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Abstract
Components of the same structure or characters of the same individual might respond differently to natural and sexual selec-
tive pressures, showing complex morphological patterns. Besides, studying interactions between species plays a crucial role 
in understanding the diversification of sex-linked phenotypes. Specifically, when two closely related species coexist and 
exhibit interspecific sexual interactions (reproductive interference—IR), key traits for mating can diverge in sympatric areas 
to prevent interbreeding and ensure reproductive isolation (reproductive character displacement—RCD). RCD is primarily 
driven by natural selection, although sexual selection pressures can alter the pattern of phenotypic variation. Additionally, 
to gain a comprehensive understanding of the patterns of morphological diversification, it is essential to consider changes 
related to phenotypic plasticity across environmental gradients. To date, there are no studies evaluating this topic in scorpions, 
and two sympatric species (Urophonius brachycentrus and U. achalensis) with RI, provide an ideal model for evaluating 
phenotypic variation across environmental gradients and the presence of RCD. In this study, we compared intra-specific 
variation, as well as the size and shape of multiple characters involved in courtship and sperm transfer, between individuals 
from sympatric and allopatric populations using geometric morphometrics. Our findings revealed an increase in the size of 
various characters at lower temperatures (higher altitudes) for U. brachycentrus, making them more similar to heterospecifics 
in sympatric areas, resulting in a pattern of morphological convergence between these species. Increased similarity between 
species combined with a scramble competition mating system could intensify sexual selection pressures on particular char-
acters. Furthermore, we identified asymmetric RCD in the shape of several sexual characters crucial for mating success 
(grasping structures) and sperm transfer (genital characters), which could potentially be significant for mechanical isolation 
during interspecific interactions. Our results highlight significant morphological variability in the size and shape of somatic 
and genital characters in two scorpion species. This variability may reflect different evolutionary responses, driven in part 
by natural selection pressures associated with geographic and environmental variations and species recognition mechanisms, 
and in part by sexual selection pressures at both the intra- and interspecific levels. This comprehensive study reveals the 
complexity of evolving multifunctional traits in an understudied model and offers valuable insights into traits subject to 
multiple selective pressures in animal systems experiencing RI.
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Introduction

Determining the factors underlying phenotypic variation 
in natural populations is important for comprehending the 
evolution of species and their biological diversity and is a 
fundamental task of evolutionary biology (Coyne & Orr, 
2004). The morphology of organisms is shaped by multiple 
selective pressures, particularly those involved in various 
components of the life history of organisms. A noteworthy 
aspect of this process involves the relatively fast evolution-
ary divergence of secondary sexual characters due to the 
combined forces of sexual and natural selection (Svensson 
& Gosden, 2007). Natural selection acts upon morphologi-
cal traits associated with growth, reproduction, and survival, 
thus promoting greater reproductive success in specific envi-
ronments. In contrast, sexual selection underpins the mor-
phological changes that favor reproductive success through 
mechanisms such as intra-sexual competition, inter-sexual 
mate choice, or post-copulatory processes (Kraaijeveld et al., 
2011; Maan & Seehausen, 2011; Safran et al., 2013).

The study of phenotype variation and its causes may 
be complicated, primarily because adaptation operates as 
a multivariate process affecting sets of characters (Blows, 
2007; Lande & Arnold, 1983; Schluter & Nychka, 1994). 
Organisms can be interpreted as composite entities, with 
characters that are not necessarily independent of one 
another responding in intricate and diverse ways to differ-
ent selective pressures (Klingenberg, 2009). This presence of 
multiple, varied selective regimes can lead to a phenomenon 
known as “mosaic evolution”, where different components 
of the same structure exhibit mixed responses to synergistic 
or antagonistic selective pressures, driven by the multifac-
eted nature of these forces. Moreover, even the shape and 
size of the same structure can diverge disparately in response 
to these pressures (House & Simmons, 2005; Song & Wen-
zel, 2008; Werner & Simmons, 2008).

Examining interspecific interactions plays a pivotal role 
in understanding sex-linked phenotypic diversification 
(Cothran, 2015). Specifically, one intriguing facet of these 
interactions is reproductive interference (henceforth referred 
as ‘RI’), a phenomenon defined as any form of interspe-
cific interaction among sympatric species associated with 
their mating systems stemming from incomplete recognition 
between them (Burdfield-Steel & Shuker, 2011; Gröning & 
Hochkirch, 2008). This process can have detrimental effects 
on the reproductive success of at least one of the involved 
species (Hochkirch et al., 2007). RI between species can lead 
to the displacement of key characters in reproductive inter-
actions (i.e., reproductive character displacement—hence-
forth referred as ‘RCD’) (Howard, 1993). RCD results in a 
divergence of these characters, which serves to alleviate RI 
and consequently reinforces reproductive isolation (Coyne 

& Orr, 2004; Kyogoku, 2015; Servedio & Noor, 2003), and 
is therefore considered a natural selection mechanism. In 
sympatry, where these species share the same geographical 
area, characters of coexisting species should exhibit greater 
divergence compared to their allopatric populations. The 
more similar the characters of interacting species are in sym-
patry, the stronger the consequences of RI on reproductive 
success (Konuma & Chiba, 2012; Pfennig & Pfennig, 2010).

However, due to the complex interplay of multiple selec-
tive pressures acting on sexual characters, as discussed ear-
lier, predicting the direction of their morphological evolu-
tion is sometimes not so straightforward. In sympatric areas, 
intraspecific sexual selection pressures may combine with 
interspecific interactions creating a mosaic of selective pres-
sures with different outcomes in terms of morphological 
variation (Grether et al., 2009). Secondary sexual charac-
ters may play a role in specific recognition, and thus their 
divergence can be attributed to natural selection (Bennet-
Clark & Ewing, 1970; Mayr, 1963). However, it has been 
postulated that mate choice and specific recognition are part 
of a continuum, and that sexual selection may also lead to 
reinforcement or RCD (Boake et al., 1997; Liou & Price, 
1994; Mendelson & Shaw, 2012; Ryan & Rand, 1993). For 
example, female choice can promote isolation resulting in 
the divergence of male sexual characters to prevent RI or 
hybridization (Butlin, 1987; Gröning & Hochkirch, 2008; 
Hoskin & Higgie, 2010). Alternatively, in a not mutually 
exclusive scenario, males may engage in a constant “race” 
to mate by competing with conspecific and heterospecific 
males, leading to more frequent discrimination errors in an 
extended scramble competition style (Takakura et al., 2015). 
This promiscuous behavior may be adaptive if the costs of 
the mistakes are outweighed by a higher reproductive suc-
cess for these not very discriminative males. In these cases, 
it is expected a convergence of sexual characters (Drury 
et al., 2015; Grant, 1972; Grether et al., 2009; Sobroza 
et al., 2021; Tobias et al., 2014) with consequent mainte-
nance or intensification of RI (Takakura et al., 2015; Wheat-
croft, 2015; Yamaguchi & Iwasa, 2015). In turn, the degree 
and direction of divergence of sexual characters may differ 
according to their function, the moment of the reproductive 
event in which RI occurs and the evolutionary interests of 
the sexes (Gröning & Hochkirch, 2008).

Animal genitalia, especially in the male, can display com-
plex morphologies and undergo rapid and divergent evolu-
tionary changes compared to other body parts (Eberhard, 
1985; Leonard & Córdoba-Aguilar, 2010; Tuxen, 1970). 
Sexual selection is widely recognized as a key driver in 
the evolution of genitalia (Eberhard, 1985, 2010; Hosken 
& Stockley, 2004; Simmons, 2014). Conversely, the diver-
gence of genitalia can also be attributed to natural selection, 
as it contributes to reproductive isolation between species, 
thereby promoting speciation (Eberhard, 1985, 2010; House 



126 Evolutionary Biology (2024) 51:124–148

et al., 2013; Masly, 2012; Wojcieszek & Simmons, 2012). 
Phenomena such as RCD may contribute to differences 
in genitalia between species in sympatric regions, where 
mechanical or interlocking incompatibilities between male 
and female genitalia may frequently occur (Masly, 2012). 
Similarly, other non-genital characters used in contact dur-
ing pre-copulatory or copulatory behavior (e.g., grasping 
structures, claspers that require morphological complemen-
tarity between males and females) may exhibit the same tra-
jectories of rapid and disparate change as genital characters 
(Eberhard, 1985, 2004, 2010; Robson & Richards, 1936). 
The relative importance of natural and sexual selection in 
genitalia and contact character evolution continues under 
debate (Brennan & Prum, 2015; Eberhard, 1985, 2010; 
Eberhard & Lehmann, 2019; Jennions & Kelly, 2002; Sim-
mons, 2014; Sloan & Simmons, 2019), although there is 
compelling evidence suggesting that multiple selective pres-
sures may be important to shape their morphological evolu-
tion (Frazee & Masly, 2015; House et al., 2013; Langerhans 
et al., 2005; McPeek et al., 2009; Simmons, 2014; Simmons 
et al., 2009; Song & Wenzel, 2008).

Furthermore, phenotypic plasticity refers to the capacity 
of organisms to change their morphology, behavior, or physi-
ology in response to environmental fluctuations (Stearns, 
1989; West-Eberhard, 2003; Whitman & Agrawal, 2009). 
When characters express some degree of phenotypic plastic-
ity, differences in phenotype resulting from environmental 
variation among species and populations can give rise to 
patterns of morphological variation (Garnier et al., 2005; 
Jennions & Kelly, 2002; Song & Wenzel, 2008). It is impor-
tant to acknowledge that the environment can directly or 
indirectly influence both genetic and phenotypic variation, 
leading to geographic variation among different populations 
(Kosuda et al., 2016; Sota et al., 2000; Wilson et al., 2021), 
especially along environmental clines (Goldberg & Lande, 
2006). Consequently, one of the prerequisites for testing 
RCD is to disentangle the effects of allopatric/sympatric 
contexts from other ecological factors. To identify patterns 
of divergence that might otherwise go unnoticed, it is impor-
tant to control correlations between phenotype and environ-
mental or gradients (Goldberg & Lande, 2006).

Examples of RI exist in many animal and plant groups 
(e.g., Armbruster & Herzig, 1984; Dame & Petren, 2006; 
Gröning & Hochkirch, 2008; Hettyey & Pearman, 2003; 
Levin, 1970; Matsumoto et al., 2010), and among them, 
arthropods have provided interesting models for study-
ing this phenomenon (Shuker & Burdfield-Steel, 2017). 
Although some cases of ecological character displacement 
have been described in insects and arachnids, there are fewer 
examples of RCD in these taxa due to the difficulty of empir-
ically evidencing this process (Waage, 1979). However, in 
arthropods, evidence of RCD was found in pre-copulatory 
characters used during courtship (Dyer et al., 2014; Jang & 

Gerhardt, 2006; Kronforst et al., 2007; Marshall & Cooley, 
2000; Rundle & Dyer, 2015; Yukilevich, 2021) and there 
are also examples of RCD in genital characters (Kawakami 
& Tatsuta, 2010; Kawano, 2002; Kosuda et  al., 2016; 
Nishimura et al., 2022). In arachnids, there are some sug-
gestions that RCD might occur between species in sympatry 
(Agnarsson et al., 2016; Barth, 1990; Muster & Michalik, 
2020; Stratton, 1997), as is the case of genital characters 
between Paratrechalea spider species with RI (Costa-
Schmidt & de Araújo, 2010). Nevertheless, RCD has not yet 
been investigated in scorpions and only one case of IR was 
recently reported among species of the Family Bothriuridae 
(Oviedo-Diego, 2022; Oviedo-Diego et al., 2021). However, 
there are several records of interspecific mating in scorpions 
(Auber, 1963; Le Pape & Goyffon, 1975; Matthiesen, 1968; 
Peretti, 1993; Peretti et al., 2000; Probst, 1972). Further-
more, the coexistence of species in the same spatial area 
appears to be a common among scorpions (Acosta, 1995; 
Dionisio-da-Silva et al., 2018; Goodman & Esposito, 2020; 
Graham et al., 2012; Nime et al., 2014; Polis & McCormick, 
1986; Vignoli et al., 2005).

Additionally, scorpions offer an interesting model for 
investigating these topics because, in certain species, we 
possess substantial knowledge regarding the functional sig-
nificance of numerous courtship behaviors (Peretti, 2010; 
Polis & Sissom, 1990). Throughout sexual interactions, 
individuals engage in signal exchange and various behav-
iors involve traits to stimulate or appease the female (Carrera 
et al., 2009; Chantall-Rocha & Japyassú, 2017; Lira et al., 
2018; Olivero et al., 2015, 2019; Peretti, 2013; Peretti et al., 
2001). Several of these traits, in addition to the complex 
genitalia have been the subjects of morphological analysis 
suggesting that in many cases they are found under various 
selective regimes (Carrera et al., 2009; Fox et al., 2015; Mat-
toni et al., 2012; Monod et al., 2017; Peretti, 2003; Peretti 
et al., 2001; Sánchez-Quirós et al., 2012; Santibáñez-López 
et al., 2017; Visser & Geerts, 2021). Scorpions present indi-
rect sperm transfer via a sclerotized spermatophore depos-
ited in the substrate (that is regenerated each time the male 
mates from two chitinous halves—i.e., hemispermatophores 
produced in internal glandular structures called paraxial 
organs) (Polis & Sissom, 1990; Proctor, 1998; Weygoldt, 
1990). These genital characters are incredibly complex and 
can be divided into subunits offering interesting opportuni-
ties for studying the evolution of genitalia (Mattoni et al., 
2012; Monod et al., 2017; Peretti, 2003, 2010; Peretti et al., 
2001). In particular, these characters were extensively stud-
ied in the family Bothriuridae in the evolutionary framework 
of sexual selection (Carrera et al., 2009; Olivero et al., 2014, 
2015, 2019; Oviedo-Diego et al., 2020; Peretti, 2003, 2010; 
Peretti et al., 2001).

Here, we examined the occurrence of RCD in two closely 
related scorpion species of the genus Urophonius Pocock, 
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1893 (U. brachycentrus and U. achalensis, Bothriuridae) 
(Ojanguren-Affilastro et al., 2020) that have partially sympa-
tric ranges in mountainous regions of central Argentina with 
overlapping reproductive seasons and share the same habi-
tat (Acosta, 1985; Maury, 1969; Ojanguren-Affilastro et al., 
2020). These scorpions exhibit winter habits and adaptations 
for this lifestyle, which is rather peculiar among scorpions 
(Garcia et al., 2021; Ojanguren-Affilastro et al., 2020, 2023). 
These species lack specific recognition through chemical 
signals, which, coupled with a promiscuous mating system 
in the sympatric area, leads to an asymmetric RI scenario 
with heterospecific mating (Oviedo-Diego, 2022; Oviedo-
Diego et al., 2021). Therefore, we expect greater morpholog-
ical differentiation in at least one of the analyzed Urophonius 
species in sympatric populations regarding allopatric ones 
(RCD pattern), which would hinder or prevent heterospecific 
mating, given the costs they may entail in terms of gamete 
loss, female plugging (Oviedo-Diego et al., 2019, 2020; 
Romero-Lebrón et al., 2019) or potential hybridization. For 
test this we conducted a comprehensive morphometric study 
of genital and somatic characters (utilized during courtship) 
comparing males and females of sympatric and allopatric 
populations of these species. Additionally, we analyzed the 
effect of the environmental cline linked to these mountain-
ous areas, in order to take into account the role of phenotypic 
plasticity in the morphological evolution of the analyzed 
characters. Our results, incorporating multiple lines of evi-
dence, underscore the intrinsic complexity of sexual char-
acters in scorpions and provide valuable insights in the pos-
sible selective pressures driving the evolution of these traits.

Materials and Methods

Study Species and Sampling

Urophonius brachycentrus has a wide geographic range 
distributed throughout central Argentina, while U. acha-
lensis is endemic to the mountainous regions of Córdoba 
in central Argentina (Acosta, 1985; Ojanguren-Affilastro 
et al., 2020). The two species share partially sympatric dis-
tribution areas in the Sierras Grandes in Córdoba, Argen-
tina (Acosta, 1985). Urophonius brachycentrus and U. 
achalensis are closely related species within the brachycen-
trus species group, but they are not sister species, showing 
some phylogenetic distance (Ojanguren-Affilastro et al., 
2020). This species group is extremely old, around 64 Ma 
(Ojanguren-Affilastro et al., 2023), but still all the species 
show a basic common phenotype, sharing many characters 
(Ojanguren-Affilastro et al., 2020). Adult scorpions (n = 25 
per population context and per sex of each species) of U. 
achalensis and U. brachycentrus were collected during the 

day during the mating season (May–August) (Acosta, 1985; 
Maury, 1969; Ojanguren-Affilastro et al., 2020) for 3 con-
secutive years (2018, 2019, 2020) by turning over rocks. 
We collected individuals in two allopatric populations of 
U. brachycentrus (31° 22′ 42.4″ S 64° 35′ 34.0″ W, 876 
m.a.s.l..; 31° 31′ 46.3″ S 64° 51′ 52.7″ W, 996 m.a.s.l.), 
two allopatric populations of U. achalensis (31° 35′ 49.1″ S 
64°  44′  49.3″  W, 2030 m.a.s.l., 31°  21′  17.3″  S 
64° 48′ 21.3″ W, 1927 m.a.s.l.), and in two sympatric pop-
ulations (31° 23′ 13.5″ S 64° 46′ 10.2″ W, 1796 m.a.s.l.; 
31° 34′ 07.6″ S 64° 42′ 43.8″ W, 1610 m.a.s.l.) (Fig. 1).

Processing of Individuals and Selected Characters

Collected individuals were first identified and sexed (Ojan-
guren-Affilastro, 2005) with a Nikon SMZ 1500 stereo 
microscope and preserved in 80% EtOH within glass con-
tainers for morphological studies. Our study encompassed 
both classical and geometric morphometric analyses involv-
ing measurements of characters that were compared between 
sexes and species across different contexts (sympatry ver-
sus allopatry) (Table 1; Fig. 2). We selected characters used 
during feeding, defense, and courtship such as pedipalps, 
chelicerae and telson vesicle (Table 1; Fig. 2). Also, we 
considered characters used only in a sexual context, such as 
those involved in female stimulation (male telson gland) and 
those facilitating the grasping of the female pedipalps (male 
pedipalp apophyses) (Table 1; Fig. 2). Finally, we measured 
genital characters involved in sperm transfer that have also 
been shown to be under sexual selection pressures (Olivero 
et al., 2015; Peretti, 2010) (Table 1; Fig. 2). To analyze the 
selected characters, individuals were dissected, and internal 
structures were extracted with fine tweezers for photographic 
treatment. The measurements of individuals were taken from 
images captured under the stereo microscope with a digital 
coupled camera (Nikon Digital Sight DS-FI1-U2). Because 
the internal female genitalia consist of flexible structures 
that vary in size and shape according to the female mating 
status (Peretti, 2010), morphometric analysis was not per-
formed. In subsequent analyses, individuals, and characters 
with damaged or incomplete portions were not considered. 

Morphometric Studies

Classic Morphometric Analysis

For the analysis of chelicerae and the pectines, we employed 
linear measurements due to methodological constraints in 
applying geometrical morphometrics. We measured both 
absolute and relative lengths, with prosome length serving 
as body size proxy (McLean et al., 2018) (Table 1). These 
measurements were acquired from photographs obtained for 
each character using ImageJ software tools (Schneider et al., 
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Fig. 1  Maps of the study area. A Map of Urophonius brachycentrus 
and U. achalensis species collection sites, map in upper right corner 
indicating Argentina and the approximate study area delimited with 
a red square. B Limit between one of the sympatric zones with the 

allopatric population of U. achalensis, separated by the “Río Yuspe” 
(Yuspe River). C Map of temperature range in the collection sites. 
Color reference indicated in lower right corner. Black dots: U. acha-
lensis; white dots, U. brachycentrus (Color figure online)
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2012). To ensure accuracy, measurements were taken three 
times by the same person, and the measurement error was 
calculated (Sokal & Rohlf, 1995).

Geometric Morphometric Analysis

We captured digital images of the selected characters in both 
male and female scorpions, with a scale close to charac-
ter, and the images were assembled with TPSutil software 
(Rohlf, 2015). Sets of anatomical landmarks (Bookstein, 
1991) and semilandmarks were established using TPS-
Dig2 (Bookstein, 1997; Gunz & Mitteroecker, 2013; Rohlf, 
2004). We placed landmarks in the prosome, the hemisper-
matophore lamella, the pedipalp, and the apophysis of this 
structure (Tables 1, S1; Fig. 2). In cases where curvatures 
between adjacent landmarks were of interest, sliding land-
marks or semilandmarks were used to provide additional 
geometric information, specifically in the pedipalp, the pedi-
palp apophysis, and the hemispermatophore lamella (Fig. 2). 
For other characters such as the hemispermatophore capsular 
lobe, telson vesicle and the telson gland we quantified shape 
using an elliptic Fourier analysis (EFA) (following Santi-
báñez-López et al., 2017, 2021) that allowed us to explore 
subtle differences in defined shapes from contour characteri-
zation (Ferson et al., 1985; Hammer & Harper, 2006; Kuhl 
& Giardina, 1982) (Fig. 2).

The shape coordinates of each character were subjected 
to a Generalized Procrustes Analysis (GPA) (Gower, 1975) 
with the ‘gpagen’ function of the geomorph package (Adams 
et al., 2017; Schlager, 2017) in R software (R Core Team, 
2021) to remove non-shape variables (translation, rotation, 
size) from the dataset to compare shape by contrasting with 
a mean generated from a consensus matrix (Adams et al., 
2017; Rohlf & Slice, 1990). The size proxy of each charac-
ter was retained from the GPA analysis (i.e., centroid size) 
for subsequent analyses (Bookstein, 1991; Zelditch et al., 
2004). To account for semilandmarks in the GPA calcula-
tion, we used the ‘slider2d’ function of the Morpho pack-
age (Schlager et al., 2021). EFA was performed using the 
momocs package (Bonhomme et al., 2014; Iwata & Ukai, 
2002).

We conducted a Principal Component Analysis (PCA) to 
visualize and explore the general trends in the distribution 
of total morphological variation in morphospace from both 
the data yielded by the GPA as well as the data obtained 
from the EFA using the ‘plotTangentSpace’ function of the 
geomorph package. Principal components can be viewed as 
reorganized and uncorrelated morphological features repre-
senting distinct aspects of the total shape variation within 
the dataset. Additionally, vectors that reflected shape vari-
ation along x/y axes were used to visualize magnitudes and 

overall shape changes with the geomorph package (Book-
stein, 1991). We performed a multivariate analysis of vari-
ance (MANOVA) with the function ‘procD.lm’ of the geo-
morph package with resampling permutations procedure to 
calculate the significance of shape variables. We focused 
on the variation in shape of the first two principal compo-
nents (since they captured more than 70% of the morpho-
logical variation). First, we checked the allometric compo-
nent (influence of size on shape) of the characters with the 
functions ‘procD.lm’ and ‘plotAllometry’ of the geomorph 
package. If we found allometry in the sample, we calculated 
residual values of the shape variables for subsequent analy-
ses (Outomuro & Johansson, 2017).

Statistical Analysis to Test RCD

To compare the measurements obtained by classical and 
geometric morphometrics between species and contexts 
(sympatry versus allopatry) we utilized linear mixed mod-
els (LMMs) in R. Separate models were conducted for each 
character and sex (because in some characters the number 
of landmarks was not equal for males and females) where 
we set as response variables the linear measurements, size 
variables (centroid size) or shape variables (PCs scores) 
and the fixed effects were species (levels: U. achalensis/U. 
brachycentrus) and contexts (levels: sympatry/allopatry). 
The interaction between these fixed effects was evalu-
ated to corroborate RCD patterns. We added populations 
of origin as random effects to account for the variability 
contributed to this factor. Due to the influence of altitude 
on morphological variability (see section “Influence of 
Environmental Factors on Morphological Characters”), 
we added the altitude where individuals were collected 
as another random effect. Analyses were performed with 
the package lme4 (Bates et al., 2011) and lsmeans (Lenth, 
2016) for a posteriori test (with Bonferroni correction) if 
necessary. Model validation was assessed graphically and 
by residual analysis.

Influence of Environmental Factors 
on Morphological Characters

In addition, a subset of data was subjected to an analysis 
to investigate whether environmental factors might corre-
late with any of the phenotypic characters measured. We 
recognized that factors such as clinal or geographic vari-
ation in our study system could potentially influence the 
observed patterns (Goldberg & Lande, 2006). As altitude 
may be strongly associated with temperature and humid-
ity, we considered the variation of these environmental 
variables in our analysis. We obtained the mean annual 
temperature and mean annual rainfall of the study area from 
Geoportal IDESA http:// geopo rtal. idesa. gob. ar (data from 

http://geoportal.idesa.gob.ar
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last year available: 2017). With the QGIS program 3.26 
(QGIS Development Team, 2020), we mapped the distribu-
tion of the collected individuals (using the geo-referenced 
latitude and longitude data for each individual). We used 
the ‘extractRandomClim’ function of the raster package 
(Hijmans et al., 2015) in R to extract the values of the vari-
ables of interest for each collection point. Subsequently, we 
explored the relationships between these environmental fac-
tors with size (centroid size, absolute length) and shape (PCs 
scores) previously calculated (see section “Geometric Mor-
phometric Analysis”) with linear mixed models (LMMs). 
We acknowledge that other environmental factors (e.g., soil 
characteristics, atmospheric pressure, food availability) may 
affect some of the phenotypic variation among species and 
populations. Still, the scoring of these factors was beyond 
the scope of this study, so our estimates of environmental 
effects on phenotype are prospective.

Results

Morphological Variation Across Contexts

We compared multiple genital and somatic characters in 
males and female scorpions from sympatric and allopatric 
contexts. We observed different patterns of phenotypic vari-
ation in different directions (convergences and divergences) 
in each species (Fig. 3), and the shape and size appear to 
respond independently to different selective pressures. The 
morphometric results for each character analyzed in both 
sexes are detailed below, first evaluating the size and then 
the variation in shape.

Chelicerae and Pecten: Asymmetric Convergence in Size 
Only in Females

We observed an asymmetric convergence in the absolute 
length of both chelicerae (χ2 = 34.180, p < 0.001) and 
pectines (χ2 = 45.894, p < 0.001) in females (being U. 

brachycentrus more similar to U. achalensis in sympatry) 
(Fig. 3). Neither contexts nor species showed differences in 
the relative lengths of chelicerae or pectines. We only found 
interspecific differences in the relative cheliceral length in 
males, with U. brachycentrus males having larger chelicerae 
(χ2 = 64.348, p < 0.001) than U. achalensis males. How-
ever, all the other variables did not differ between species 
or contexts.

Prosome and Telson Vesicle: Size Convergence

The centroid size of the prosome exhibited symmetric con-
vergence in females of both scorpion species, with spe-
cies becoming more similar in sympatry than in allopatry 
(χ2 = 26.907, p < 0.001). In males, however, we noted asym-
metric convergence, with U. brachycentrus more similar in 
sympatry than in allopatry) (χ2 = 8.507, p = 0.004) (Fig. 3). 
In terms of shape, the Procrustes MANOVA showed no 
significant variation according to species and context. 
PC1 comprised almost half of the morphological variation 
(Females: 46.49%, Males: 45.85%), showing interspecific 
differences (U. brachycentrus more compressed prosome 
than U. achalensis) (Females: χ2 = 31.992, p < 0.001; Males: 
χ2 = 19.895, p < 0.001) (Fig. 3). PC2 explained an 18.44% 
of the variation in females and 13.82% in males and showed 
no differences between species or contexts in either sex. PC3 
accounted for 13.37% of the variability in females without 
differences between species or contexts. In contrast, PC3 
in males, representing 12.52% of morphological variability, 
was different between species (χ2 = 9.783, p = 0.002) and 
contexts (χ2 = 6.827, p = 0.006) but we found no significant 
interaction between these factors.

Regarding the telson vesicle, in females, we found a pat-
tern of symmetric convergence in the centroid size with 
both species becoming more similar in sympatry than in 
allopatry (χ2 = 32.176, p < 0.001) (Fig. 3). In males the 
convergence was asymmetric, as only males of U. brach-
ycentrus presented a shift in the size of this character in 
sympatry (χ2 = 6.118, p = 0.013). The Procrustes MANOVA 
showed significant shape variation according to species in 
both sexes (Females: F = 4.269, p = 0.001; Males: F = 4.404, 
p = 0.001), but the interaction between species and context 
was not significant (Fig. 3). In females, we found significant 
differences between species in telson vesicle shape reflected 
in PC1 (54%) (χ2 = 22.441, p < 0.001) and PC2 (19.57%) 
(χ2 = 21.034, p < 0.001). Also, in males, PC1 (67.48%) 
showed differences between species (χ2 = 36.965, p < 0.001) 
(Fig. 3), while in PC2 (12.21%) there were no significant 
differences between species or contexts.

Fig. 2  Selected characters for morphological study in Urophonius 
achalensis and U. brachycentrus. A General diagrams of measured 
somatic and genital characters. B Prosoma. C Lateral view of the 
male pedipalp. D Apophysis of the male pedipalp. E Lamella of the 
hemispermatophore. F Capsular lobe of the hemispermatophore. G 
Lateral view of male telson. H Dorsal view of male telson with telson 
gland. ap pedipalp apophysis; ch chelicerae; cl hemispermatophore 
capsular lobe; e median eye; fc hemispermatophore frontal crest; 
ff pedipalp fixed finger; la hemispermatophore lamella; mf pedipalp 
mobile finger; pe pedipalp; pr prosoma; st sting; tg telson gland; tr 
hemispermatophore trunk; tv telson vesicle. References: Red dots, 
Landmarks position (details in Tables 1, S1); black dotted line, char-
acter analyzed with semilandmarks; red dotted line, character ana-
lyzed by elliptical Fourier analysis. Scales: A = 5 mm in scorpion, 0.5 
mm in hemispermatophore, B, C, G, H = 1 mm; D–F = 0.5 mm

◂



133Evolutionary Biology (2024) 51:124–148 

Fig. 3  Diagrams showing the summary of morphological variation in 
size and shape of somatic and genitalia characters in scorpions in dif-
ferent contexts of sympatry and allopatry. Each character is scaled at 
the intrasexual level. Gray area in the middle of the plate indicates 

sympatric zone. Gray arrows, characters undergoing convergence; 
black arrows, characters undergoing divergence (RCD). ♂: males, ♀: 
females, ≠ : Statistical differences between species in sympatry (Color 
figure online)
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Pedipalp in Females: Asymmetric Convergence in Size 
and Divergence in Shape

We found asymmetric convergence in pedipalp centroid 
size, with species more similar in sympatry than in allopatry 
due to a shift of U. brachycentrus (χ2 = 19.812, p < 0.001) 
(Figs. 3, 4A). In terms of shape, the Procrustes MANOVA 
showed significant variation according to species and context 
(F = 7.788, p = 0.001). PC1 explained 38.10% of morpho-
logical variability, and we found asymmetric divergence in 
PC1, with U. brachycentrus females showing a shift relative 
to sympatric U. achalensis females and allopatric females 
(χ2 = 8.294, p = 0.004) (Fig. 4B). PC2 explained 26.95% 
and PC3 10.60% of morphological variation although these 
shape variables showed no significant differences between 
species or contexts.

Pedipalp and Apophysis in Males: Asymmetric Divergence 
in Shape

Male pedipalp size showed only interspecific differences, 
with larger pedipalp and apophysis in U. achalensis than 
U. brachycentrus (χ2 = 84.839, p < 0.001) (Figs. 3, 4A). 
The Procrustes MANOVA showed significant variation by 
species and context (F = 3.321, p = 0.006). Regarding the 
pedipalp, PC1 explained 45.25% of the morphological vari-
ability, and we found a pattern of asymmetric divergence 
in PC1 (U. brachycentrus males with higher pedipalp and 
shorter fixed fingers than allopatric males and sympatric U. 
achalensis males) (χ2 = 10.069, p = 0.002) (Fig. 4B, D, E). 
PC2 accounted for 20.21% and PC3 a 9.99% of the vari-
ability, and this component showed no differences between 
species or contexts (Fig. 4D).

For the pedipalp apophysis size, we found interspecific 
differences (χ2 = 38.651, p < 0.001), with apophysis of U. 
achalensis being larger than those of U. brachycentrus 
(Figs. 3, 4C). The Procrustes MANOVA showed significant 
variation in the interaction between species and context 
(F = 3.419, p = 0.014). PC1 (accounting for 31.11% of the 
variation) showed no significant differences between species 
or contexts. In contrast, PC2 explaining 21.07% of the mor-
phological variation, showed significant differences between 
species in sympatry, and not in allopatry (χ2 = 10.221, 
p = 0.002) (Fig. 4C, E). Moreover, the shape of the apophysis 
was different between sympatric and allopatric populations 
of U. brachycentrus so that this displacement pattern would 
be an asymmetric divergence. Morphological variability 
was also distributed between PC3 (9.34%) and PC4 (8.56%), 
although these variables were not different between contexts 
and only between species in PC4 (χ2 = 8.685, p = 0.003).

Telson Gland: Asymmetric Convergence in Size

Telson gland size showed a pattern of asymmetric con-
vergence, with U. brachycentrus males more similar to U. 
achalensis males in sympatry and differing significantly 
from allopatric population males (with smaller gland) 
(χ2 = 10.087, p = 0.002) (Fig. 3). The Procrustes MANOVA 
showed significant variation only according to species 
(F = 155.064, p < 0.001), but the interaction between spe-
cies and context was not significant. Regarding shape, PC1 
almost completely comprised all morphological variability 
(92.81%), and we only found significant interspecific dif-
ferences (U. brachycentrus showing a more compressed 
and wider telson gland than U. achalensis) (χ2 = 155.774, 
p < 0.001). PC2, with an explanation of only 2.86% of the 
morphological variation, did not differ between species or 
contexts.

Hemispermatophore Lamella: Asymmetrical Divergence 
in Shape

Hemispermatophore lamella size varied only at the inter-
specific level (χ2 = 86.714, p < 0.001), with lamella of 
U. achalensis males always being larger than those of U. 
brachycentrus (Figs. 3, 5A). In terms of shape, the Pro-
crustes MANOVA showed significant variation according 
to species and context (F = 3.223, p = 0.006). Almost half 
of the lamella morphological variation was represented by 
PC1 (43.41%) (Fig. 5B, C). This shape showed asymmetric 
divergence, as U. brachycentrus males differed from their 
allopatric conspecifics with a wider lamella, also differing 
from sympatric U. achalensis males (χ2 = 6.791, p = 0.009) 
(Fig. 5C, D). PC2 comprised 15.33% and the PC3 14.02% 
of the morphological variation but these shape variables 
showed no differences between species or contexts (Fig. 5C).

Hemispermatophore Capsular Lobes: Asymmetrical 
Divergence in Size

We found a pattern of asymmetric divergence in the hemi-
spermatophore capsular lobe size, with males of U. brachy-
centrus in sympatry having larger lobes than the rest of the 
male groups (χ2 = 12.784, p < 0.001) (Fig. 3). We found 
no significant interaction between species and context in 
the Procrustes MANOVA, but there was variation in shape 
according to species (F = 4.847, p = 0.001). PC1 explained 
31.96% and PC3 16.19% of the morphological variance, and 
none of the shape variables resulted in a difference between 
species or contexts. PC2 accounted for the 25.52% and dif-
fered between contexts (χ2 = 3.926, p = 0.048) and margin-
ally between species (χ2 = 3.319, p = 0.068), but the interac-
tion between context and species was not significant.
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Influence of Environmental Factors 
on Morphological Characters

We found that the size (centroid size and absolute length) of 
nearly all the characters we examined exhibited variations 
correlated with temperature (Table 2). We found a signifi-
cant statistical interaction between temperature and species 
in all cases, so temperature-dependent morphological varia-
tions were observed only in U. brachycentrus, with no rela-
tionship in U. achalensis. In general, both sexes of this spe-
cies had larger characters in colder areas (at higher altitudes) 
and smaller characters in warmer areas (at lower altitudes). 
This pattern was evident in the prosome, pedipalp, cheli-
cerae, pecten, and telson vesicle for both sexes. In males, we 
also found this same pattern of variation in U. brachycentrus 
for the telson gland and genital characters, though it was 
not apparent in the pedipalp apophysis. The observed vari-
ation in the size of many characters aligns with the asym-
metric convergence found in U. brachycentrus. The shape 
of none of the analyzed structures showed variation with 
temperature (Table 2). Our analysis of humidity (rainfall) 
also revealed patterns of morphological variation of some 
characters regarding this environmental factor (Table 2). 
We observed that females of both species exhibited a larger 
prosoma in more humid areas. Additionally, we found an 
interaction between humidity and species for telson gland 
shape (PC1). That is, in U. brachycentrus, males displayed 
a gland with negative PC1 values in more humid areas. This 
morphological change was associated with a more slender 
and less rounded gland. The shape of no other character was 
affected by humidity.

Discussion

We found great morphological variability between sympatric 
and allopatric contexts, as well as along the environmental 
cline in our model scorpion species. This study provided 
valuable and novel insights into the evolution of somatic and 
genital characters within an understudied animal model, but 
with great potential for further research. We uncovered com-
plex patterns of phenotypic variation in different directions, 
both convergences and divergences in size and shape, which 
suggest a mosaic evolution in certain sexual characters in 
these scorpions. Convergence patterns were primarily attrib-
uted to an increase in size under lower temperatures, making 
species more similar at higher altitudes. Our findings suggest 
an asymmetric RCD in the shape of certain sexual charac-
ters of both sexes key for courtship success (i.e., grasping 
characters) and sperm transfer (i.e., genital characters of the 
hemispermatophore). In the following discussion, we ana-
lyze in depth these patterns of phenotypic variation, explore 
the possible selection pressures underlying this variability, 
and consider the implications of the RCD for the mating 
system and coexistence for these scorpion species.

Size Convergence of Multiple Characters Along 
an Environmental Cline

Individuals of U. brachycentrus exhibited an increase in size 
in various characters at lower temperatures (higher altitude) 
becoming more similar to heterospecifics in sympatric areas 
(convergence pattern). Notably, this morphological pattern 
in size aligns with the Atkinson’s rule (1994, 1995), which 
predicts larger body sizes at lower temperatures (Horne et al., 
2015). Many ectotherms grow more slowly and mature with 
larger body sizes in colder environments (Angilletta et al., 
2004). This increase in size may be adaptive as it may 
enhance fecundity, survival, or reproductive rates (Stearns, 
1992). Scorpions are known to be influenced by the number 
of molts or the intermolt period, which can impact their final 
body size (Sarmento et al., 2008; Seiter et al., 2020). In scor-
pions, geographic variability has been documented (Abdel-
Nabi et al., 2004; Harington, 1983; Olivero et al., 2012, 2015; 
Yamashita & Rhoads, 2013), and the size of individuals can 
be influenced by environmental gradients (Jochim et al., 
2020; Lira et al., 2021). For example, Jochim et al. (2020), 
studying the morphology of a species complex of the Family 
Vaejovidae, found a pattern of morphological convergence 
similar to our results, with larger individuals at higher ele-
vations in mountainous regions of Arizona. These authors 
argue that these scorpions probably follow Bergmann’s rule, 
although they do not discuss these aspects further (Jochim 
et al., 2020). Bergmann’s ecological rule (1847) was initially 
formulated for homeotherms, predicting larger body sizes 

Fig. 4  Interspecific and intraspecific morphological variation in pedi-
palp and male pedipalp apophysis in Urophonius achalensis and U. 
brachycentrus from sympatric and allopatric zones. A Pedipalp size 
of males (first box) and females (second box) indicated by centroid 
size. B Pedipalp shape (PC1) of males (first box) and females (sec-
ond box) and differences between species and contexts. C Shape of 
pedipalp apophysis of males (PC2) and differences between species 
and contexts. Statistical differences indicated in each graph: contin-
ued line showed interspecific differences, dashed line: intraspecific 
differences (between allopatric and sympatric contexts), ♂: males, 
♀: females. D Male pedipalp morphospace indicating the morpho-
logical distribution of individuals along two principal components of 
variation. Numbers in parentheses on each axis showing percentage 
of variance explained by each principal component. Color reference 
following A–C. E Summary of morphological changes in PC scores 
of extremes individuals (minimum in sympatric population and maxi-
mum in allopatric population) of U. brachycentrus, Top: shape of 
male pedipalp (PC1 scores); Below: shape of male pedipalp’ apophy-
sis (PC2 scores); black dots showing landmarks and semilandmarks 
showing consensus conformation, orientation of arrows (vectors) 
indicating direction of morphological change and arrow longitude 
indicating magnitude of change (Color figure online)

◂
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at higher latitudes (with colder climates). Its application to 
poikilotherms has yielded mixed evidence, with both sup-
porting and contradictory findings (Angilletta & Dunham, 

2003; Shelomi, 2012; Vinarski, 2014). The evaluation of the 
relevance of eco-geographical rules in scorpions remains a 
topic that warrants further investigation in future research, 

Fig. 5  Interspecific and intraspecific morphological variation in 
the hemispermatophore lamella of Urophonius achalensis and U. 
brachycentrus males from sympatric and allopatric zones. A Size of 
hemispermatophore lamella indicated by centroid size. B Hemisper-
matophore lamella shape (PC1) and differences between species and 
contexts. Statistical differences indicated in each graph: continued 
line showed interspecific differences, dashed line: intraspecific differ-
ences (between allopatric and sympatric contexts). C Morphospace 
indicating the morphological distribution of individuals along two 

principal components of variation. Numbers in parentheses on each 
axis showing percentage of variance explained by each principal 
component. Color reference following A, B. D Summary of morpho-
logical changes in PC1 scores of extremes individuals (maximum in 
sympatric population and minimum in allopatric population) of U. 
brachycentrus, black dots showing landmarks and semilandmarks 
showing consensus conformation, orientation of arrows (vectors) 
indicating direction of morphological change and arrow longitude 
indicating magnitude of change (Color figure online)
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Table 2  Influence of 
environmental factors on 
multiple somatic and genital 
characters of male and female 
Urophonius achalensis and U. 
brachycentrus scorpions from 
sympatric and allopatric areas

Morphological 
character

Sex Fixed effect F p value Sex Fixed effect F p value

Prosome
 cs ♂ temp:sp 12.102 0.001 ♀ temp:sp 68.449  < 0.005
 PC1 ♂ temp 0.053 0.819 ♀ temp 3.324 0.072
 PC2 ♂ temp 0.123 0.727 ♀ temp 0.589 0.445
 PC3 ♂ temp 0.826 0.366 ♀ temp 0.165 0.686
 cs ♂ hum 0.207 0.651 ♀ hum 5.424 0.022
 PC1 ♂ hum 0.002 0.969 ♀ hum 0.021 0.885
 PC2 ♂ hum 0.977 0.326 ♀ hum 3.929 0.051
 PC3 ♂ hum 2.437 0.122 ♀ hum 0.231 0.632

Pedipalp
 cs ♂ temp:sp 5.129 0.026 ♀ temp:sp 8.876 0.004
 PC1 ♂ temp 1.58 0.212 ♀ temp 2.715 0.103
 PC2 ♂ temp 1.885 0.174 ♀ temp 0.205 0.652
 PC3 ♂ temp 0.004 0.953 ♀ temp 0.015 0.904
 cs ♂ hum 0.416 0.521 ♀ hum 1.505 0.223
 PC1 ♂ hum 0.081 0.777 ♀ hum 0.069 0.793
 PC2 ♂ hum 2.802 0.098 ♀ hum 0.987 0.323
 PC3 ♂ hum 3.629 0.060 ♀ hum 0.818 0.365

Chelicerae
 AL ♂ temp:sp 12.904 0.001 ♀ temp:sp 15.457 0.0002
 AL ♂ hum 0.001 0.973 ♀ hum 0.001 0.996

Pecten
 AL ♂ temp:sp 7.361 0.009 ♀ temp:sp 21.884  < 0.005
 AL ♂ hum 0.421 0.653 ♀ hum 0.037 0.848

Telson vesicle
 cs ♂ temp:sp 4.957 0.029 ♀ temp:sp 8.371 0.005
 PC1 ♂ temp 0.134 0.717 ♀ temp 1.783 0.185
 PC2 ♂ temp 2.787 0.099 ♀ temp 0.897 0.348
 cs ♂ hum 0.264 0.609 ♀ hum 2.614 0.109
 PC1 ♂ hum 0.017 0.896 ♀ hum 0.476 0.492
 PC2 ♂ hum 2.159 0.146 ♀ hum 0.753 0.389

Pedipalp apophysis
 cs ♂ temp 0.197 0.659
 PC1 ♂ temp 0.325 0.570
 PC2 ♂ temp 1.026 0.314
 PC3 ♂ temp 0.136 0.713
 PC4 ♂ temp 0.812 0.373
 cs ♂ hum 0.019 0.888
 PC1 ♂ hum 2.748 0.101
 PC2 ♂ hum 1.796 0.184
 PC3 ♂ hum 0.188 0.666
 PC4 ♂ hum 1.107 0.298

Telson gland
 cs ♂ temp:sp 8.485 0.003
 PC1 ♂ temp 0.329 0.569
 PC2 ♂ temp 2.068 0.154
 cs ♂ hum 0.447 0.504
 PC1 ♂ hum:sp 5.400 0.023
 PC2 ♂ temp 0.764 0.385
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and it would also be interesting to consider the phylogeo-
graphic perspective of our results by considering a larger 
number of populations.

Temperature is predicted to impact the body size of indi-
viduals of both sexes similarly (Hirst et al., 2015), and in U. 
brachycentrus, we found that males and females increase 
in size with cooler temperatures. However, this increment 
manifests in different characters for each sex. This discrep-
ancy may be attributed to sexual dimorphism resulting 
from different life habits or sex-specific phenotypic plastic-
ity (Blanckenhorn et al., 2006; Fairbairn, 2005; Stillwell & 
Fox, 2007). Females had a general increase in size, which 
includes their chelicerae, a key character for excavation and 
dig gestation chambers (Maury, 1968, 1969, 1977). Males 
exhibited size increases in the body and telson gland size, a 
character used in sexual interactions (Olivero et al., 2015; 
Peretti, 1997). The telson gland shape changes linked to 
humidity are intriguing. This gland produces a waxy secre-
tion that could be directly influenced by this environmental 
factor. This finding allows future studies aimed at manipu-
lating this parameter to investigate its effects on secretory 
properties and its role during sexual interactions.

Reproductive Character Displacement in Somatic 
and Genital Characters

We found evidence of RCD both in the shape and size of 
multiple somatic characters in U. brachycentrus, while U. 
achalensis showed no divergence in any character between 
sympatric and allopatric contexts. In sympatry, individu-
als of U. brachycentrus, including both males and females, 
exhibited more globose pedipalps and males had more 
deeply curved apophyses compared to their allopatric con-
specifics and the sympatric U. achalensis. It is noteworthy 
that RCD patterns were only found in the shape of somatic 
characters, not in their size. Furthermore, the pressures that 
drove this divergence were centered in the pedipalps, a par-
ticular trait since it serves both a sexual context and other 
life activities (e.g., feeding, defense). However, within the 
pedipalp, the apophysis also displayed a clear and specific 
RCD pattern, and this character is solely used for a sexual 
function: securing the female during grasping. In the het-
erospecific courtship, events of female resistance (pulling 
in the opposite direction to the male) have been shown to 
be a selective filter imposed by the female as a behavioral 

Character and compared parameter, sex, statistic value and statistical significance value are indicated (val-
ues < 0.05 indicated in bold)
AL absolute length; cs centroid size; hum humidity (rainfall); hum:sp interaction term between humidity 
and species fixed effect; PC principal component 1–2; temp temperature fixed effect; temp:sp interaction 
between temperature and species fixed effects, ♂ males, ♀ females

Table 2  (continued) Morphological 
character

Sex Fixed effect F p value Sex Fixed effect F p value

Hemispermatophore lamella
 cs ♂ temp:sp 13.602 0.0004
 PC1 ♂ temp 2.648 0.108
 PC2 ♂ temp 3.392 0.073
 PC3 ♂ temp 2.144 0.147
 cs ♂ hum 1.934 0.168
 PC1 ♂ hum 0.015 0.902
 PC2 ♂ hum 0.929 0.341
 PC3 ♂ hum 0.159 0.691

Hemispermatophore capsular lobe
 cs ♂ temp:sp 4.152 0.046
 PC1 ♂ temp 2.526 0.117
 PC2 ♂ temp 0.005 0.945
 PC3 ♂ temp 1.642 0.205
 cs ♂ hum 0.725 0.398
 PC1 ♂ hum 0.112 0.739
 PC2 ♂ hum 3.025 0.087
 PC3 ♂ hum 0.087 0.769
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reproductive barrier (Oviedo-Diego et al., 2022). RCD may 
reinforce this mechanism, leading to mechanical incompat-
ibilities (the “lock-and-key” mechanism) that can hinder the 
completion of heterospecific mating, and might promote 
reproductive isolation between species (Eberhard, 2004). 
The evolution of behaviors in one sex (i.e., female resist-
ance) linked to the morphological divergence of associated 
characters raises questions about the timing of the appear-
ance of these barriers, why they appear together, and the 
interplay between mechanisms of natural and sexual selec-
tion in scorpions.

On the other hand, we found evidence of RCD in char-
acteristics of the hemispermatophores of U. brachycentrus, 
that exhibit larger capsular lobes and more compressed 
lamella compared to allopatric males and sympatric U. 
achalensis males. The larger capsular lobules in this species 
could be partly attributed to the increased size of females of 
this species in the sympatric zone, as morphological com-
plementarity is expected for mechanical isolation by the 
“lock-and-key” mechanism during sperm transfer. While 
there are instances supporting these mechanism in arthro-
pods (Kubota et al., 2013; Mikkola, 1992, 2008; Nagata 
et al., 2007; Nishimura et al., 2022; Sota & Kubota, 1998; 
Sota & Tanabe, 2010; Takami et al., 2007; Tanabe & Sota, 
2008; Usami et al., 2006; Wojcieszek, & Simmons, 2012), 
it has been rejected in several species because, in general, 
genitalia diverge much more in males than in females, and 
it is less common to find morphological complementarity 
(Eberhard, 1985; Masly, 2012; Shapiro & Porter, 1989). To 
assert that this mechanism occurs in these species, it would 
be necessary to evaluate the female component and the fit 
between the genital components of the two species in het-
erospecific matings. Because the female genital atrium is 
flexible and has a relatively ‘‘uniform’’ structure (Peretti, 
2003, 2010), it would not be expected that female genitalia 
would mechanically exclude the entry of heterospecific male 
genitalia, although copulatory mechanics studies would be 
required to for confirming this.

Moreover, the capsular lobes possess micro-ornamenta-
tions that come into contact with the female genital atrium 
wall (Peretti, 2003), potentially serving a stimulatory role. 
Larger capsular lobes might be associated with a greater 
contact surface of ornamentations with the female geni-
tal atrium and consequently lead to increased stimulation, 
which could be linked to cryptic female choice (Peretti, 
2003, 2010). Interestingly, certain portions of the lamina 
have been reported to be under sexual selection pressures 
(Monod et al., 2017; Peretti, 2003; Peretti et al., 2001). Dur-
ing the copulatory process, the frontal crest of the lamella 
spermatophore fits into the inter-coxal space of the female, 
and there could be a ‘passive’ choice by ‘mechanical adjust-
ment’ (Eberhard, 1985; Huber & Eberhard, 1997; Peretti, 
2003, 2010). This challenges our understanding of the 

driving forces behind the morphological evolution of geni-
talia in these species. Future studies will aim to assess the 
strength of these selective forces in the different subunits 
of the same complex structure, by analyzing the evolution 
of modules and their integration (Genevcius & Schwertner, 
2017; Genevcius et al., 2020).

This interaction between sexual and natural selection 
could provide an explanation for the evolution of genitalia 
in these species. Males face an intense competition at the 
both intra- and interspecific levels and exhibit indiscrimi-
nateness in their mate decisions (scenario of promiscuity) 
(Oviedo-Diego et al., 2021). Thus, females must not only 
exert mate choice at the pre-copulatory level, but copula-
tory and post-copulatory mechanisms seem to be necessary 
to avoid hybridization (Oviedo-Diego, 2022; Oviedo-Diego 
et al., 2022). A similar example seems to occur in hybrid-
izing Drosophila species where the male genitalia differ in 
size and shape, while the external female genitalia remain 
uniform across species (Coyne, 1983). During interspecific 
mating, the intrusion of the male genitalia differentially 
contacts the female genitalia so that females can store and 
use sperm based on the specific male’s identity (i.e., cryptic 
reproductive isolation) (Price et al., 2001). It is increasingly 
recognized that mate choice and specific recognition are 
part of a continuum, and the forces of sexual and natural 
selection may interact in multiple ways to explain patterns 
of sexual diversification across species (Boake et al., 1997; 
Liou & Price, 1994; Mendelson & Shaw, 2012; Ryan & 
Rand, 1993).

Species Asymmetry in Morphological Variability

Asymmetric RI and RCD have been documented multiple 
times (Bordenstein et al., 2000; Cooley, 2007; Cooley et al., 
2006; Costa-Schmidt & Machado, 2012; Hochkirch et al., 
2007; Pfennig & Simovich, 2002; Smadja & Ganem, 2005) 
and it generally occurs when there are interspecific differ-
ences in the intensity of selective pressures to avoid hetero-
specific interactions, primarily because species face differ-
ent costs associated with the RI (Cooley, 2007; Pfennig & 
Simovich, 2002). Moreover, asymmetric outcomes in mor-
phological variability between species may indicate inter-
specific differences in morphological plasticity. Divergent 
characters can also be plastic or can be expressed faculta-
tively when individuals face competition with heterospecif-
ics, so plasticity has been a proposed mechanism to explain 
character displacement (Pfennig & Murphy, 2002; Pfennig & 
Pfennig, 2010; Rice & Pfennig, 2007; Robinson & Wilson, 
1994; Stuart et al., 2017). Species with broad distributions, 
exposed to a wide range of environmental conditions and 
with ample genetic variation, may display remarkable phe-
notypic plasticity (DeWitt & Scheiner, 2004; Lavergne et al., 
2004; Pigliucci et al., 2006). For example, Crowder et al. 
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(2010) found that the globally distributed whitefly Bemisia 
tabaci biotype exhibited greater plasticity in reproductive 
behavior, which could result in greater success in avoiding 
the costs of RI than other biotypes.

Here, Urophonius species present asymmetries in their 
RI degree, as males of U. brachycentrus tend to be more 
indiscriminate in their mating decisions than males of U. 
achalensis (Oviedo-Diego et al., 2021). Moreover, U. brach-
ycentrus exhibit a higher male-biased operational sex ratios 
than U. achalensis in the sympatric zone (Oviedo-Diego, 
2022), implying that males of this species face more intense 
competition to find females, therefore, experience greater 
costs due to RI (Oviedo-Diego et al., 2020, 2021). In turn, U. 
brachycentrus showed the most remarkable morphological 
variations, being the most widely distributed species com-
pared to U. achalensis, endemic to the highland area under 
analysis (Acosta, 1985, 1993; Ojanguren-Affilastro, 2005; 
Ojanguren-Affilastro et al., 2020). Furthermore, this species 
exhibited morphological changes associated with an envi-
ronmental gradient, stressing a great phenotypic plasticity. 
This increased plasticity may be related to the morphological 
changes suffered by this species, such as the observed repro-
ductive character displacement (RCD) in the sympatric zone. 
This complex social and geographic scenario could subject 
this species to strong selective pressures for interspecific 
recognition during mating or sperm transfer and the exist-
ence of asymmetric RCD patterns.

Mixed Selective Pressures on Multiple Characters 
in Scorpions

Our results reveal a remarkable morphological variability 
in the size and shape of somatic and genital characters in 
two scorpion species that may be reflecting different evo-
lutionary responses in part by natural selection pressures 
linked to geographic and environmental variations and spe-
cies recognition mechanisms, and in part by sexual selec-
tion pressures at the intra- and interspecific level. We report 
a pattern of asymmetric morphological divergence where 
one of the scorpion species (U. brachycentrus) exhibited an 
increase in size in several characters at lower temperatures 
becoming more similar to heterospecifics in sympatric areas. 
These changes may reflect a plastic and adaptive response to 
these environments, with the size of these traits being shaped 
by natural selection. However, the increase in size and a 
scenario of promiscuity probably led to certain characters 
undergoing intense sexual selection pressures. On the other 
hand, key mating success-related traits, like grasping or gen-
ital characters, exhibited morphological divergence between 
species in the sympatric area (RCD pattern), reflecting the 
action of natural selection, possibly to avoid interbreeding 
due to mechanical incompatibilities between species.

Peretti (2010) emphasized the presence of mixed pat-
terns in scorpion genitalia, where morphological complex-
ity arises from different selective regimes. Similar obser-
vations have been made in other arachnids (Huber, 1996, 
2004) and insects (Frazee & Masly, 2015; House et al., 
2013; Rowe & Arnqvist, 2012; Simmons et al., 2009; Song 
& Bucheli, 2010; Song & Wenzel, 2008), where characters 
are subject to multiple, often conflicting pressures. Studies 
in water striders, for instance, suggest that the non-intromit-
tent genitalia undergo varying degrees of selection (Bertin 
& Fairbairn, 2005; Danielsson & Askenmo, 1999; Rowe 
& Arnqvist, 2012). Another example comes from dung 
beetles, like Onthophagus taurus, where different parts 
of male genitalia may be under different selective regimes 
(Simmons et al., 2009; Song & Wenzel, 2008): the shape 
of the aedeagus is subject to directional sexual selection, 
but genital sclerites that penetrate the female genitalia are 
under stabilizing and disruptive nonlinear selection (Sim-
mons et al., 2009). Also, in this species the genitalia shape 
diverges rapidly due to directional sexual selection, whereas 
size remains unaffected in the process (Simmons et al., 
2009). Similarly, the millipede Antichiropus variabilis has 
shown that genitalia shape responded to stabilizing pres-
sures, supporting the occurrence of lock-and-key mecha-
nisms, whereas genitalia size did not follow this pattern and 
responded to environmental gradients (Wojcieszek & Sim-
mons, 2012). In summary, the size and shape of the same 
structure may respond in this mosaic manner, independently 
to different selective pressures, possibly due to genetic or 
developmental decoupling (Macagno et al., 2011; Rich-
mond, 2014; Rowe & Arnqvist, 2012; Wojcieszek & Sim-
mons, 2012). Future studies will aim to assess other envi-
ronmental variables influencing shape, the consistency of 
these results with allometric patterns between populations, 
and the coevolution between female and male characters.
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