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Abstract
Geometric Morphometrics can be used to describe morphology as a series of coordinates after the effects of variation in 
translation, rotation, and scale have been removed. This can be further divided into the notion of shape and form, where 
the latter excludes the scaling procedure from analyses. Dimensionality reduction in Geometric Morphometrics is neces-
sary for the representation of this data into a reduced, more manageable set of dimensions, while preserving as much of 
the original variation as possible. The purpose of this study is to explore a new means of performing dimensionality reduc-
tion on Procrustes landmark data. Here we present a new mathematical model that can be used to enhance dimensionality 
reduction techniques such as Principal Component Analyses. Integrated into a new R library, the GraphGMM framework 
uses elements of geometric learning and graph theory to aggregate and embed (project) morphological information from 
Procrustes coordinates into a new set of transformed coordinates. We validate this model through the use of theoretically 
constructed, as well as open source, datasets. We finally present a pilot case study using great ape radii to show how these 
transformed landmarks efficiently capture morphological information, prior to dimensionality reduction, leading to a more 
efficient construction of a final representation of a morphological coordinate space. Graph-based Geometric Morphometrics 
thus provides a new insight into the study of morphological patterns, that can be used as an additional source of information 
in bioanthropological studies.
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Introduction

Morphology is a key source of information for the study of 
biological organisms. This type of data combines insights 
into the geometrical properties of an organism or element 
in order to understand and classify evolutionary traits. The 
integration of morphological analyses has thus played a 

particular role in the field of human evolution. Nevertheless, 
this branch of science has seen a long evolution itself, with 
multiple innovations and debates about the optimal means 
of capturing morphological patterns (Bookstein, 1989, 2023, 
2024; Durrleman, 2010; Mitteroecker et al., 2020; Rohlf, 
1986; Rohlf & Bookstein, 2003; Rohlf & Corti, 2000).

Currently, landmark-based approaches, particularly 
from the perspective of the Procrustes analysis of land-
mark data, are the most widely used techniques for these 
types of analyses (Adams et al., 2004). The Procrustes 
analysis of landmark data in geometric morphometrics 
(GMMs) describes shape and form through the digiti-
sation of a set of anatomically, mathematically, or geo-
metrically distributed homologous points (Bookstein, 
1991, 1997; Dryden & Mardia, 1998). The relative 
positions of landmarks are quantified by their 2D or 3D 
Cartesian coordinates, which are then projected onto a 
common coordinate system. This process involves the 
superimposition of landmarks through a series of proce-
dures, including scaling, rotation and translation (Sneath, 
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1967), known as Generalised Procrustes Analyses (GPA) 
(Gower, 1975; Rohlf & Slice, 1990). GPA is thus a use-
ful tool which can then be used for the direct comparison 
and visualisation of landmark configurations, highlight-
ing their differences and similarities (Bookstein, 1989).

An additional advantage of superimposed landmarks 
is the ability to calculate multivariate statistical data 
regarding their overall position within the configuration. 
A popular technique for analysing this type of data con-
sists in the eigendecomposition of the covariance matrix 
of superimposed landmark coordinates (Klingenberg & 
Monteiro, 2005; Rohlf, 1996, 2000). In this context, prin-
cipal component analysis (PCA) is used to describe the 
major trends of sample variation in “as few statistically 
orthogonal dimensions as possible” (Rohlf, 1996). A PCA 
is a linear combination of the original variables, with each 
component maximising the total sample variance in a new 
set of uncorrelated dimensions. From this perspective, 
combinations of components can be used to describe the 
displacements in coordinate values along the x, y, and 
when 3D landmarks are used, z axes. The present study 
hypothesises that this approach to Dimensionality Reduc-
tion (DR) can be improved.

The present study intends to propose a new means of 
performing DR on landmark data by adapting graph the-
ory for a more structurally aware visual representation of 
landmark data. Here we show that a Graph-based GMM 
approach is able to represent a higher degree of morpho-
logical variability in fewer dimensions. As a means of 
experimenting with this mathematical model, we present 
a number of theoretical applications, as well as two real-
life case studies analysed with Graph-based GMM.

The GraphGMM R Library

All of the methods described in the present paper have been 
implemented in the R programming language, compatible 
with R v.3.0 and R v.4.0, and are available from the corre-
sponding author’s GitHub page (https://​github.​com/​LACou​
rtenay/​Graph​GMM). A detailed description of the library, 
alongside instructions and a guide to its installation and 
usage, have also been provided as supplementary materials 
(Sup. Files 1 and 2).

Mathematical Model: Graph‑Based Geometric 
Morphometrics

The mathematical model described in this study proposes 
a means of embedding landmark configurations into a new 
geometrically and structurally-meaningful feature space, 
prior to dimensionality reduction. The goal of information 
embedding is to map data into a new ℝn’ feature space, 
with n’ being the number of dimensions, such that land-
marks that are similar are positioned closer together in 
the new space (Grover & Leskovec, 2016; Hamilton et al., 
2018; Hoff et al., 2012; Leskovec, 2019). For this purpose, 
we use a message passing mechanism for neighbourhood 
aggregation. This process consists in representing each 
landmark as a mathematical function of itself and the 
spatial properties of its neighbours (Fig. 1). In the con-
text of GMM, this can be adapted as a means of mapping 
landmarks into a new feature space, such that similarity 
in the embedded feature space approximates similarity in 
biological and geometrical structure. This proximity in the 
new feature space can be considered a means of revealing 
landmark homophily, i.e., the spatial similarity of land-
marks (Fortunato, 2010; Yang & Leskovec, 2014), as well 

Fig. 1   Graphic visualisation of 
the message passing mechanism 
after three convolutions across 
a set of landmarks placed on the 
proximal epiphysis of a chim-
panzee radius. Landmark 13 
(LM13) can thus be represented 
as a function of itself, and its 
neighbours (u)

https://github.com/LACourtenay/GraphGMM
https://github.com/LACourtenay/GraphGMM
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as structural equivalence (Henderson et al., 2012), in the 
global context of the entire configuration.

Let each set of landmarks (LM) be represented as a 
series of vertices LMv ∈ V, with neighbours LMu, con-
nected by a series of undirected edges in a computational 
graph G. LMs should also be connected through a self-
looping edge. Each configuration of G can thus be rep-
resented as an adjacency matrix A ∈ ℝp×p, with feature 
matrix X ∈ ℝp×k of Procrustes superimposed landmark 
coordinates, where p is the number of landmarks, and k is 
the number of dimensions. Landmarks can then be embed-
ded using a message-passing mechanism (Eq. 1), similar 
to those proposed by Kipf and Welling (2017);

where v(m−1)
i

 ∈ ℝX are the node features of node i in layer 
(m − 1), with each node j and i ∈ G being connected by an 
edge ej,i ∈ ℝK.

The definition of ej,i can be computed in a number of 
ways, either by the use of biological data with the domain-
informed linking of landmark pairs (e.g. Adams, 1999), or 
using vertex spatial distributions (see “Case studies” sec-
tion and Supplementary File 1). The spatial attributes of a 
given landmark in layer m can thus be redefined by aggre-
gating the spatial attributes of neighbouring landmarks in 
layer m − 1, with the landmark’s own spatial attributes, 
and N being the neighbourhood of landmarks (Fig. 1). F 
(Eq. 1) is a differentiable, permutation invariant function 
that convolves freely over G (Kipf & Welling, 2017; Wang 
et al., 2019). In this application, let F be (Eq. 2);

which can be simplified using adjacency matrix A, identity 
matrix IN of A, feature matrix X, and the landmark degree 
centrality D ∀ v ∈ G, to embed landmarks X’ into a new fea-
ture space (Eqs. 3–5);

Through this, the neighbourhood of a node (v) is used 
to normalise the effect of highly central landmarks in the 
context of G (Kipf & Welling, 2017).

The convolutional operation across G is calculated by 
(Eqs. 6–8);
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where z is the output of each prior embedding in layer h 
(sensu Bruna et al., 2014), with LMi’ ∈ G now being rep-
resented by feature matrices X’ in a new ℝk feature space. 
From this perspective, the attributes of neighbouring land-
marks can be passed through the computational graph in 
a series of steps, or “convolutions” (Fig. 1). With a single 
pass, LMi’ is now a function and representation of its own 
attributes, as well as the attributes of neighbouring vertices.

Once projected into the new feature space, landmark con-
figurations can be represented in two different ways using 
the raw embedded landmark coordinates. These can then be 
processed using eigendecomposition to visualise patterns in 
a similar way to traditional GMM approaches, with the new 
PCA feature space presenting the added advantage of pre-
serving more geometrical and structurally meaningful data 
from the feature matrix. The resulting representations can 
then be flattened into vectors equal in size to those used in 
traditional GMMs, i.e. x ∈ ℝp×k.

Theoretical and Technical Considerations

In contrast with representation and geometric learning appli-
cations, where achieving generalizability for the described 
formulae (Eqs. 1, 2, 6–8) requires some additional complex-
ity (Bronstein & Kokkinos, 2010; Bronstein et al., 2017; 
Bruna et al., 2014; Henaff et al., 2015; Kipf & Welling, 
2017; Murphy et al., 2019; Wang et al., 2019; Xu et al., 
2019), the use of Procrustes-based feature matrices as input 
simplifies the message passing mechanism in a number of 
ways. Firstly, the laws behind the number of landmarks 
and their correspondence ensures a standardised topologi-
cal structure across graphs, while graph size also remains 
constant (Bookstein, 1990, 1991; Dryden & Mardia, 1998; 
Rohlf, 1996). Secondly, Procrustes superimposition pro-
cedures eliminate the need for F to be invariant to vertex 
rotation and relative position, as GPA already ensures this. 
Finally, due to points 1 and 2, dataset sizes are no longer 
as large an issue, as no learnable parameters are needed to 
optimise graph embeddings.

It is also crucial to emphasize that the depth of convo-
lutions across graphs differs from the concept of “depth” 
in computational sciences such as computer vision (Henaff 
et al., 2015). While graph- and image-based convolutions are 
similar in how their receptive field captures neighbouring 
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nodes or pixels, the depth of a graph convolution is depend-
ent on the total number of nodes in the graph (i.e., the diam-
eter of G). From this perspective, a single convolution repre-
sents the neighbours of a vertex as well as the vertex itself. A 
second convolution will then represent the neighbours of the 
neighbouring vertices, along with the vertex itself (Fig. 1). 
As we increase the number of convolutions, the embedded 
feature space will capture more information from vertices 
further across the graph, which may not be relevant to the 
vertex itself. Consequently, graph-based convolutions are 
typically restricted to a few convolutions (typically between 
two and five), as convolving beyond the natural diameter of 
the graph is theoretically superfluous.

Finally, Supplementary File 3 presents two additional 
theorems on the advantages of using graph-embeddings for 
the analysis and representation of Geometric Morphometric 
data.

Theoretical Proof of Concept

Theorem 1  Landmark embeddings capture the geometric 
features of morphological variability even before Procrustes 
superimposition is performed.

For the proof of this theorem, we can define a simple geom-
etry based on an irregular pentagon, presenting two adjacent 
right angles, one acute, and two obtuse angles, as well as two 
parallel edges. This shape can be defined by five landmarks 
marking each corner. To add complexity to later stages of 
this proof, we will add an additional landmark that can be 
used to condition the directionality of the deformation that 
will be imposed.

LMs 4 through to 5 are defined by fixed coordinates that 
do not change at any point during this set of proofs. They 
are defined as having 2D coordinates of (− 1, 1), (1, 1), 
(− 1, − 1) and (1, − 1), respectively. Both LM5 and LM6 
have a fixed x coordinate of 0, while the y coordinate will 
alternate. For y coordinates, values were sampled from a 
uniform distribution between 1 and 4, to produce changes 
in the position of LM5, and between − 1 and − 4, to produce 
changes in LM6. 30 examples were simulated for variations 
in LM5 (here referred to as Group-5), and 30 examples were 
simulated for variations in LM6 (Group-6).

For the purpose of computing graph embeddings, a land-
mark graph was manually defined connecting each of the 
corners with LM5 and LM6 so as to observe how the move-
ment of these landmarks will affect the overall representa-
tion of shape variation in graph embeddings (Fig. 2).

PCA performed on Group-5 raw coordinates produces a 
feature space with 12 dimensions (Fig. 3), with a single PC 
score explaining 100% of morphological variance (described 
by changes only in Y value coordinates of either LM5 or 

LM6). Procrustes superimposition of this data produces a 
PCA with 100% of morphological variance being captured 
in the first 2 PC scores. Bi-plots in Fig. 3 show how PCA 
now captures variations in the x and y coordinates of other 
landmarks (even though they have not theoretically moved—
a concept that will be explained more in the proof of Theo-
rem 2). Please note our use of PCA bi-plots is only for the 
purpose of visualising and describing how PC scores are 
being constructed mathematically and algebraically, and 
should not be misconstrued as an attempt or a means in 
which landmark coordinates should be analysed, as rightly 
pointed out by Cardini and Marco (2022). Here we use bi-
plots as a tool of understanding the weight landmark dis-
placements have on the distribution of these purely theoreti-
cal points, and ‘per-landmark’ analyses should be refrained 
from in all applications of both traditional and Graph-based 
GMM.

Proof 1  Embeddings capture the overall trend in geometric 
deformation prior to Procrustes superimposition.

PCA performed on embedded coordinates, without the 
use of any Procrustes based superimposition procedures, 
produces an almost identical version of the original PCA 
(Fig. 4), prior to any pre-processing of the raw coordinates. 
This is seen in the first PC score representing 100% of vari-
ance and PC1 being described by change in the y coordi-
nate of LM5. Nevertheless, while this PCA may appear to 
be identical to the original PCA, there is in fact a slight 
variation in y coordinates, represented mostly by residuals;

where x is an example of a single individual’s PC coordi-
nates, and x’ is an example of this same individual’s PC 
coordinates after embedding. In the embedded PCA, PC 
scores 2 to 10 contain residual data, with scores 11 and 12 
being filled with 0 values. Additionally, embedded coor-
dinates after a single embedding reveal LM1-LM4 to have 

x = (0.94, 0, 0, 0, ..., 0) ∈ �
12

x� =
(
0.28, 7.2 × 10−17, 5.1 × 10−18, 3.0 × 10−17, ..., 0

)
∈ �

12

Fig. 2   The theoretical model used in proof of Theorems 1 and 2
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cancelled each other out (Fig. 5), due to a lack of movement, 
while LM5 and LM6 are drawn together in the embedded 

space. This symbolises the trend in morphological variation, 
without any Procrustes superimposition procedures.

Fig. 3   (Left panel) PCA feature space computed on the raw coordinates of Group5. (Right panel) PCA performed on the superimposed Pro-
crustes coordinates of Group5. Thin Plate Splines are represented on the extremities of each PC score

Fig. 4   PCA performed on the superimposed embedded coordinates of Group5. Thin Plate Splines are represented on the extremities of each PC 
score

Fig. 5   Original (Left) and 
embedded (Right) landmark 
coordinates, with the graph 
edges indicated in red
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PCAs performed on both Group-5 and Group-6 produce 
similar patterns, with the added complexity of a second 
changing variable (Fig. 6). The original data without any 
superimposition procedures or graph embeddings pre-
serves 100% of morphological variance in 2 PC scores. 
Procrustes superimposed data only represents 99.18% 
of variance in the same number of PC scores, with the 
influence of other landmarks in the configuration increas-
ing. As before, graph embedded landmark data represents 
100% in the first PC scores. Notably, graph embeddings 
capture much more information in the first PC score than 
in any of the other analyses, presenting very similar pat-
terns to those from the original PCA (Fig. 6), while effi-
ciently concentrating the encoded morphological informa-
tion into a single dimension. Finally, Thin Plate Splines 
(TPS) derived from graph embeddings (Fig. 6, lower pan-
els) show how, even without Procrustes superimposition, 
calculations are able to capture important morphological 
information. This is further proof on the effectiveness 
message passing mechanisms have on the processing and 
capturing of the geometrical properties of coordinate data.

Proof 2  Embeddings increase the degree of morphological 
variability reflected in reduced dimensions beyond those pat-
terns already captured by Procrustes transformations.

As has already been demonstrated, graph embeddings, 
even without the use of Procrustes data, is able to encode 
the geometrical properties of morphological data efficiently. 
It has also been shown how Procrustes superimposed data 
is also efficient, however does not reach the same degree 
of efficiency in dimensionality reduction. When combin-
ing both Procrustes based methods and graph embeddings 
(Fig. 7), PCA results reach 99.86% variance in the present 
toy case study. This is due to how (1) Procrustes methods 
are powerful tools in describing morphological data, how-
ever, lose some critical information during the dimension-
ality reduction stage which (2) graph embeddings are able 
to recover. This will also be discussed and is the basis of 
Theorem 2.

Theorem  2  Although Generalised Procrustes Analyses 
(GPA) are able to capture the influence one landmark’s 
coordinates may have on the entire configuration, and thus 

Fig. 6   (Upper panels) Three PCA bi-plots describing the compari-
son of two groups of landmarks, using (1) raw coordinate data, (2) 
Procrustes data, and (3) graph embeddings of the original raw data 

(no Procrustes superimposition). (Lower Panels) Thin Plate Splines 
describing the morphological variation captured by PCAs of graph 
embeddings of the original raw data
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describe the relationship between landmarks in the global 
context of the configuration, original PCA approaches then 
lose sight of this relationship in the final representation of 
feature space. Graph-based methods are therefore able to 
reintroduce this information into the final feature space.

Proof 3  The Pinocchio effect is proof that GPA captures gen-
eral information regarding the entire configuration.

As has been seen in the proofs provided for Theorem 1, 
the displacement of a single landmark along one axis is 
enough to create a shift in patterns in the corresponding 
shape feature space. This can slightly be perceived in the 
Thin Plate Splines presented in Fig. 3, however, is most evi-
dent in the PCAs described by Figs. 4, 6 and 7. Consider-
ing how in the original data LM1 to LM4 remain in a fixed 
position, PCA biplots still highlight them to be conditioning 
factors in the feature space dispersal patterns. This is due to 
the Pinocchio effect.

The Pinocchio effect describes how variation in a sin-
gle landmark can have an effect on the entire configuration 
(Chapman, 1990; Hallgrímsson et al., 2015; Klingenberg, 
2021; Walker, 2000). This can be easily visualised by 
considering how, as in the present case, variations in the 
position of LM5 will thus condition not just the distance 
of LM5 to the centroid, but will also condition the posi-
tion of the centroid itself (especially if the centroid is cal-
culated using the mean; see Additional Theoretical Notes in 

Supplementary File 3). Changes in centroid position impli-
cate changes in general to the entire Procrustes superimposi-
tion procedure, as all three steps (translation, rotation and 
scaling) are dependent on this precise coordinate (Book-
stein, 1986; Goodall, 1991; Gower, 1975; Kendall, 1984; 
Klingenberg, 2021; Rohlf & Slice, 1990). This is the easiest 
way to explain variation described by Thin Plate Splines, 
as well as the changes observed in most figures in the proof 
of Theorem 1, described by variables Y1, Y2 and Y3, even 
though their original coordinates never moved. This can be 
extended theoretically to visualise the Pinocchio effect when 
modifying two variables as well (Fig. 8).

From this perspective, it can be argued that in an original 
PCA (Fig. 6) information from all landmarks is captured, as 
the Kendall coordinates derived from Procrustes superimpo-
sition are dependent on the configuration as a whole, not just 
a single landmark (Cardini & Marco, 2022). Nevertheless, 
while this is true for Procrustes analyses, for dimensionality 
reduction we still lose some of the information regarding the 
entire configuration, and consequently lose some informa-
tion in the final PCA.

The objective of using graph embeddings on Procrustes 
data is to remove the need for weighted parameters that 
make the message passing mechanism invariant to position 
and rotation. However, we can also see how, as presented 
throughout this set of theorems, graph embeddings are also 
able to capture morphological variation (Bronstein et al., 
2017), even without the use of orthogonally projected Ken-
dall coordinates. Bookstein coordinates (Bookstein, 1986, 
1989), for example, would also produce similar results. 
Nevertheless, considering that Kendall coordinates create a 
change in the data represented in PCAs, graph embeddings 
seem to re-highlight the features that are important consid-
ering the neighbourhood of each landmark, putting weight 
on more global features, and resulting in a more complete 
representation of shape variation in just a few PC scores.

Simulating More Complex Geometries and Observing 
Patterns in Eigenvalues

The demonstrations presented in “Theoretical Proof of Con-
cept” all consisted in observing the effects of Graph-based 
morphological analyses when only a single landmark changes. 
While useful to demonstrate some of the core algebraic con-
cepts of Graph-based GMM, this model can be considered 
overly simplistic, while breaking one of the primary rules 
of modern morphometrics, where single landmark observa-
tions are to be avoided (Cardini & Marco, 2022). Theoreti-
cal research in GMM often uses simplistic geometric icons, 
such as triangles, in order to demonstrate the mechanisms 
behind most mathematical operations. From the perspective 
of Graph-based calculations, however, three landmarks do 
not provide much leeway with which to experiment. Here we 

Fig. 7   Principal Component Analysis of Graph Embedded Procrustes 
Coordinates
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show analyses of morphological patterns by considering the 
shearing of much more complex geometric icons, following 
the experimental and theoretic protocols outlined by Courte-
nay (2023).

For an initial demonstration, we simulate a set of 90 octa-
gons produced by rotating a point with x and y coordinates 
around a centroid, of a fixed unit-less Centroid Size (CS = 3), 
considering the rotation operations (Eq. 9);

Centred on each of the points, we introduce a perturba-
tion of (σ = 1) a total of 90 times. Once generated, 30 random 
icons were sampled and sheared by magnitudes of ϵ = 0.2 and 
another 30 with ϵ = − 0.2, through (Eq. 10);

(9)

[
cos � − sin �

sin � cos �

][
xi
yi

]
∀ i ∈ p ∶ � = 0.7853982, p = 8

(10)
[
x�
i

y�
i

]
=

[
xi

yi

]
+

[
�yi
�xi

]
∀ i ∈ p

So as to introduce a slight torsion that can be assessed 
through GMM means. Icons were then superimposed using 
GPA in shape space. Using this dataset, PCA calculated on 
the superimposed coordinates result in a feature space where 
the first two dimensions represent 32.88% of morphological 
information (Fig. 9), with > 90% of variation being captured 
by up to 10 PC scores.

Considering how this simulation is, in essence, a sto-
chastic process, we can repeat the generation of data 1000 
times, and bootstrap the summary statistics, to calculate that 
in general the first two PC scores represent 33.14 ∈ [33.03, 
33.26]% of information. In general, 95.4% of the simula-
tions revealed > 90% of variation to be captured by up to 9 
PC scores.

Constructing a completely geometric and theoretical 
graph, where each landmark is connected to its adjacent 
neighbours, we can establish a network of interconnected 
segments in the form of an octagon. Additional edges are 
then extended from each point, skipping one landmark, in a 
consistent pattern. This iterative process of establishing links 

Fig. 8   (Upper panels) examples of the (left) original coordinates of two geometric icons prior to (right) Procrustes superimposition. (Lower pan-
els) Examples of the superimposition of Group-5 and Group-6 icons
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creates a visually striking motif characterized by radial sym-
metry and connections between vertices, culminating in the 
form of an 8-point star within an octagon. Performing PCA 
on the calculated embeddings of this configuration results 
in a feature space representing 90.6% of the variation. This 
already captures the same amount of data as 10 PC scores 
using traditional PCA approaches in GMM. In this case, 
10 PC scores represent 99.95% of the variation. Running 
the simulation 1000 times with a bootstrapped calculation 
of summary statistics reveals the first 2 PC scores to typi-
cally yield 90.31 ∈ [90.24, 90.37]% of the morphological 
information.

If we observe eigenvalue (λ) distributions produced by 
these two analyses (Fig. 10), it is immediately clear how 
Graph-based approaches compress information into much 
fewer dimensions much faster than traditional PCA. The 
Graph-based approach appears to produce a normalisation 
or regularisation effect to the corresponding λ values, pro-
ducing a more “L” shaped curve with a marked elbow, as 
opposed to traditional techniques, where the curve presents 
a much smoother decrease towards zero.

To test the effect of the number of variables on these 
results, we can modify the experiment to simulate a set of 
centagons, by adjusting the above model with values of 
θ = 0.0628, p = 100, σ = 0.1, and ϵ = [− 0.002, 0, 0.002]. 

In order to avoid sample-size issues and the influence they 
may have on λ distribution properties (Bookstein, 2017a, 
2019), we simulated 250 icons to ensure the variable to 
individual ratio stays at an acceptable value of 0.8.

Similar to previous experiments, it can be noted that 
Graph-based GMM captures more information in much 
fewer dimensions than traditional PCA. Traditional PCA 
was found to generate PC scores where the first two PCs 
represent 3.65 ∈ [3.65, 3.66]% of the morphological vari-
ance, while 81.8% of simulations found 106 PC scores 
necessary to describe up to 90%. On the other hand, the 
first two PC scores obtained through Graph-based GMM 
capture 7.91 ∈ [7.82, 8.00]% of the information, while 
requiring 101 PC scores to capture up to 90%. In this case, 
the λ distributions show another clear case of a sharper 
“L” shaped curve for Graph-based GMM, while traditional 
approaches require more PC scores to capture the same 
amount of information.

While in some of these cases the percentage of repre-
sented variance is considerably lower than what is typi-
cally observed in real case studies, this is due to how the 
data crafted here is “purely theoretical and of geometrical 
significance, with absolutely no biological value” (Cour-
tenay, 2023).

Fig. 9   PCA scatter plots computed on an 8-landmark theoretical geometric model, including the calculation of PC scores using the original 
superimposed Procrustes coordinates (left panel), and the embedded Procrustes coordinates (right panel)
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Case Studies

Moving beyond the realm of theoretical simulations, we 
present two case studies for the application of Graph-based 
analyses on data derived from biological specimens. The 
first case-study consists in a 24-landmark model in 3-dimen-
sions, consisting of fixed landmarks collected on the corti-
cal surface of adult human brains described by Free et al. 
(2001), openly available as part of the “brain” dataset in 
the shapes R library (Dryden, 2023). The objectives of ana-
lysing this dataset are to assess the quality of Graph-based 
results on actual data, focusing primarily on a dataset that 
does not present extreme contrasts of scale in order to focus 
on morphological variance in shape. The second case-study 
consists in the analysis of 200 landmarks in 3D, consisting 
of both fixed and semi-landmarks, extracted from modern 

great-ape radii. This case study originates from the study by 
Aramendi (2021), a complete description of which is addi-
tionally provided in Supplementary File 3. The purpose of 
this case-study is to assess whether the Graph-based GMM 
model is able to reduce the dimensionality of datasets that 
present distinct patterns between samples, and preserve 
these structural patterns during the more extreme compres-
sion of information.

An Analysis of Adult Human Brains

This dataset consists of 58 individuals, landmarked using 
24 fixed anatomical landmarks on both the left and the right 
hemisphere of the cortical surface of the brain, obtained 
using MRI images. The original publication of this dataset 
assessed the orientation and relative position of frontal lobe 

Fig. 10   Distribution of Eigenvalues across each PC score when analysing GMM datasets consisting of 8 and 100 landmarks, using both tradi-
tional and Graph-based GMM approaches
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sulci and the possible differences between hemispheres by 
additionally considering patterns in functional asymmetry 
(Free et al., 2001). These authors considered, therefore, 
the relationship shape variables have with size, gender 
(27 females, 31 males), age (median = 30.5 years old), and 
handedness (15 left, 43 right handed individuals). Here we 
evaluate the same variables by first superimposing all the 
landmarks via GPA in shape space, and then testing the cor-
relation between PC scores, constructed using both tradi-
tional and Graph-based approaches, with each of the sample 
variables. This was then repeated after reflecting the left 
hemisphere onto the right hemisphere along the midsagittal 
plane, so as to assess patterns between hemispheres. The 
graph to perform embeddings was constructed by establish-
ing the connections between landmarks as detailed through 
wireframes by Free et al., (2001, p. 808).

PCA on the original landmarks produce a feature space 
where the first two dimensions represent up to 19.76% of 

the morphological variance (Fig. 11), and 25 PC scores 
are required to obtain > 90% of morphological informa-
tion. Graph-based PCA on the other hand captures the 
same amount of information in just 10 PC scores, while 
the first 2 PC scores represent more than twice the amount 
of morphological variance, with a total of 54.11%. When 
considering the distribution of λ values (Fig. 11), we con-
firm our original observations from theoretical experiments 
by showing Graph-based PCA to produce a much more 
pronounced “L” shape, while the original PCA presents a 
relatively sharp decrease in λ values, which then levels off 
over approximately 30 PC scores. As for statistical analyses, 
taking into consideration the entire brain, our results using 
Graph-based analyses reveal similar patterns to the origi-
nal PCA (Table 1), with a lack of correlation between PC 
scores and either of the possible conditioning variables to 
brain morphology. In general, the main differences between 
analyses are a slightly more pronounced presence or lack 

Fig. 11   Extreme morphological changes, PCA scatter plots, and λ distributions for the (upper) traditional and (lower) Graph-based analysis of 
brain morphology
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of correlations between variables as opposed to traditional 
PCA, generally indicating that this method has captured 
slightly more information to compare with.

With regards to the represented changes in morphology 
across feature spaces, it can be seen through wireframes that 
the two approaches highlight slightly different morphologi-
cal trajectories, with the original PCA representing marked 
patterns in the position of the precentral sulcus’ intersection 
with the superior frontal sulcus, as well as the configuration 
of the central sulcus to the midline across both PC1 and 
PC2. Graph-based approaches highlight similar patterns, 
however PC1 is also slightly conditioned by relative vari-
ability in structural asymmetry with a slightly more ante-
rior position of the termination of the cingulate sulcus at 
the midline, while PC2 presents a marked difference in the 
width of the midsagittal plane. This generally demonstrates 
that the Graph-based approach may be capturing slightly 
more changes to the overall configuration, reflected and con-
ditioned by the larger amount of variability captured.

When reflecting landmarks across the midsagittal plane, 
traditional PCA now captures 90% in the first 18 PC scores 

(Fig. 12), with PC1 and PC2 capturing 24.3% of the infor-
mation, while Graph-based PCA captures 47.1% of morpho-
logical variation in the first two dimensions (Fig. 12), and a 
total of 90% across just 8 PCs. Once again, λ distributions 
reflect our original observations on theoretical data (Fig. 12), 
while correlation results (Table 1) are similar between the 
two approaches, with Graph-based PCA revealing slightly 
more pronounced correlations. When considering the sta-
tistical differences or similarities between hemispheres, 
and thus assessing structural asymmetry in the brain, both 
original (Residuals = 261.4, F = 28.66, p = 4.5 × 10–07) and 
Graph-based (Residuals = 11.48, F = 24.1, p = 3.0 × 10–06) 
approaches reveal notable patterns of variation, with the 
Graph-based approach displaying a considerably lower num-
ber of squared residuals.

Visualisation of extreme morphological information 
across the PC scores once again reveal generally similar pat-
terns. Both approaches highlight across PC1 the position of 
the intersection between the precentral sulcus and the Syl-
vian fissure, as well as rehighlighting the precentral sulcus’ 
intersection with the superior frontal sulcus (more so in the 

Fig. 12   Extreme morphological changes, PCA scatter plots, and λ distributions for the (upper) traditional and (lower) Graph-based analysis of 
brain morphology after reflecting the left hemisphere across the midsagittal plane
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traditional than the Graph-based analysis). PC2 on the other 
hand marks the general position of the preoccipital notch in 
relation to the Parieto-occipital sulcus’ intersection with the 
calcarine, however, in the Graph-based approach we now see 
an additional pattern emerge towards the midsagittal plane 
and insertions of the parieto-occipital, central and cingulate 
sulcus. While the configuration of these landmarks varies 
slightly across PC2 in the traditional approach, the Graph-
based analysis stresses this pattern more.

An Analysis of Modern Great Ape Radii

For this case study, landmarks extracted from 84 radii of 
chimpanzees (n = 20), gorillas (n = 17), orangutans (n = 17), 
and Anatomically Modern Humans (AMH, n = 30), were 
superimposed using full GPA in shape space. This dataset 
consists of 200 landmarks, of both a fixed anatomical, and 
sliding semi-landmark type, fully described in Supplemen-
tary File 3. The landmark graph was constructed using algo-
rithms based on the spatial distribution of landmarks. For 
this purpose, we used a pivot ball triangulation algorithm 
(radius ρ = 25.5: Bernardini et al., 1999) on the median 
shape configuration. Graphs were then embedded using two 
convolutions, and then used for analysis. Here we evalu-
ate the biological and biomechanical signal present across 
these radii using both approaches to assess whether Graph-
based PCA not only performs more efficient dimensionality 

reduction, but also serves as a means to aid in the discrimi-
nation of given groups.

Initial observations of PCA distributions reveal sample 
scattering among the different approaches to present more 
pronounced differences in the amount of information repre-
sented in just the first PC score. Sample distributions, how-
ever, are relatively congruent across reduction techniques 
in shape space, including degrees of overlapping among 
groups, and the established variational relationships among 
groups. From this perspective, chimpanzees and gorillas 
slightly overlap in all analyses, while AMH and orangutans 
constitute their own independent clusters. AMH and oran-
gutans only present a slight tendency to approximate each 
other in feature space in Graph-based PCA (Fig. 13). Despite 
certain differences in general robusticity and straightness of 
radii, the majority of morphological changes expressed by 
PC1 tend to be relatively congruent, with all types of PCA 
representing similar traits.

The largest differences among analyses, however, can 
be observed in dimensionality reduction performance. The 
original PCA-based method explains slightly more than 
50% of the total variance along the first two PCs, whereas 
the Graph-based technique on the embedded data (64.1%) 
is able to increase the amount of variance contained in the 
first two components, with the original PCA reaching the 
same percentage of variance explained in the Graph-based 
versions of the PCA in the first three PCs. The most notable 

Fig. 13   Examples of the three 
different Dimensionality Reduc-
tion results in shape space using 
traditional Principal Compo-
nent Analyses in Geometric 
Morphometrics, as well as 
Graph-based Principal Com-
ponent Analyses to analyse the 
radius morphology in great apes 
using anatomical landmarks 
and sliding semilandmarks. 
Changes in shape are visualised 
across the extremities of PC1. 
AMH anatomically modern 
human, C chimpanzee, G gorilla, 
O orangutan
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improvement, however, remains to be the considerably larger 
amount of information preserved in just the first PC score.

Differences in the morphological variance expressed by 
PC1 are more pronounced in the Graph-based PCA, where 
the slenderness and straightness of the radius is more marked 
towards the positive extremity of PC1, as opposed to a more 
robust radius towards the negative extremities, where AMH 
are located (Fig. 3). Nevertheless, both approaches similarly 
highlight a tendency towards a slightly more curved, less 
slender midshaft portion, and a more angled-positioned dis-
tal epiphysis towards the positive PC1 axis end.

Pairwise comparisons of great ape groups based on mesh 
warpings (Figs. 14, S3 in Sup. File 3), also indicate that the 
Graph-based approach provides more marked differences 
among the sample as a result of a more effective compres-
sion of information. Most differences are assembled on the 
proximal and distal portions of the bone, especially in the 
head and neck of the radius, the radial tuberosity, the sig-
moid notch, the scaphoid, and the styloid process. Many of 
the differences are not only related to changes in relative 
proportions (e.g., distance between the head and the radial 
tuberosity), but also in the orientation and location of certain 
osseous landmarks (e.g., the angle of the sigmoid notch rela-
tive to the bone’s longitudinal axis, the position of the radial 
tuberosity relative to the interosseous crest). Although the 
diaphysis presents less abrupt changes, important differences 

in curvature and width are observed among groups. Mor-
phological differences along the shaft are variably marked 
based on the PCA approach, though in general terms mid-
shaft curvature degree along the posterior view presents 
the most notable changes on the diaphysis. In certain cases, 
however, important differences are also observed in the 
distal diaphyseal portion (e.g., when comparing orangutan 
versus gorilla).

When the morphology of the radii in different great ape 
groups is only analysed by means of ‘fixed’ anatomical land-
marks (most of them situated on the proximal and distal 
epiphyses), more strongly marked changes in shape space 
can be observed depending on the dimensionality reduction 
technique (Fig. S4, Supplementary File 3). The traditional 
GMM approach results in a plot that does not resemble those 
seen in Fig. 13, but instead presents different clustering pat-
terns, with AMH clearly separated from nonhuman great 
apes, and orangutans and gorillas overlapping with chimpan-
zees, which fall right in between the former groups. On the 
other hand, Graph-based PCAs show a sample distribution 
that resembles those seen in Fig. 13 across all PCAs, with 
four distinct clusters slightly overlapping in pairs formed by 
AMH and orangutans, on one side, and chimpanzees and 
gorillas, on the other side.

Regarding the interpretability of such results, the gen-
eralised division among modern great apes based on the 

Fig. 14   Calculations of the 
differences between mesh warp-
ings when predicting median 
shape changes using traditional 
Geometric Morphometrics 
(Upper) and Graph-based analy-
ses (Lower). Heat maps indicate 
areas where mesh warpings dif-
fer from the original Thin Plate 
Spline prediction (red = positive 
deformations, blue = negative 
deformations). AMH anatomi-
cally modern human, C chim-
panzee, G gorilla, O orangutan
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preferential use of the landscape (terrestrial versus arbo-
real), and the main modes of locomotion (e.g., bipedalism, 
suspension, quadrupedal walking), is well-reflected in the 
results obtained here. All types of PCA and their derived 
extreme shape warpings, reflect the existing morphologi-
cal separation between humans and the rest of living great 
apes, as well as the distinction of orangutans from gorillas 
and chimpanzees. However, anatomical differences along the 
diaphysis of the great ape radius are not only perceptible in 
overall curvature degrees, but also in the relative position 
and orientation of specific osseous landmarks linked to the 
attachment of soft tissues (e.g., the radial tuberosity).

Some Final Remarks on the Interpretability of Graph‑Based 
Results

While the objectives of DR in data science is primarily to 
represent information in as few dimensions as possible, so 
as to provide a more efficient means of detecting patterns 
and analysing this information, a fundamental component 
of GMM remains to be the interpretability of the results 
in terms of biological and anatomical structure and vari-
ation. From this perspective, while the increase in repre-
sented morphological variation is important in a PCA, an 
assessment of the relationship these patterns have with the 
original information is equally important. For this purpose, 
we carried out an additional analysis was used to evaluate 
the amount of signal captured by the Graph-based approach, 
in relation with those obtained using traditional methods.

To perform this, we used the first 2 PC scores from each 
feature space derived from the radii dataset to predict the 
landmarks corresponding to each individual using linearly 
constructed relationships. These predictions were then 
evaluated using the Square-Root of the Mean Squared Error 
(RMSE) between the predicted landmarks and the original 
landmarks, so as to gauge the amount of residuals present. 
reliability and preservation of biological signal are very sim-
ilar in shape space (Fig. 15), with the Graph-Based approach 
producing slightly less residuals (RMSE = 2.86), than the 
traditional PCA (RMSE = 2.96) in shape, as well as in Form 
(RMSE Original = 3.28, Graph RMSE = 3.09). Nevertheless, 
Analyses of Variance (ANOVA) between these two sets of 
residuals find a complete lack of differences (Shape F = 1.01, 
p = 0.32).

Finally, we performed a small set of additional experi-
ments adjusting the number of convolutions (Fig. S5, Sup-
plementary File 3), which demonstrates how adjusting this 
parameter can fine tune the visualisation of regional or 
global structural features as convolutions increase. In the 
case of the present study, just 2 convolutions are sufficient 
in capturing a large percentage of morphological variance, 
however other studies may wish to weight their feature 
spaces according to the research questions at hand.

Discussion

Dimensionality reduction (DR) techniques are an extremely 
useful tool in data science for a more efficient representa-
tion of information. They are additionally frequently used 
as a means and basis of pattern recognition (Bishop, 2006). 
PCA is an essential means of performing DR in GMM, as it 
extracts vectors from a large set of variables, that allow for 
the compression of information into fewer dimensions. This 
additionally maintains the Procrustes distances between the 
different specimens, accounting for as much of the original 
variation as possible. The objective of DR in GMM should 
therefore be to compress information into as little and as 
meaningful dimensions as possible, presenting a more man-
ageable dataset that can be used to describe morphological, 
structural, biomechanical or evolutionary patterns, as well 
as providing a direct means of testing hypotheses regarding 
this data.

Eigendecomposition reduces matrices into constituent 
parts which successively explain decreasing proportions of 
the total variance. In most cases, this technique is used to 
extract the most relevant information from a dataset in the 
form of the first few PC scores of PCA, thus removing any 
residual noise that may impede more complex analyses. Nev-
ertheless, the elimination of the “least important” PC scores 
often raises concerns, as no unique accepted rule exists for 
this selection (Jolliffe, 2002). In many types of analyses, the 
first few PC scores may not explain all of the necessary vari-
ance to capture true or meaningful morphological patterns, 

Fig. 15   Distribution density plots comparing the residuals in shape 
produced when using the first 2 PC scores from original and graph-
based PCAs to predict the morphology of a given individual
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while in many cases variables of biological significance can 
be found in latter PC scores as opposed to the first two—a 
good example of this would be the original publication of 
the brain dataset by Free et al. (2001). The only exception to 
this is if a strong distinctive feature is existent, such as the 
variable size. However, in these cases, form feature spaces 
are mostly biased, with the first PC being explained almost 
exclusively by size, with little explanatory power in terms 
of shape.

Other popular ordination techniques for the reduction of 
variables into smaller feature spaces have been proposed and 
debated over the decades, including (but not exclusive to) 
canonical variate analyses (CVA) and between-group PCA 
(bgPCA) (Bookstein, 2017a, 2019; Cardini et al., 2019; 
Klingenberg & Monteiro, 2005; Mitteroecker & Bookstein, 
2011; Rao, 1948; Rohlf, 2021; Yendle & MacFie, 1989). 
Both of these approaches use calculations that are based 
on sample-labels to compress information into g-1 dimen-
sions, where g is the number of groups within the dataset. 
For the present primate radii dataset this would result in a 
3-dimensional feature space representing 100% of the infor-
mation, appearing to be a much more “powerful” means 
of performing DR than either PCA or Graph-based PCA. 
Nevertheless, a very important issue that is often overlooked 
with these types of analyses is how reliant they are on the 
sample labels provided. As one of the present authors has 
recently pointed out (Courtenay, 2023), the objectives of 
DR are for pattern recognition and exploration, and should 
not be dependent on prior-knowledge about the structural 
organization of our data. This can be seen in how we may 
not always have reliable information about an individual’s 
association to certain groups, or debate may exist regarding 
the definition of the group in general. Likewise, detecting 
patterns based purely on the underlying mathematical prop-
erties of the data is much more informative and reliable than 
conditioning these properties to exist.

Beyond this, bgPCA and CVA have been noted to present 
a number of undesirable statistical properties, conditioned 
primarily by sample size (Bookstein, 2017a, 2019; Cardini 
et al., 2019; Rohlf, 2021, inter alia), but also by skew in 
sample sizes across the groups (Courtenay, 2023). In each 
of these cases, both types of analyses have been shown to 
force groups apart if the number of variables far exceeds the 
number of individuals in the sample, regardless of whether 
between-group separation should exist or not. PCA has since 
been shown to produce the most stable results (Courtenay 
2023), despite its possible susceptibility to these issues as 
well (Bookstein, 2017a). Considering how the approach 
proposed here relies on a message passing system with no 
learnable parameters (see Sects. “Mathematical Model: 
Graph-Based Geometric Morphometrics” and “Theoretical 
and Technical Considerations”), while the final visualisation 
is also based on PCA, graph-based methods maintain the 

stability identified by previous authors when confronted with 
samples of varying sample sizes, or variable to individual 
ratios. It is also important to point out that the objective here 
is not to force possible group differences, yet instead try and 
enhance the information that is present in a smaller number 
of dimensions so as to visualise multivariate patterns more 
efficiently.

The advantage of using a Graph-based approach can 
additionally be found in the mathematical ability to describe 
landmark configurations according to the relationship land-
marks have with their neighbours, as opposed to only the 
landmark’s position itself. While the displacement of even 
a single landmark, no matter how small, will have a conse-
quent effect on the entire configuration during superimposi-
tion procedures (Chapman, 1990; Hallgrimson et al., 2015; 
Klingenberg, 2021; Walker, 2000; see Sect. “Theoretical 
Proof of Concept” of the present document as well), it can 
be argued that variations in morphological patterns cannot 
(and should not) be ascribed to an individual landmark, but 
more to the relationship between the landmarks (Cardini & 
Marco, 2022; Klingenberg, 2021). While the objective of 
any multivariate analysis is the evaluation of multiple vari-
ables, and no single PC score alone, the embedding proce-
dures described here are more likely to encode and enhance 
inter-landmark and global relationships prior to PCA (see 
Sect. “Theoretical Proof of Concept”). From this perspec-
tive, Graph-based PCA captures information in a slightly 
different light to traditional PCA approaches used in GMMs, 
while additionally representing as much information in as 
few dimensions as possible.

In a number of examples presented by the current case 
studies it has been seen that Graph-based PCAs, apart from 
achieving a more comprehensive two-dimensional graphical 
representation of morphological variance, tend to be more 
congruent regardless of the data used as input. This can be 
seen in how Graph-based methods based on semi-landmarks 
and landmarks alone in the primate radii dataset (Fig. S5, 
Supplementary File 3) were able to reveal similar relation-
ships between individuals, while traditional GMM PCAs are 
less congruent and more dependent upon the availability of 
morphological information. When we compare the warped 
surfaces of both methods, differences are most noticeable 
in the way these methods capture changes in the diaphyseal 
portions of radii. Likewise, residual analyses derived from 
TPS results in Fig. 7 show that Graph-based approaches 
are equally reliable in representing morphological patterns 
across feature spaces, and thus preserve the biological signal 
in this more compressed version of feature space.

The application of alternative DR techniques, as the ones 
presented here, can thus be seen important in exploring intra 
and interspecific variability in skeletal elements, which, in 
turn, might be an interesting way of revealing morphologi-
cal patterns that are significant in group characterisation, 
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as well as the description of morphological trajectories in 
analyses in general.

Here we have shown empirically and theoretically that a 
Graph-based approach enhances the amount of information 
represented in a fewer number of dimensions—whether this 
is applicable to all case studies is something only the test of 
time will tell. The biggest issue with an approach such as 
this one is the definition of the graph, as, of course, differ-
ent means of defining the relationship between landmarks 
will lead to different results. This requires the user to have 
a certain degree of domain knowledge to give biological or 
geometric significance to the graph, as this is essentially 
what we use to project landmarks into the new embedded 
coordinate space. For this reason, we have also presented 
the possibility of empirically calculating graph edges, given 
the spatial distribution of points. This can at least serve as a 
starting point, which can later be refined depending on each 
application.

As a final remark, however, it is important to point out 
that we are far from the first to highlight potential issues 
with PCA in GMM analyses, with authors such as Bookstein 
(2017b) also providing alternative methods after a detailed 
description of the mathematical theory and history of such 
types of ordination analyses (see also Bookstein, 2016, 
2017a, 2023). These discussions often centre on the limita-
tions of decomposing data into series of linear combinations 
of variables, arguing that these types of analyses should not 
replace biological reasoning. In addition, it is worth not-
ing that not all phenomena display strictly linear patterns 
or relationships, opening up a debate on the potential need 
to explore other non-parametric alternatives, and whether 
or not they can be used to portray meaningful biological 
processes.

Here it is also important to note, and perhaps rectify 
or clarify, our use of the term “feature space” at multiple 
points within this paper (primarily Sect. “The GraphGMM 
R Library”). Here we refer to a “feature space” in the sense 
of its use in the field of data science, whereby we simply 
convey the concept that a “feature” is a measurable prop-
erty of an element being studied. From this perspective, we 
define a “feature space” as a set of constructed dimensions 
corresponding to a particular combination or derivation of 
“features” or “attributes”, that we may be able to correlate 
with real-life processes. However, as noted by Gould (1967), 
beyond the first PC score, subsequent scores are orthogonal 
to the first dimension, leading us to view the resulting eigen-
values and eigenvectors as 'mathematical abstractions’ lack-
ing inherent biological meaning. From an epistemological 
perspective, it may be prudent to conceptualize these spaces 
as morphological coordinate spaces instead, focusing on the 
fundamental properties of landmarks as points in a Cartesian 
coordinate system, devoid of biological meaning beyond that 
which we assign them ourselves.

In the present study, we attempt to provide at least geo-
metric meaning to constructed shape coordinate spaces by 
establishing the relationship between, and subsequently 
visualising, the morphological icons that are associated 
with either side of each PC’s extremities. As illustrated in 
Fig. 15, constructing these icons using PC scores derived 
from embedded landmarks yields results comparable to 
those derived from the original Procrustes superimposed 
landmarks. This at least allows us to establish a geometric 
correspondence between the dispersal of points in reduced 
dimensions and configurations of landmark coordinates. 
PCA additionally enables us to visualise a large amount 
of information in a reduced number of dimensions, while 
attempting to preserve important patterns about where indi-
viduals fall relative to each other (Howells, 1984). If we 
can then establish a relative correspondence between those 
distributions and morphological variation, this enables us to 
infer a relative relationship between these distributions and 
morphological variation. While this approach aids in inter-
preting such patterns, it is not exhaustive and may require 
additional heuristics and domain knowledge for imposing 
biological meaning onto these 'mathematical abstractions'.
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