Dirac notation: qj/i ¼
hwj/ijwi: We recall the basic properties of qw: (a) it is

positively defined, i.e., h/jqj/i� 0 for any /; (b) it is

Hermitian; (c) its trace (the sum of diagonal elements)

equals to one.

Consider now a statistical mixture (in the classical

sense) of a few projection operators qi corresponding to

pure states wi with weights pi C 0,
P

pi = 1,

q ¼ p1q1 þ � � � þ pnqn: ð10Þ

Each operator of this form satisfies conditions (a)–(c)

and vice versa. Denote the class of all operators with

properties (a)–(c) by the symbol DðHÞ. This is the space of

states of quantum systems. Its elements (called density

operators) can be interpreted as statistical mixtures of pure

states. In general a density operator can be represented in

the form (10) in many ways. There is one special expansion

corresponding to eigenvectors of q. The density operator

corresponding to a pure state can be characterized in the

following way: in the basis of eigenvectors, its matrix hasFig. 1 Value of PD(?|L [ G) with respect to P(L)
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only one nonzero element (equal to one), i.e., up to a

permutation of eigenvectors: q ¼ 1 0

0 0

� �

, where the

blocks of zeros have the corresponding sizes. However, this

takes place only in the basis of eigenvectors. Qubit of given

by (9) has the density-matrix representation:

qðt0Þ ¼ jc0j2 c0�c1

�c0c1 jc1j2
� �

.

A quantum channel is a map from the space of quantum

states DðHÞ into itself which can be represented in the form

qout ¼
X

i

Viq0V�i ; ð11Þ

where Vi are operators in H such that
P

i Vi Vi
* = I (here I

denotes the unit operator). The q0 is the input-state

(encoding information coming into the quantum channel)

and qout is the output-state (encoding information going

from the quantum channel). The representation (11) can be

rewritten in the form

qout ¼
X

i

piqout;i; ð12Þ

where

qout;i ¼
Viq0V�i

trViq0V�i
ð13Þ

and pi = tr Vi q0 Vi
*. We have

P

i pi = 1, pi C 0. Hence,

they can be interpreted as probabilities. The operators

qout;i 2 DðHÞ. Thus the expansion (12) can be interpreted

in the following way: a quantum channel produces states

qout;i with probabilities pi.

Liftings are a class of channels from DðHÞ to

DðH � KÞ;
E� : DðHÞ7!DðH � KÞ ð14Þ

Here K is another Hilbert space, and DðH � KÞ is a set

of density operator on the compound system. We introduce

the following liftings which are often used in physics.

• Linear Lifting: A linear lifting is affine and its dual is a

completely positive map.

• Pure Lifting: A pure lifting maps pure states into pure

states.

• Nondemolition Lifting: A lifting is nondemolition for a

state q 2 SðHÞ if q is invariant for any Hermitian

operator A in the sense of

trE�qðA� IÞ ¼ trqA: ð15Þ

Applications of lifting in adaptive dynamics was

introduced in Ohya and Volovich (2011).
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