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Abstract
The original exposition of the method of “Cartesian transformations” in D’Arcy Thompson’s On Growth and Form (1917) is 
still its most cited. But generations of theoretical biologists have struggled ever since to invent a biometric method aligning 
that approach with the comparative anatomist’s ultimate goal of inferring biologically meaningful hypotheses from empirical 
geometric patterns. Thirty years ago our community converged on a common data resource, samples of landmark configura-
tions, and a currently popular biometric toolkit for this purpose, the “morphometric synthesis,” that combines Procrustes 
shape coordinates with thin-plate spline renderings of their various multivariate statistical comparisons. But because both 
tools algebraically disarticulate the landmarks in the course of a linear multivariate analysis, they have no access to the actual 
anatomical information conveyed by the arrangements and adjacencies of the landmark locations and the distinct anatomi-
cal components they span. This paper explores a new geometric approach circumventing these fundamental difficulties: an 
explicit statistical methodology for the simplest nonlinear patterning of these comparisons at their largest scale, their fits 
by what Sneath (1967) called quadratic trend surfaces. After an initial quadratic regression of target configurations on a 
template, the proposed method ignores individual shape coordinates completely. Those have been replaced by a close read-
ing of the regression coefficients, accompanied by several new diagrams, of which the most striking is a novel biometric 
ellipse, the circuit of the trend’s second-order directional derivatives around the data plane. These new trend coordinates, 
directly visualizable in their own coordinate plane, do not conduce to any of the usual Procrustes or thin-plate summaries. 
The geometry and algebra of the second-derivative ellipses seem a serviceable first approximation for applications in evo-
devo studies and elsewhere. Two examples are offered, one the classic growth data set of Vilmann neurocranial octagons 
and the other the Marcus group’s data set of midsagittal cranial landmarks over most of the orders of the mammals. Each 
analysis yields intriguing new findings inaccessible to the current GMM toolkit. A closing discussion suggests a variety of 
ways by which innovations in this spirit might burst the current straitjacket of Procrustes coordinates and thin-plate splines 
that together so severely constrain the conversion of landmark locations into biological understanding. This restoration of 
a quantitative diagrammatic style for reporting effects across regions and gradient directions has the potential to enrich 
landmark-driven comparisons over either developmental or phylogenetic time. Extension of the paper’s quadratic methods 
to the next polynomial degree, cubics, probably won’t prove generally useful; but close attention to local deviations from 
globally fitted quadratic trends, however, might. Ultimately there will have to emerge a methodology of landmark configura-
tions, not merely landmark locations.

Keywords Quadratic morphometric trends · Deformation grids · Geometric morphometrics · The geometry of ellipses · 
The orders of mammals · Vilmann’s neurocranial octagons · Two-point shape coordinates · Second derivatives

Introduction

The main methodological thrust of this paper can be 
understood as a companion to both Bookstein (2022) 
and Bookstein (2023a) that brings the original sugges-
tion of Sneath (1967) back into geometric morphometrics 
(GMM). Its principal practical suggestion can be distilled 
down to the pair of diagrams in Fig. 1. They present a 
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novel ordination of the quadratic trend descriptor intended 
to help rebuild our current toolkit for GMM’s landmark 
data sets. The paper’s main empirical contribution, “A 
Simple Example: The Vilmann Neurocranial Octagons” 
and “Revisiting a Mammal Cranial Data Set” sections, is 
a new pattern analysis filling a major gap (the representa-
tion of spatial gradients) in the current GMM tookit. This 
first figure conveys the basic idea of the new ordination 
method: conversion of two-dimensional landmark con-
figuration data into an explicit representation of just their 
quadratic trends.

The data set on which the figure is based comprises the 
13-point midsagittal subset of a 35-landmark cranial con-
figuration originally exploited in Marcus et al. (2000). By 
restricting attention to just this unpaired subset, the peda-
gogy can be managed using purely two-dimensional dis-
plays, making dissemination much easier. While the Mar-
cus presentation relied on Procrustes shape coordinates, the 
registration here, in keeping with the recommendation of 
Bookstein (2023a), instead uses a two-point coordinate sys-
tem (Bookstein, 1986, 1991) with baseline from posterior 
foramen magnum to tip of premaxilla in this sagittal plane. 
(The two-point approach permits referring any report of a 
trend model to an explicitly anatomical registration rule.) 
Each comparison is from the configuration in the left-hand 

panel here, the average of these 55 representatives of 23 
mammalian orders, to one of the individual configurations.

The conventions of this right-hand panel of Fig. 1, one 
step in the exemplary analysis of “Revisiting a Mammal Cra-
nial Data Set” section, are unusual. The reader is probably 
used to reports of sample variation of landmark configura-
tions or their shapes in the form of scatters of Boas coordi-
nates or shape coordinates like Fig. 19 later on. Where ellip-
ses appear in the textbooks, they are representations of the 
Gaussian model of a bivariate bell-curve distribution—the 
locus of some constant Gaussian probability density around 
a sample mean in two dimensions. The iconics of the right-
hand panel of Fig. 1 are different. The figure is genuinely 
a scatter of ellipses—a total of 55 of them—each of which 
represents a single specimen by the large-scale gradients of 
a quadratic trend fit, a second-order polynomial regression 
on the sample average of their Cartesian coordinates after 
that two-point registration. And the role of any individual 
ellipse in this context is unexpected: it does not parametrize 
a distribution over a sample, but instead the suite of six 
regression coefficients (r, s, t, u, v, w in the later notation 
of this paper) summarizing one single specimen at a time. 
The geometry of these ellipses will be introduced in due 
course, and then a useful typology that will allow some of 
them to be directly interpreted as coding particularly simple 
deformations, namely, bilinear maps. We will see that when 
these curves are annotated by the corresponding directions 
of the transects with which they align, transects across the 
original organismal image, they lead to useful pattern infer-
ences inaccessible from earlier GMM approaches.

Back in Fig. 1, each ellipse there, when appropriately 
annotated as in later, more detailed diagrams, will con-
vey one of those six-parameter representations of the next 
geometric term after the uniform: a least-squares fit to a 
quadratic polynomial explicitly encoding the fitted trend’s 
second derivatives—the trend for increments to accelerate 
or decelerate—along every linear transect of the form. Lin-
ear multivariate analysis of these fits can proceed either by 
analysis of their six coefficients or instead by an equivalent 
eight-coordinate data set, the “cardinal directions” (easterly, 
northeasterly, northerly, northwesterly) of their ellipses, like-
wise to be introduced in “Geometric Fundamentals” sec-
tion; but nonlinear analyses offer considerable power as well. 
There result new pattern analyses of these trends per se, the 
curving of coordinate lines whose graphical power has so 
intrigued all of us since D’Arcy Thompson.

The ellipses are just part of the report of those quadratic 
trend analyses. When the data of each 13-gon are fitted as a 
quadratic trend over that two-point average, the simplest pol-
ynomial extension of the conventional approach to a uniform 
(linear, affine) model (as notated and diagrammed in “Geo-
metric Fundamentals” section), there result the 55 tableaux 
sampled here in Fig. 20 through Fig. 22 and Figs. 31 through 
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Fig. 1  Principal methodological theme of this paper: a novel ordina-
tion of the quadratic trend descriptor apposite to the landmark data 
sets of geometric morphometrics, here as fitted in “Revisiting a Mam-
mal Cranial Data Set” section to a 13-point midsagittal cranial land-
mark configuration for each of 55 mammal specimens from 23 orders. 
Each ellipse traces the second derivative of the quadratic trend fit 
around the circle of directions from the sample average with respect 
to a convenient posteroanterior baseline (posterior foramen magnum 
to premaxilla). (left) The average of the 55 configurations of 13 mid-
sagittal cranial landmarks in this example. The thirteen midsagittal 
cranial landmarks are as follows: 1, anterior symphysis of mandible; 
2, posterior symphysis of mandible; 3, inion sagittal; 4, frontal-pari-
etal sagittal; 5, frontal-nasal sagittal; 6, tip of nasal sagittal; 7, tip of 
premax sagittal; 8, premax-maxillary sagittal; 9, maxillary-palatine 
sagittal; 10, posterior palate; 11, basisphenoid-basioccipital; 12, ante-
rior foramen magnum; 13, posterior foramen magnum. (right) All 55 
ellipses of directional second derivatives for the 55 quadratic trend 
fits from the configuration at left. Thus this is a scatter of ellipses, 
each one a summary of one polynomial regression. Compare Figs. 23 
or 34
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33; the entire collection is to be found in the Supplement 
to Bookstein (2023b). Each specimen’s extended diagram 
has four panels: a Cartesian grid of the fitted trend, a polar 
grid of the same, a tracing of a half-unit circle deformed 
quadratically, and, as collected in the right-hand panel of 
Fig. 1, the quadratic part of each fit visualized as explained 
in “Geometric Fundamentals” section by the ellipse of its 
second derivatives in every direction with respect to that 
two-point baseline.

The theme of visible curving driving these composite 
graphics was replaced (unfortunately, in my opinion) over 
the development of today’s GMM by an inappropriate sur-
rogate arising instead from linear multivariate analyses (par-
ticularly principal-component analyses) of the otherwise dis-
articulated shape coordinates of the Procrustes approach. 
An earlier graphical innovation, my thin-plate spline defor-
mation grid, has proved insufficient to restore the missing 
articulation with the anatomical sciences. (The relation of 
the new analysis to the thin-plate spline is one major topic 
of this paper’s concluding Discussion.) In their place I fore-
ground these ellipses as a first step in the replacement of 
the current GMM toolkit by a successor capable of gener-
ating hypotheses more closely aligned with the language 
of organismal anatomy. A praxis for feature analysis of the 
gradients and other nonlinear aspects of form-comparisons, 
such as this article sketches, could be a crucial component of 
the return of GMM to any future state-of-the-art biometric 
toolkit for either evolutionary or developmental studies.

Beginning with D’Arcy Thompson

The new biometric methodology this paper introduces real-
izes a very old programme: the production of hypotheses 
about the causes or consequences of organic form from 
geometric observations of those forms as represented in 
line drawings. Such a thrust is over a century old, deriv-
ing from the first edition (1917) of the celebrated essay On 
Growth and Form by the polymath D’Arcy W. Thompson. 
For three-quarters of a century after that initial provoca-
tion—right through 1993—the literature of this purpose 
remained disorganized, a range of approvals and disapprov-
als every decade or so without much of a consensus. D’Arcy 
Thompson’s much-quoted original example still stands as 
the clarion announcement of his purpose, and as he was a 
master of English prose style, it is best to quote him in his 
own words. From the most readily available edition (1961, 
abridged by John Tyler Bonner), pp. 275–276 and 300–301:

The deformation of a complicated figure may be a 
phenomenon easy of comprehension, though the fig-
ure itself have to be left unanalyzed and undefined. 
This process of comparison, recognizing in one form 
a definite permutation or deformation of another, apart 

altogether from a precise and adequate understand-
ing of the original ‘type’ or standard of comparison, 
lies within the immediate province of mathematics.... 
When the morphologist compares one animal with 
another, point by point or character by character, these 
are too often the mere outcome of artificial dissection 
and analysis. Rather is the living body one integral 
and indivisible whole, in which we cannot find, when 
we come to look for it, any strict dividing line even 
between the head and the body, the muscle and the 
tendon, the sinew and the bone. Characters which we 
have differentiated insist on integrating themselves 
again, and aspects of the organism are seen to be con-
joined which only our mental analysis had put asun-
der. The co-ordinate diagram throws into relief the 
integral solidarity of the organism, and enables us to 
see how simple a certain kind of correlation is which 
had been apt to seem a subtle and a complex thing.
But if, on the other hand, diverse and dissimilar fishes 
can be referred as a whole to identical functions of 
very different coordinate systems, this fact will of 
itself constitute a proof that variation has proceeded 
on definite and orderly lines, that a comprehensive 
‘law of growth’ has pervaded the whole structure in 
its integrity, and that some more or less simple and 
recognizable system of forces has been in control. It 
will not only show how real and deep-seated is the 
phenomenon of ‘correlation’ in regard to form, but it 
will also demonstrate the fact that a correlation which 
had seemed too complex for analysis or comprehen-
sion is, in many cases, capable of very simple graphi-
cal expression.

And then his most celebrated example, still on t-shirts 
to this day:

[One DWT figure] is a common, typical Diodon or 
porcupine-fish, and [in another DWT figure] I have 
deformed its vertical co-ordinates into a system of 
concentric circles, and its horizontal co-ordinates into 
a system of curves which, approximately and provi-
sionally, are made to resemble a system of hyperbo-
las. The old outline, transferred in its integrity to the 
new network, appears as a manifest representation of 
the closely allied, but very different looking, sunfish, 
Orthagoriscus mola. This is a particularly instructive 
case of deformation or transformation.

No, it is not “particularly instructive” in any contempo-
rary sense—for one thing, neither circles nor hyperbolas 
are among the curves that characterize either the thin-plate 
splines of the current consensus or the quadratic trends 
explored in this paper. But Thompson’s insistence on a “sim-
ple graphical expression” has fired the imagination of many 
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of us over the century since his argument first appeared, 
while a like number of counterarguments have appeared to 
caution the enthusiasm of the same readers. An early coun-
terargument was Karl Przibram’s (1923, p. 14), insisting that 
no comparisons of this sort could be regarded as biologically 
credible unless and until they could be reproduced repeat-
edly in an experimental setting (such as the laboratories of 
his Vienna ‘Vivarium,’ Müller, 2017). Huxley (1932) prom-
ulgated the differential model log(y) = a log(x) for distances 
x and y only to realize that if such a model applied to, e.g., 
the sides of a rectangle, with different a’s, it didn’t apply to 
the diagonal. Medawar (1945) circumvented the difficulty by 
diagramming only the sides of rectangles, not their diago-
nals, in his contribution to a Thompson Festschrift using 
human body growth as an example (but see also Richards 
and Kavanagh (1945), the contribution following on his in 
the same volume). Sokal and Sneath (1963) present several 
earnest attempts in the spirit of Thompson but end up con-
cluding (pp. 82–83), “No general and simple methods seem 
yet to have been developed for extracting the factors respon-
sible for such transformations.... It is not easy to see how 
many separate factors are needed to express more compli-
cated examples” where “not only are the grid lines deformed 
in several ways, but the deformation is different in different 
parts of the skull. What would be useful would be a way 
of extracting the minimum number of factors that would 
account for the difference in form.... It would probably be 
at first necessary to mark operationally homologous points 
[today’s ‘landmarks’] on the diagrams before feeding them 
into the computer.”

Four years later, this same Peter Sneath published the 
first attempt to properly quantify the issues here. He adopted 
a technique then under active exploitation in geology, the 
method of trend surfaces (now a component of the subdisci-
pline known as geostatistics) to apply to two variables over 
the same map, which could be taken as the coordinates of 
the corresponding points of the image of another organism 
entirely. Sneath (1967) offers a “partial solution” to the prob-
lems set down in his earlier collaboration with Sokal. He 
claims success in a first goal, “to estimate numerically the 
overall similarity between two figures, i.e., the gross differ-
ence in shape,” and proceeds to demonstrate using “sagittal 
sections of four hominoid skulls.” The “overall similarity” 
he suggests is close to Procrustes distance as the current 
consensus has it, and the “trend surfaces” he computes for 
his quadratic and cubic examples are the same as those of 
this paper. Unfortunately, he pays no attention to the coef-
ficients of those formulas, noting only the displacements at 
each landmark in turn. Each of the six comparisons among 
his four specimens is diagrammed and verbalized separately. 
There is no summary ordination, merely a hope that the sum 
of squared differences in the coefficients might serve as 
some sort of inverse index of “phenetic affinity.”

This was roughly the state of the art 10 years later when 
I published my doctoral dissertation (Bookstein, 1978) that, 
picking up on an alternate theme of the 1940s, attempted 
to customize a coordinate system for the description of 
the change per se, not the forms being compared. But the 
biorthogonal grid method had the same flaw as Sneath’s: 
it applied to only a single transformation—a single pair of 
forms—at a time.

The “Morphometric Synthesis” of 1993

Shortly afterwards, however, a series of innovations 
resulted in the “morphometric synthesis” that this paper 
is now trying to replace. The first of these contributions 
was my announcement of two-point shape coordinates 
(Bookstein, 1986), a statistical space that supports appli-
cations of conventional tactics like mean difference and 
regression to the shape of configurations of points by 
algebraic manipulations of their Cartesian coordinates in 
a rigorous, theorem-governed way. Just after that came a 
1988 conference (Rohlf & Bookstein, 1990), the journal 
announcement (Bookstein, 1989), and finally the book 
form (Bookstein, 1991) of the thin-plate spline model for 
deformation, which explicitly converts landmark-driven 
shape comparisons to grids over the picture of the organ-
ism. Meanwhile Kanti Mardia and John Kent (University 
of Leeds) had tightly tied a crucial additional multivariate 
tool, principal components analysis, to coordinate data via 
the Procrustes shape space Kendall (1984) had announced 
via the mathematical literature. The fusion of these latter 
two tools in Jim Rohlf’s NTSYS software package was 
the core of the NATO Advanced Studies Institute of 1993 
organized by Leslie Marcus at Il Ciocco, Italy (Marcus 
et al., 1996). It was there that Rohlf and I announced the 
“morphometric synthesis,” which by then included sev-
eral other extensions (to semilandmarks, to symmetry). At 
about the same time, the corresponding rigorous probabil-
ity theory that had been developed in parallel by Mardia, 
Kent, and their students Ian Dryden and Colin Goodall was 
beginning to appear in the formal statistical literature (cf. 
Kent & Mardia, 1994), a theory soon codified in the gradu-
ate textbook Statistical Shape Analysis (Dryden & Mardia, 
1998, second edition, 2016). The synthesis emphasizes 
Procrustes shape coordinates over the two-point version 
because of their much greater suitability for principal com-
ponents analysis with respect to Procrustes distance.

This serendipitous confluence became the core compu-
tational engine for data graphics and ordination of samples 
across a wide range of biological investigations, particularly 
in anthropology and paleontology, fields not susceptible to 
Przibram’s challenge of laboratory confirmation. Over time 
it has become the theme of pedagogy directed at biologists 
over a wide range of levels of sophistication. Whether course 
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or workshop, most of these curricula favor the same shared 
workflow—gather your landmark coordinates, convert to 
Procrustes shape coordinates by John Gower’s (1975) Gen-
eralized Procrustes Analysis, carry out any of the popular 
linear multivariate analyses there (principal components, 
canonical variates, multivariate analysis of variance or 
covariance, partial least squares) on samples (and, more 
recently, on their phylogenetic contrasts), diagram the analy-
ses by thin-plate spline, and publish.

But over the course of this development Thompson’s 
original goal, the pursuit of simple explanations hinting at 
meaningful hypotheses, was subordinated to a reversed logic 
in which extant hypotheses were “tested” using morphomet-
ric arithmetic. Philosophers of science often refer to this 
pejoratively as the context of confirmation, not discovery. 
Today, 30 years on, the synthesis is overdue for major revi-
sion. The multivariate aspects of this context have been revo-
lutionized in most other sciences by the advent of techniques 
of machine learning and artificial intelligence, while GMM’s 
tools have remained pretty much where they were created 
thirty or more years ago. To put matters bluntly, GMM tech-
niques no longer produce surprising findings any more, find-
ings that lead to unexpected hypotheses about the causes 
or consequences of organismal form. Thin-plate splines do 
not often meet Thompson’s criterion of being simpler than 
the data that drive them. (This point is another theme of my 
closing Discussion.)

Thus it is time to revisit Thompson’s original goal, the 
production of interpretable diagrams simpler than the anato-
mies they compare. Bookstein (2023a) has already noted 
how the Procrustes method, by prohibiting the investigator 
from rotating a Thompsonian coordinate grid, interferes with 
the generation of optimally simple accounts of findings. This 
paper is the second step in this programme: the construction 
of an explicit statistical method for the transformation grids 
that Sneath could already compute, by imitating what the 
geologists were doing, but did not know how to compare 
or extend to ordinations of samples. Once the new method 
is adjoined to an accessible statistical package, our com-
munity might discover its strengths and weaknesses quite a 
bit more rapidly than was the case for Procrustes tools and 
the thin-plate spline.

Purpose and Contents of This Paper

Like the original announcement of the thin-plate spline 
deformation (Bookstein, 1989), this paper has two distinct 
purposes: to teach the mathematics driving the new praxis 
for ordinating quadratic growth-gradients and other quad-
ratic trends, and also to present a pair of potentially clas-
sic examples, one involving growth and the other involving 
adaptive radiation, in order to hint at the kinds of biometric 
questions that might now enjoy the possibility of explicitly 

geometrical answers along with the diagrams that help con-
vert those answers into biological hypotheses. The outline of 
the rest of this paper is as follows. “Geometric Fundamen-
tals” section, which is mostly elementary college geometry, 
retrieves a simple fact about parabolas that can be made to 
apply to the quadratic case of the regressions Sneath was 
already demonstrating half a century ago. It may surprise 
the reader that the same elliptical shape we’ve used since the 
1880s to characterize linear regression has an equally prom-
ising role to play in these simplest nonlinear regressions, the 
quadratic trend fits. (I also demonstrate that Thompson made 
a completely avoidable mistake back in 1917 when he failed 
to consider polar coordinate grids as well as Cartesian grids 
for the diagramming of his comparisons.)

“A Simple Example: The Vilmann Neurocranial Octa-
gon” section shows how the method affords a reanalysis of 
one aspect of a classic data set (the growth of Vilmann’s neu-
rocranial octagons) in such a way as to lead automatically 
to a report of its features, a report that turns out to match 
one of the special cases surveyed in “Geometric Funda-
mentals” section. “Revisiting a Mammal Cranial Data Set” 
section is a more challenging reanalysis, one well beyond 
the usual bounds we set on diversity of data sets that will 
yield morphometric sense: the sample of over 50 mammal 
skulls originally assembled for just this sort of challenge by 
Marcus and his colleagues in 2000. The analysis by Marcus 
et al., in my view, was not fully a success—the finding was 
only that Procrustes analysis had something to say about 
mammal phylogeny, but not what that message actually was. 
Once the quadratic trend is fitted to landmark configurations, 
the shape coordinates per se are completely ignored in favor 
of the features of those six-dimensional derived formalisms 
instead. A closing Discussion, “Discussion” section, is, I 
hope, the foreshadowing of a much more nuanced, more 
demanding use of GMM to generate actual biological under-
standing. It touches on the deeper question of exactly what 
quantities are appropriate for minimizing by some empirical 
biomathematical algorithm, but also on the importance of 
a pre-existing language of graphical reportage that must be 
present from the beginning whenever a quantitative method 
of describing biometric morphology is under development.

Geometric Fundamentals

A Simple Fact About Parabolas

Much of the geometry needed for the new approach to quad-
ratic trend analysis is elementary. A first underlying princi-
ple is simple indeed: the midpoints of chords of a fixed span 
over a parabola all lie at the same distance from the parabola 
underneath. Writing the parabola as y = x2, this is the identity (
(x + 1)2 + (x − 1)2

)
∕2 − x2 = 1, which is the same as the 
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coefficient of x2 in the parabola’s formula. Figure 2 confirms 
the identity for several chords all of projected length 2 over 
the parabola y = x2∕2. As you see from the equality of all the 
heavy vertical segments, the midpoint of each chord between 
x’s separated by 2 is at height 1

2
 over the curve, the same as the 

coefficient of x2 in the formula—half of the second deriva-
tive in question, and constant everywhere along the parabola. 
The identity is more familiar to the mathematician after being 
multiplied by two: it is the equality of the second deriva-
tive of the parabola with its second difference, the formula 
((x + 1)2 − x2) − (x2 − (x − 1)2) = 2 =

d2

dx2
(x2).

A fact to be exploited in the sequel is the dependence 
of these second differences on the scaling of the figure 
as a whole. If both horizontal and vertical in Fig. 2 are 
divided by a factor a, the curve that was y = bx2 is now 
(ya) = b(xa)2 , or y = abx2 , so that both the second differ-
ences and their interpretation as second derivatives are mul-
tiplied by the factor a. Then to restore the original quanti-
fication we need to divide computed contrasts by that same 
factor a. For two-point shape coordinates, the application 
to follow, scaling is division by baseline length, and so the 
correction in connection with Fig. 13 will involve division 
of computed second differences among the resulting two-
point shape coordinates by baseline length as it varies over 
alternative two-point analyses. The reason for preferring 
polar to rectangular coordinates in most of this text is that 

when we compare locations of deformed points that are 
originally ends of diameters of one single circle, all the 
baselines are the same length, so that no corrections for 
their ratios are necessary.

In Two Dimensions: Ellipses and Their Cardinal 
Directions

The same proposition, appropriately reinterpreted, turns 
out to apply to quadratic trends (which, direction by direc-
tion, are parabolas) in two or any other higher count of 
dimensions. In every direction, the second difference is 
equal to the second derivative in that direction, which, for 
any quadratic trend (such as the quadratic regression of a 
target configuration on some template), is constant over 
the whole picture being mapped. But in higher dimen-
sions another useful property emerges: the value of this 
second directional derivative lies on an exact ellipse (in 
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y=x /22

second differences of a parabola are constant

Fig. 2  An ancient identity: the second difference of a parabola is a 
constant, equalling the second derivative of the curve’s formula. The 
proposition is easily confirmed once both sides are divided by two: 
invariance of the heavy segments, each the height over the parabola 
of the midpoint of any chord whose projection on the x-axis is a fixed 
interval (here, two units)
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Fig. 3  The same for a two-dimensional (quadratic) trend fit. Symbols 
for highlighted points along the curves will be introduced in the next 
figure. Curve of + signs: the effect of the quadratic trend function 
Z(x, y) on a unit circle around the origin of coordinates. Curve of × 
signs: the opposite curve, effect of the function −Z(−x−, y). When x 
and y are replaced by −x and −y , only the linear part is altered; the 
quadratic terms do not change. The segments between correspond-
ing points of Z and its reflection in the origin trace twice around a 
new ellipse, drawn in the center, that represents the second deriva-
tive of the transformation accounting for either of the outline curves. 
The points of that ellipse can thereby be identified by the directions 
of those second derivatives (the four symbols here, corresponding 
to northerly, northeasterly, easterly, and southeasterly transect direc-
tions). The center of this ellipse is at the point (0.3,−0.1) correspond-
ing to the values (r + t, u + w) from its formula, the solid black dot is 
at the point (2r, 2u) = (0.4, 0.0) , etc. See text
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two dimensions; in 3D it will be an ellipsoid). Figure 3 
confirms this by a clever choice of coordinate systems bor-
rowed from the morphometric methodology to be intro-
duced presently. Begin with either lopsided oval curve, the 
one drawn in tiny plus signs or the one drawn in tiny times 
signs. Either serves as an arbitrary pedagogical choice of 
an example quadratic trend as rendered (and this step is 
crucial) by its effect on a unit circle as in the various exam-
ples of “A Simple Example: The Vilmann Neurocranial 
Octagons” and “Revisiting a Mammal Cranial Data Set” 
sections. Here that curve represents the example

of no particular symmetries or other idiosyncrasies and with 
the identity as its linear term. In this notation, Z is a map-
ping function applying everywhere in the original digitizing 
plane. One curve in the figure is the effect of that deforma-
tion on what was originally the unit circle before deforma-
tion; the other curve is the reflection of that first curve in the 
origin (0, 0), the replacement of the value Z by −Z. Notice 
that beyond the fixed linear term (x, y) here, the formula 
includes six decimal coefficients, one each for x2, xy,  and 
y2 for each of the two Cartesian coordinates of a grid point 
in two dimensions.

The quadratic trend function leaves the origin (0, 0) 
unchanged, so, copying the formula for the parabola, the 
second difference across any diameter of the unit circle is 
just the sum of the values Z(x, y) and Z(−x,−y) in the direc-
tion (x, y) = (cos �, sin �) over the full circle of angles � cor-
responding to points on the circle. But because all the quad-
ratic terms in the formula are invariant when both x and y are 
multiplied by −1, the second difference Z(x, y) + Z(−x,−y) is 
the same as the simple difference Z(x, y) − Z�(−x,−y) where 
Z′ is the function −Z, reflection of the function Z in the ori-
gin. In this way Fig. 3 has converted an average of deformed 
points, like the ends of the chords on the parabola in Fig. 2, 
into the difference of a pair of deformed points. These are the 
short chords drawn as straight lines in the figure.

Figure 3 draws the values of the function Z with tiny + 
signs and those of Z′ with tiny × signs, and their difference 
is drawn in light segments every 9◦ and heavy segments at 
the four cardinal directions (lines at 0◦, 45◦, 90◦, and 135◦ 
to the horizontal), identified by the same four symbols that 
will be assigned to them in later figures of this paper. The 
final step in constructing this figure transported all of these 
chords from their positions around the deformed circles to 
vectors out of the center instead. (As you go around the 
circle, you see that each of those little chords is encoun-
tered twice.) After this translation to the origin (0, 0) of 
both coordinate systems, these heavy segments are four out 
of the continuum that traces the second-difference ellipse 

(1)

(x, y) → Z(x, y)

= (x + 0.2x2 − 0.1xy + 0.1y2, y + 0.0x2 − 0.3xy − 0.1y2)

that losslessly, indeed redundantly, encodes the equation of 
the quadratic trend formula (1) driving it. While the curves 
of + signs and × signs are obviously not ellipses, the curve 
of their differences in this mixed registration must be, for 
the same reason that the second differences of an ordinary 
parabola (Fig. 2) must be constant. Note that each point of 
the ellipse arises from two diametrically opposite segments 
of the original circuit (the second differences in opposite 
directions on the same transect are the same) and that that 
each point of that inside ellipse is associated with a specific 
bipolar direction on the starting curve. The four symbols of 
the legend in Fig. 3 mark four of these directions, the cardi-
nal directions at intervals of 45◦ from the horizontal of the 
original coordinate system. This is the main reason for using 
two-point coordinates in this new toolkit: because the direc-
tions of the analysis can be read right back onto the original 
organismal images, numerical aspects of the fitted trends 
can be directly interpreted as gradients over the organism.

Why does a procedure like this give ellipses for its direc-
tional second derivatives?  Consider the second derivative 
of the deformation in Eq. (1) along the direction of the unit 
vector (cos �, sin �) . This will be the second derivative with 
respect to h of the deformation of points (h cos �, h sin �) 
along this direction. But because h2 is a factor of every term 
in the second-order polynomial of that equation, that second 
derivative reduces to double the coefficients of h2, which 
make up the vector 2(r cos2 � + s cos � sin � + t sin2 �, )
(u cos2 � + v cos � sin � + w sin2 �) with r = 0.2, s = −0.1,

t = 0.1, u = 0.0, v = −0.3,w = −0.1. Recall three elemen 
tary identities: cos2 � + sin2 � = 1 , cos2 � − sin

2
� = cos 2�, 

and cos � sin � =
1

2
sin 2� . Using them, we see that 

as � rotates that expression for the second deriva-
tive is just the deformed point ((r + t) + (r − t)⋅

cos 2� + s sin 2�, (u + w) + (u − w) cos 2� + v sin 2� ), which 
is a linear deformation of a circle onto an ellipse centered at 
(r + t, u + w), as the angle 2� goes around a unit circle twice. 
And the cardinal directions themselves are linear in these 
quadratic coefficients r through w: the horizontal cardinal (
�
2
x
′

�x2
,
�
2
y
′

�x2

)
 is (2r, 2u),  the one along the diagonal (1, 1)∕

√
2 

is (r + s + t, u + v + w), etc.1
Notice that the points of the ellipse representing the sec-

ond derivative of the quadratic trend are not aligned out of 
that ellipse’s center with the directions of the second deriva-
tive they account for. Because the circuit of transects of the 
original organismal image must go around the ellipse twice, 
for cardinal directions that lie at 90◦ in the data space, like 
x and y of the coordinate data, the corresponding second 
derivatives lie at 180◦ on the ellipse—they are at opposite 
ends of one of its diameters. That is why the the symbols 

1 The symbol �, read “del,” stands for the partial derivative function, 
the derivative of a function of two or more variables when only one at 
a time is allowed to vary.
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plotted around the ellipse are needed: they label a few of the 
points with the diameter (i.e., the transect direction) of the 
original circle that generated them.

The easiest way to apply the strategy of Fig. 3 to a con-
figuration of landmarks is to follow the advice of Bookstein 
(2022) by switching from a Cartesian coordinate system to 
a polar system. This does not affect the computation of poly-
nomial trends, only the graphics by which their changes are 
represented as gradients. (The question of whether there is 
any reason to prefer Cartesian coordinates in morphometrics 
is an interesting one, but it falls outside the scope of this 
paper; for an introduction from the last century, see Book-
stein 1981.) Fig. 4 shows how the analysis in Fig. 3 can be 
attached to a comparison of landmark configurations in order 
to represent the quadratic trend of interest as an ellipse that 
can be submitted to explicit multivariate statistical analy-
sis. For this example (and all the others of this section) the 
template is taken simply as a 3 × 3 grid of squares one unit 
on a side, a template that will be deformed by a quadratic 
formula written out in advance instead of being computed 
by a regression. The heading presents the coefficients of that 
quadratic trend in the same order as the example in Fig. 3 or 
formula (1). Here that formula is

as printed over the upper left panel. I cobbled this together to 
be mainly the xy term of the x-coordinate regression together 
with the x2 term of the y-coordinate regression, with a little 
effect of the other four terms. At above right is the better 
rendition of this same deformation, now as a polar coordi-
nate grid (Bookstein, 2022). The subtractions that produce 
the chords of ellipses like the one in Fig. 3 are not chords 
between landmarks of the data set, such as are commonly 
encountered in other GMM methods, but instead chords 
between ends of deformed diameters of any selected circle 
of the polar system.

Below in the figure is the conversion of the polar plot to 
the ellipse tracing all of its directional second derivatives. 
Here they are drawn as sums of pairs of evaluations of Z 
instead of differences between Z and −Z as in Fig. 3, but the 
algebra is exactly the same. Around the enlargement of the 
deformed unit circle from the upper-right panel are vignettes 
of four of these second differences plotted with the same 
four different symbols as in Fig. 3. For these little sche-
matics, any radius of a polar coordinate system will do; the 
delta-shaped outline here corresponds to 1.1, the outermost 
radius in the upper right panel, and the second derivative 
along each radial direction is the difference between the sum 
of the endpoints of that deformed diameter and twice the 
deformation of the center of the polar system (which here 
remains at (0, 0)).

(x, y) → Z(x, y)

= (x + 0.06x2 + 0.28xy − 0.07y2, y + 0.24x2 − 0.03xy + 0.06y2)

In other words, each point of the ellipse is the vector 
difference between the center of the polar system, which 
here is stationary, and the sum of the two dots terminating 
the locations after quadratic deformation of the diameter in 
the direction of interest for a circle of polar coordinates of 
some convenient radius. For instance, in the little scene at 
upper center of this lower panel, representing the horizontal 
cardinal direction, the sum of the two originally horizontal 
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Fig. 4  Schematic of the specimen-by-specimen analysis, here exem-
plified by a pure quadratic leaving the point (0, 0) fixed at the center 
of a 3 × 3 template. (above left) The target is an exact quadratic defor-
mation of the template according to the trend with the coefficients 
printed above the diagram, represented in Cartesian coordinates over 
a 3 × 3 grid of cell size 1. (upper right) The same transformation now 
diagrammed in polar coordinates up through radius 1.55. (below) 
The ellipse of second derivatives of that quadratic trend, constructed 
as the simple sums of points at opposite ends of a deformed diam-
eter of the image of the unit circle as they deviate from the point at 
the origin, or, equivalently, twice the average of that pair of points 
with respect to the origin. The + marks the origin of coordinates; note 
that it is not the center of the ellipse. Symbols on the ellipse mark 
the same cardinal directions as they did in Fig. 3: a solid disk for the 
horizontal transect, an open circle for the vertical, an asterisk for the 
transect from northwest to southeast, and a cross in a square for the 
transect at 90◦ to that one, southwest to northeast. The figure is to a 
different scale from Fig.  3 because it uses a polar radius of 1.1

√
2 

instead of 0.5 so as to embrace the diagonals of the 3 × 3 landmark 
template
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endpoints (larger dots) after this quadratic deformation falls 
mainly above the center of the polar system (small dot), lead-
ing to the displacement of the big black dot from the plus 
sign in the larger-scale scene. Again these four highlighted 
differences are the four cardinal directions whose statistics 
will concern us in the examples of “A Simple Example: The 
Vilmann Neurocranial Octagons” and “Revisiting a Mam-
mal Cranial Data Set” sections. The figure clarifies the sym-
bols that will be used to differentiate them: a bullet for the 
horizontal diameter, an open circle for the vertical diameter, 
an asterisk for the diameter joining southwest and northeast 
on the template, and a times sign in a box for the diameter at 
90◦ to that one, joining northwest and southeast. Note how 
the second derivatives in the x and y directions lie at oppo-
site ends of a diameter, and likewise those for the x + y and 
x − y directions, and that these diameters are what the geom-
eter calls conjugate, meaning that each one is parallel to the 
ellipse’s tangent at the points of the other. (This property is 
the affine generalization of the situation for perpendicular 
radii of a circle.) See Fig. 5 and its caption.

Put more abstractly: the six-dimensional feature space of 
quadratic trend grids of arbitrary landmark configurations 
over a common template involves the same distribution of 
derived data as the nominally eight-dimensional feature 
space of cardinal directions of an ellipse inscribed on the 
same picture plane. The Euclidean formulas for distance are 
moderately different in those two spaces, but, obviously, nei-
ther one is “incorrect”—both are reasonable.

Trend Formulas with Just One or Two Terms

Because there are six free coefficients in formulas like (1) 
for the quadratic trends to be examined, it is worth draw-
ing their effects singly and, more importantly, in pairs. Fig-
ure 6 uses Cartesian coordinates to show each single term 

twice, once with a positive coefficient and once with a nega-
tive coefficient. The more realistic Fig. 7 switches to polar 
coordinates to show all of the possibilities involving two 
of these terms—several of the actual examples to follow in 
“A Simple Example: The Vilmann Neurocranial Octagons” 
and “Revisiting a Mammal Cranial Data Set” sections will 
resemble one of these. The four panels here that look like 
stacks of circles with shifting centers correspond to pro-
jected images of a circular paraboloid, one of the standard 
quadric surfaces (Hilbert and Cohn-Vossen 1952/1952).

For the analysis of the Vilmann growth process in “A 
Simple Example: The Vilmann Neurocranial Octagons” sec-
tion and for some of the mammal examples in “Revisiting 
a Mammal Cranial Data Set” section, we will need the ren-
dering of the transformations of Fig. 6 by the grid protocol 
of Fig. 4. The resulting twelve “ellipses,” Fig. 8, are actu-
ally line segments through the origin. I mean this literally: 
if you carry out the construction of Fig. 4 on each frame 
of Fig. 6, frame by frame you arrive at the corresponding 
configuration in Fig. 8, where every ellipse has collapsed 
into a straight line, upon which some pair of cardinal direc-
tions turn out to be overprinted at the same point. Each of 
these lines, then, represents the effect of treating one of the 
single-coefficient models in Fig. 6 by the algorithm set down 
graphically in Fig. 4.

At this point we have already arrived at a diagram whose 
salient features can be used for reports of empirical findings 
wherever any two of the six coefficients of the quadratic 
trend map dominate the other four in absolute value. Fig-
ure 9 supplies such an ellipse for each two-coefficient panel 
in Fig. 7. (Again the computation is precisely the same as set 
out explicitly in Fig. 4.) Those that are not points or circles 
appear as lines oriented at either 0◦ or 45◦ to the horizontal 
and vertical.

“Ellipses” are Sometimes Points or Lines

Let us look a little more closely at Figs. 8 and 9. In Fig. 9, 
two of the frames display single points (overlaid with all 
four of the cardinal symbols). These are the frames labelled 
“+x2.x and +y2.x” and “+x2.y and +y2.y,” meaning, con-
figurations with the coefficients of x2 and y2 in one direction 
equal to each other and all other coeffients zero. Why is this 
the case? The answer can be phrased either algebraically or 
geometrically. Geometrically, note in Fig. 8 that the “ellipse” 
for the regression with single term rx2 , upper left corner 
panel, is a line segment with the point for the x-direction 
at one end, the point for the y-direction at zero, and both 
points for the xy and −xy directions halfway between. For the 
analogous regression with just the term ty2, lower left corner, 
the ordination of directions is the same except the solid disk 
and the open disk are reversed. (The letters r and t here, as 

Circle with a square of tangents.
 Each diameter is parallel

 to the tangents to the other.
The same after a shear.

Fig. 5  Conjugate diameters of an ellipse are pairs of diameters that 
were perpendicular in the circle from which the ellipse emerged as 
a shear. On the circle, each diameter is parallel to the tangents to the 
circle at the touching points of the other diameter, and this parallel-
ism is unaffected by shear operations. (left) A circle with its circum-
scribed square. (right) The corresponding configuration after the cir-
cle is sheared into an arbitrary ellipse
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in the caption to Fig. 6, correspond to terms in the regression 
formulas of Eq. (3) to come.) The sum of these two configu-
rations replaces both of the disks by their average and leaves 
the other two symbols right where they are, but that is the 
same place as the average of the two disk symbols. Hence 
after averaging, all four symbols land in the same place, a 
point on the x-axis but not on the y-axis, as in row 1, col-
umn 2 of Fig. 9. Algebraically, the transformation rx2 + ty2 
with r = t sends all of the points (x, y) = ±(cos �, sin �) to 
r(cos2 � + sin2 �) ≡ r, independent of the angle �.

Likewise one can confirm that combinations like the one 
with r = s and all other regression coefficients zero, upper 
left panel of Fig. 9, yield “ellipses” that are lines with both 
of the second-derivative coefficients for the mixed deriv-
atives at zero and the other two atop one another on the 
x-axis. There are four such combinations, versus two for the 
point-type of the previous paragraph. Geometrically, this is 
the sum of the labelled line segments in the first two rows 

of column one of Fig. 8. Algebraically, these points are the 
averages of terms r(cos2 � ± sin � cos �) , where the second 
term cancels over the ± operation and the first one simply 
tracks the squared cosine function over its angular range.

But there is another way to get a straight line “ellipse” in 
this approach: any of the single-term regressions set down 
in Fig. 8. There are two different types of this ordination, 
depending on whether the single term is the mixed expres-
sion sxy or vxy (row 2 of the figure) or instead one of the 
pure squares (row 1 or row 3). In the latter case, one of the 
disks is at the origin, the other disk is at some remove, and 
the symbols for the other two cardinal directions overlap 
halfway between. In the former case, both of the disks are at 
the origin, and the second derivatives for the ±45◦ directions 
lie on equal and opposite vectors.

The two pure types of ellipses, points and lines, combine, 
so that any of the lines in Fig. 8 or Fig. 9 can be shifted to 
accommodate any point representing equal coefficients r and 
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Fig. 6  The six degrees of freedom of a quadratic trend fit, each plot-
ted with both signs over a 3 × 3 template, in Cartesian coordinates. In 
the panel labels, “x2.x” stands for a regression term rx2 with r = 0.2 
for the x-coordinate of a deformation, and likewise y2.x is a term ty2 

for the deformed x; similarly x2.y and y2.y for ux2 and wy2 ; and finally 
xy.x and xy.y for terms sxy or vxy in one of the two coordinate regres-
sions. Letters here correspond to terms in the regression formulas of 
Eq. (3) to come
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t or u and w. We will see examples of all these intriguing 
configurations in the next two sections.

For data in 3D, as I mentioned above, the sphere of direc-
tions would lead to a surface of second derivatives taking 
the form of an ellipsoid, not an ellipse, and analysis would 
proceed using all thirteen cardinal directions (three edge 
directions, six face diagonals, four body diagonals), not just 
the four of this presentation.

A Simple Example: The Vilmann Neurocranial 
Octagons

The taxonomy of examples in “Geometric Fundamen-
tals” section can serve as a typology of ideal types for the 
understanding of individual examples. This section does 
so for a familiar textbook data set, the “Vilmann neurocra-
nial octagons” tracing around the midsagittal neurocrania 
of close-bred laboratory rats radiographed in the 1960s 

by the Danish anatomist Henning Vilmann at eight ages 
between 7 and 150 days and digitized some years later by 
the New York craniofacial biologist Melvin Moss. This 
version of the data is the one explored in my textbook of 
2018: the subset of 18 animals with complete data (all 
eight landmarks) at all eight ages. The concern in this sec-
tion, an extension of the corresponding analysis in Book-
stein (2023a), begins with the contrast of the Procrustes-
averaged shapes for the age-7 and age-150 animals (only 
the averages, no consideration of covariances).

Starting from a Regression Instead of from a Model

The quadratic maps in “Geometric Fundamentals” section 
were all synthetic, in the sense that they illustrated an exactly 
quadratic correspondence

(2)(x, y) → (x, y) + (rx2 + sxy + ty2, ux2 + vxy + wy2)
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Fig. 7  All pairwise combinations of the separate panels labelled with plus signs in Fig. 6, now plotted more appropriately in the polar coordinate 
system of Bookstein (2022). Similar figures could be drawn for combinations of +− , −+ , or −−
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between two configurations of nine landmarks, one of which 
was an exactly Cartesian grid. This was the case even when 
the ultimate visualization, as in Figs. 7 or 9, was not itself 
Cartesian. We identified these coefficients r through w with 
half the second derivatives of the resulting mapping, but for 
any empirical study those coefficients need to be produced 
by some arithmetical manipulations based in the actual data. 
As Sneath suggested so long ago, that arithmetic is the stand-
ard least-squares analysis that applied statisticians in a great 
range of different disciplines exploit when it is adjudged 
sensible to “fit a model by least squares”: they are the coef-
ficients r through w of the more highly parameterized regres-
sion model approximating the target configuration (x�, y�) as 
an exact polynomial function of the template configuration 
(x, y), the formula (x′, y′) = (a + bx + cy + rx2 + sxy + ty2, )
(d + ex + fy + ux2 + vxy + wy2).

Our task is to minimize the sum of squares of discrepan-
cies of this predictor with the target locations (x�, y�) over the 
template configuration: minimizing

(this will be our definition of Q) in which all twelve coeffi-
cients are calculated to minimize the sum of squared lengths 
of the error term in the complex plane. Each coordinate is 
then itself the result of an ordinary multiple regression 
x� ∼ a + bx + cy + rx2 + sxy + ty2, etc. In the examples of 
“A Simple Example: The Vilmann Neurocranial Octagons” 
and “Revisiting a Mammal Cranial Data Set” sections we 
ignore the values of the constants a through c (and likewise 
the d, e, f that characterize the analogous regression for y′ ), 
examining only the coefficients of the quadratic part, which, 
according to the geometry of “Geometric Fundamentals” 
section, can be interpreted unambiguously as half the second 
derivatives of the fitted quadratic trend: at every point of the 
picture plane, we have 2r = �

2x�

�x2
 , 2 s = �

2x�

�x �y
 , 2t = �

2x�

�y2
 , and 

similarly for the second partial derivatives u, v, w of y′ . The 

(3)

∑
(x,y)

|(x�, y�) − (a + bx + cy + rx2 + sxy + ty2,

d + ex + fy + ux2 + vxy + wy2)|2 ≡ |(x�, y�) − Q(x, y)|
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Fig. 8  Single-term prototypes for the quadratic trend ellipses: the 
second-order derivative analysis for each of the frames in Fig. 6. Plus 
sign: origin of coordinates. Other symbols show the second deriva-

tives in the four cardinal directions as in Fig. 4, except where some 
overprinting has been necessary
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calculus of the complex plane allows us to combine these 
two ordinary multiple regressions into the one quadratic 
trend analysis in two dimensions minimizing the sum of both 
families of squared errors, the one for x′ and the other for y′, 
because of the Pythagorean mystery that what we perceive 
as distance on the picture is actually the square root of the 
sum of these two squared arithmetical differences. (This 
observation is certainly not original; it is already explicit in 
Sneath’s paper of 1967, and it lies at the core of my earlier 
publication (Bookstein, 2023a) on this same theme of poly-
nomial trend analysis.)

Near the end of the Discussion, “Discussion” section, 
I will return to this convenient equivalence. Until then, it 
is simply assumed that it makes biological sense to con-
sider the parameters r through w to be sensible quantifica-
tions of what the biologist’s eye would already see as one 
meaningful aspect of a composite characterization of the 
difference in form of two organisms, each as represented 
for the purposes of that comparison by a configuration 

of finitely many landmarks. When landmarks are closer 
together, which is not the case for this example, one may 
think of the quadratic regression as a specialized version 
of a smoothing—a projection of the x− and y−coordinates 
of every landmark configuration on the five predictors x, y, 
x2 , xy, y2 derivable from the template. It is not the ordinary 
sort of smoothing of an image, convolution with a Gauss-
ian, but a representation within one shared specifically 
smoothed subspace of second derivatives all constant.

Rotating Coordinates Helps Interpretation

Under the assumption that landmark configurations can 
yield meaningful sets of coefficients r through w, Fig. 10 
begins at upper left with one version of the conventional 
analysis of this quadratic trend, the straightforward graphi-
cal comparison of the Vilmann octagon averages at age 7 to 
the quadratic trend prediction at 150 days in a biologically 
meaningless coordinate system (the principal axes of the 
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Fig. 9  Ellipses for the transformation grids in Fig. 7 are all either circles, line segments, or (surprisingly) single points. As in Fig. 8, the second 
directional derivatives in the x-direction and y-direction and their bisectors are plotted with the usual four symbols
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Procrustes average of the two age-specific means). From the 
quadratic fit (open disks) of the trend’s deformation of the 
age-7 average configuration to the age-150 average (filled 
disks) it is clear that the trend method has captured nearly all 
of the relevant geometric signal here; the problem is rather 
to state in simple words and coefficients what the meaning 
of that signal actually is. (Analogous grids could have been 
produced using principal component 1 or the regression of 
the octagon’s shape coordinates on Centroid Size—see, in 
general, the range of contexts of this example in Bookstein 
(2018)—but the thrust in this section is the interpretation 
of the single comparison of one pair of averaged configura-
tions.) Rotations of these grids have already been examined 

in the companion paper to this one (Bookstein, 2023a), but 
parameterization via their second-derivative ellipses is new 
here.

Indeed the ellipse here, bottom left in the figure, appears 
to be close to a special case. It has essentially only one 
dimension of variation—the minor axis is of length close to 
zero. We are free to rotate the coordinate system so that that 
minor axis falls on a meaningful alignment of the coordinate 
system in which the trend analysis was couched: explicit 
variation of the orientation of the Cartesian system used to 
convey the trend. Column 2 of Fig. 10 offers one alternative, 
a rotation of 13◦ , for which that null diameter connects the 
second differences at ±45◦ to the baseline. From the formula 
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Fig. 10  Analysis of the growth of the Vilmann neurocranial octagons 
averaged over the usual sample of 18 laboratory rats aged 7 days to 
150 days. Columns, left to right: conventional Procrustes pose, rota-
tion by 13◦ to superimpose the second derivatives along the diago-
nal directions (1,±1) , rotation by 58◦ that superimposes the second 
derivatives �2∕�x2 and �2∕�y2 along the coordinate axes instead, and 
rotation by 13◦ of a two-point registration (landmark 3 to landmark 
8, Interparietal Point to Sphenoöccipital Synchondrosis) yielding 
exactly the same interpretation but without any use of the word “Pro-

crustes” or any of the corresponding formulas or algorithms. Rows, 
top to bottom: Cartesian representation of the quadratic trend fit, 
polar-coordinate rendering of the same, and the second-directional-
derivative ellipse (always the same shape) with the four cardinal 
directions highlighted. In the upper two rows, the locations to which 
the points of the age-7 template are deformed by the grid are plot-
ted in open circles; in the top row, their actual age-150 averages are 
shown as well by the solid circles
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(25.3.26) of Abramowitz and Stegun (1964) it follows that 
the mixed second-order partial derivative of this quadratic 
trend is close to 0 for both the x− and the y-coordinates of 
the target configuration: the map is just a superposition of 
two processes each looking like any of the diagonal-domi-
nant frames in Fig. 9. (We can detect the dependence on just 
x2 and y2 in the top row, second column, of Fig. 10, where 
neither system of grid lines is distinguishable from parallel 
translations of the same parabolic curve.)

That rotation zeroed the mixed partial derivatives. A dif-
ferent rotation, at 45◦ to that one, will shift the vanishing 
diagonal of the ellipse from the diagonal canonical direction 
to the cardinal direction with �2∕�x2 equal to �2∕�y2 for both 
dimensions of the target configuration. In this representation, 
furthermore, the ellipse has rotated close to orientation with 
a different, equally salient ideal type: it is nearly aligned with 
one of the coordinate axes of the plot. And in yet another 
potential special case, the uppermost point of this ellipse, 

for the second derivative in the (1, 1) direction, is close to 
the (0, 0) of this diagram. After rotating 45◦ to sum-and-
difference coordinates, then, we find ourselves close to the 
situation in the lower right panel of Fig. 9, an “ellipse” that 
is just a line, horizontal or vertical, anchored near the origin 
of its coordinate plane.

An appropriate summary of this finding’s dominant fea-
ture would thus concentrate on that single mixed derivative. 
The situation (Fig. 11) is the one I described decades ago 
(Bookstein, 1985) as the bilinear map leaving two families 
of straight lines straight. (The linear term of this trend fit 
cannot alter the straightness of those lines, although it may 
well modify their angle from the 90◦ characterizing their 
relation to the highly symmetrical template of a square.) In 
Bookstein (2023a) the interpretation as a bilinear map was 
an inference from the grid diagram itself. Here, by contrast, 
it has been derived analytically as an observation about the 

−1 0 1

−1
0

1

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

bilinear quadratic trend
 0 −0.2 0 0 −0.2 0

−1 0 1

−1
0

1
2



bilinear quadratic trend
 0 −0.2 0 0 0 0

−1 0 1

−1
0

1

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . .
. . . . .

. . . . .
. . . . .

.

bilinear quadratic trend
 0 −0.2 0 0 0.2 0

−1 0 1 2

−1
0

1

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

bilinear quadratic trend
 0 0 0 0 −0.2 0

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

bilinear quadratic trend
 0 0 0 0 0 0

−1 0 1 2

−1
0

1

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

bilinear quadratic trend
 0 0 0 0 0.2 0

−1 0 1

−1
0

1

. . . . .
. . . . .

. . . . .
. . . . .

.

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

bilinear quadratic trend
 0 0.2 0 0 −0.2 0

−1 0 1

−1
0

1
2



bilinear quadratic trend
 0 0.2 0 0 0 0

−1 0 1

−1
0

1
. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

bilinear quadratic trend
 0 0.2 0 0 0.2 0

Fig. 11  The pure bilinear trend of Bookstein (2023a) is the quadratic trend of this paper with parameter string (0,±.2, 0, 0,±.2, 0) as in any of 
the corner instances here
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near-degeneracy of the ellipse that explicitly represents the 
coefficients of that same quadratic regression.

The bilinear map has an unexpectedly simple verbal 
report: opposite boundary segments are transformed linearly 
and the mapping deforms intersections of proportional tran-
sects across the template quadrilateral to intersections of the 
two new sets of segments connecting proportional aliquots 
of the target quadrilateral. Hence the map transforms two 
sets of straight lines on the template (in Fig. 11, a square) 
into two other sets of lines that are likewise straight (but 
no longer parallel) on the target image. Most other straight 
lines map into parabolas. The grid at upper right in Fig. 10 
is close to the prototype in the second row, third column of 
Fig. 11.

Note that the analysis in Fig. 10 involved no thin-plate 
spline, nor did it rely on any details of the Procrustes analy-
sis driving the configurations of the leftmost three columns 
in the top row. The finding is unchanged except for a transla-
tion and rescaling of the ellipse when, imitating the analysis 
in Bookstein (2023a), we abandon the Procrustes framework 
for a two-point (Bookstein coordinate) representation as in 
the fourth column. The Procrustes procedure per se added 
nothing to the biological interpretation here, and in fact it 
seriously interfered with the interpretation of the finding, 
inasmuch as freedom to rotate the coordinate system of the 
reporting grid is crucial to understanding the deformation. 
But how is that rotation to be described? Calling a pose a 
“58-degree rotation from Procrustes” is not helpful when 
that Procrustes pose itself bears no biological reference: 
such a reference position, conventionally aligned with the 
first principal axis of the landmarks of the template, is not 
accessible to the biologist’s intuition. In contrast, the fig-
ure’s description of the identical pose as 13 degrees from 
a specific interlandmark segment is a clear instruction. In 
terms of the prototypes in “Geometric Fundamentals” sec-
tion, the analysis here is closely aligned with a combination 
of just two frames: for the vertically extended ellipse, the 
combination in row 2, column 2 of Fig. 8; for the left shift 
of all those second derivatives in the x-direction, column 2 
of row 1 of Fig. 9.

Effect of Baseline Choice

The analysis in the rightmost column of Fig. 10 rests on 
a seemingly arbitrary choice of baseline for the two-point 
construction: the segment from the Interparietal Point to 
the Sphenoöccipital Synchondrosis. (This was the ultimate 
recommendation of the earlier analysis in Bookstein 2023a.) 
From Fig. 10 we see that the ellipses of interest are invariant 
in size and shape, but only rotate with the coordinate sys-
tem. That is reassuring, but it is more important to see the 
extent to which the analysis is stable against changes in the 
selection of the pair of points against which the baseline is 

constructed. Figure 12 continues the reassurance by super-
imposing those second-derivative ellipses for nine more 
different baselines, as shown in the inset diagram: not only 
Interparietal to Sphenoöccipital but also every segment link-
ing one of Basion, Opisthion, or Interparietal Point to one of 
Bregma, Sphenoëthmoid Synchondrosis, or Intersphenoidal 
Synchondrosis.

At the top are drawn all ten of the resulting ellipses 
after they are rotated into the orientation at right in Fig. 10 
and rescaled to accommodate variation of baseline lengths 
simply by dividing by chord hemilength as explained near 
the top of “Geometric Fundamentals” section. The plus 
sign is the origin of this plot, which is even more favorably 

ellipses, 10 baselines
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Fig. 12  When rotated back into the original digitizing coordinate sys-
tem, second-derivative ellipses of the longest baselines align with one 
another extremely well. (top) The quadratic trend ellipses to the ten 
selected baselines. with the standard four directional second-deriva-
tive symbols from Fig. 4. Big plus sign, (0, 0),  the origin of coordi-
nates (all second derivatives zero). (middle) The same with ellipses 
suppressed and the y-direction second derivative point replaced by 
its two-digit baseline code. To avoid confusion the big plus sign is 
replaced by the big × sign. (bottom) The ten baselines: every join of 
one of the landmarks 1, 2, 3 to one of the landmarks 5, 6, 7 in the 
geometry of the average age-7 configuration, along with the 3–8 base-
line from Fig. 10
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placed than the example in Fig. 10, i.e. closer to zeroing 
the second derivative in the x-direction. In the middle, the 
same cardinal directions are displayed without the ellip-
tical arcs connecting them, using the usual symbols for 
all except �2∕�y2, which is labelled instead by the pair of 
landmarks serving as the baseline. Clearly the points for 
�
2∕�x2 are tightly clustered, and also those for the (x + y) 

direction. Those for the second derivative in the y direc-
tion or the (x − y) direction show more scatter on this plot 
but the scatter would not affect the interpretation of the 
growth pattern as bilinear. The baseline used at right in 
Fig. 10 is the one numbered “38” here, which appears near 
the middle of the distribution of the �2∕�y2 points of these 
ten alternatives.

Figure 12 focused on the quadratic Vilmann growth 
analyses for a selection of longer baselines. But length, 
which (on an isotropic model) is inverse to digitizing error 
of the two-point registrations per se, is not quite the cor-
rect criterion for this choice even among the options that 
optimize the grid line representations of that quadratic fit: 
there needs to be a concern for spatial position as well. 
Figure 12 itself hints at this when we note that among 
those longer baseline choices, those along the cranial base, 
positions “16” and “17” in place of the icon for ( �

2x�

�y2
,
�
2y�

�y2
) , 

seem to trend differently from “25” and “35” near or along 
the upper calvarial margin.

To investigate this tendency more clearly, let us turn 
to a prototype that is precisely quadratic without error. 
The left panel of Fig. 13 shows this configuration: a tem-
plate that is exactly square, deforming symmetrically into 
the shape of a kite as in Figure 13 of Bookstein (2023a). 
In addition to the four corners I have highlighted four 
more pairs of landmarks at precisely the midpoints of the 
edges of either form. (Recall that the bilinear transform 

is by definition linear along these edges.) There result 
8 ⋅ 7∕2 = 28 possible baselines. In the center panel of the 
figure are the corresponding 28 “ellipses,” each one now a 
straight line as in Fig. 8. For the purposes of this compari-
son, as was done previously in connection with Fig. 12, 
they have all been rotated back to the original coordinate 
system of the left panel, then rescaled to correct for the 
division by baseline length per se. After standardization 
this way, it appears that there are only nine options among 
these 28 ellipses. Although they align quite well as regards 
their central tendency, it is their variability, not their trend, 
that concerns us here.

In the panel at right, which plots the right-hand endpoints 
of these ellipses, a clear spatial pattern emerges among the 
28 baseline choices themselves. For each edge of the origi-
nal template, the three baseline choices supply very nearly 
the same ellipse tip. These four triples lie in four different 
locations that together make up a mildly nonrectangular 
trapezoid with corners corresponding to the 1–7 edge, the 
1–3 edge, the 3–5 edge, and the 5–7 edge (clockwise at the 
corners of this panel). Inside this quadrilateral, and aligned 
with its diagonals, are four pairs of ellipse tips closer to 
the center that correspond to what chess players would call 
“knight’s moves” over the template: baselines connecting 
any corner of the square to the midpoint of one of the edges 
opposite (e.g., 27 and 47). There remain eight baselines out 
of the original 28, all of the tips of which cluster very closely 
right at the center of this scatter, the “correct answer.” Of 
these eight baselines, four are the actual central diameters 
of the template (15, 26, 37, 48) while the other four, taking 
advantage of the symmetries of this particular configuration, 
lie parallel to one of the template’s diagonals (24 and 68 
parallel to 15, 28 and 46 parallel to 37).

Thus, just as longer baselines are less aleatory in the pres-
ence of a real quadratic trend, clearly preference should go 
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Fig. 13  Geometry of baseline choice for a bilinear deformation. (left) 
A pure bilinear map, square to kite, with eight landmarks as num-
bered. (center) The corresponding 28 “ellipses” (in this special case, 
straight lines), which fall into only nine versions. (right) The nine 

variant analyses, by baseline, plotted as the tip of the ellipse of posi-
tive x-coordinate: four triples in an outer trapezoid, four pairs in an 
inner rhombus, and a core of eight at the correct location, for base-
lines passing through the centroid. See text



18 Evolutionary Biology (2024) 51:1–44

to baselines that pass near the centroid of the template per 
se. In the analysis of the Vilmann growth data, the selected 
baseline, 3–8, is analogous in its position to 2–8 of Fig. 13; 
the preferred coordinate system in Fig. 10 rotated this base-
line by 13 degrees as explained there. In the mammal skull 
analysis to come in the next section, the selected baseline is 
nearly the longest possible choice, and furthermore passes 
nearly directly over the centroid of the full sample scatter of 
shape coordinates.

Evidently, when analytic results like these are rotated 
back into an appropriate digitizing coordinate system, 
second-derivative ellipses of the longest baselines all repre-
senting the same quadratic comparison align quite well. Put 
another way, the Procrustes rotation per se has no scientific 
meaning—any requirement that this (or any other) orienta-
tion be standardized by some such least-squares procedure 
as part of an informative GMM dataflow makes no biometric 
sense. In a better toolkit, it is not rotation of individual speci-
mens that would be standardized, but instead those analyses 
will be highlighted which, like the quadratic trend ellipses 
here, do not depend on rotation—for which the rotation does 
not much affect the arithmetic of findings but so substan-
tially affects the cogency of their reports. It is not that the 
Procrustes method disagrees with these versions – its ellipse, 
in column 1 of Fig. 10, agrees with these. But nor did that 
Procrustes orientation gain us anything over the registra-
tion Moss originally applied to Vilmann’s radiographs 40 
years ago. We want analyses for which Procrustes orienta-
tion, or any other orientation prior to analysis, is irrelevant 
to the reportage. That frees us to explore the grammar of 
the template coordinate grid per se, which can be a crucial 
component of a biological interpretation.

For Genuinely Longitudinal Data

Growth changes computed from comparisons of average 
forms in samples of contrasting age have standard errors of 
estimate based on standard formulas of multivariate theory. 
We could have computed such an estimate, for instance, for 
the comparison in Fig. 10. But for data arising from true 
longitudinal designs, such as Vilmann’s, we can visualize 
the variability of these ellipses as actually observed one case 
at a time. The following example also serves to demonstrate 
how to interpret the major axis of one of these ellipses when 
it is not aligned with a cardinal direction, the way it was in 
Figs. 8, 9 and 10.

Figure 14 displays the quadratic trend ellipses for a 
selection of eleven out of the possible 28 age-to-age com-
parisons of the 18 Vilmann neurocranial octagons. In a 
context of growth analysis there is no purpose to division 
by any size measure, whether a specific interlandmark dis-
tance or the summary Centroid Size. Thus the analysis 
here, following the recommendation of Bookstein (2022), 

uses the raw Cartesian coordinates from the original data 
archive as published in Bookstein (1991, Appendix 1), 
centered on Bregma and registered on the direction toward 
Lambda but not altered in scale from Vilmann’s original 
neuroroentgenograms. So these second-derivative analy-
ses will emerge in a shared physical scale. The originally 
archived coordinate data were apparently in units of 10�, 
so in keeping with the formula for baseline length correc-
tion in the main text all my second-derivative computa-
tions have been rescaled by a factor of 1000 in order to be 
expressed in the more intuitive unit of cm−2. The top two 
rows of the figure show each of the comparisons between 
successive observations of the same animal, 7 days to 14, 
14 days to 21,..., 90 days to 150; all seven panels are to 
the same axes. With these conventions, second derivatives 
for the age-to-age comparisons range from 0 through 3 in 
absolute value.

Only for the last of these age-to-age plots, age 90 days to 
150, does the variation appear to be symmetric and homo-
geneous about a central tendency (in this example, the zero 
vector). Every other frame shows obvious deviations from 
this expectation—ellipses that are outlying in orientation or 
length or even that completely fail to overlap others of the 
sample, deviations most striking in the comparison of the 
age-7 octagons to their age-14 homologues. This particular 
display, in the upper left panel, suggests that a growth analy-
sis of the sample should eschew any reference to the age-
7-to-14 segment, but instead should begin at the later age. 
Analogously, if the transition from age 90 days to age 150 
has mean quadratic component zero (middle row, rightmost 
panel), these last 60 days of development might well be add-
ing only random error to a longitudinal analysis.

Better perhaps, then, to consider the developmental topic 
of “growth” to involve an informed choice of starting and 
ending ages, not simply the full range afforded by the origi-
nal experimental design. In the lower row of Fig. 14 are 
four of these alternative end-to-end analyses, starting with 
either the age-7 configuration or the age-14 and ending at 
either age 90 or age 150 days. (These bottom four panels 
are to a doubled range, corresponding to the larger temporal 
scope of second derivatives, which now range up to just 
over ±6. ) Clearly these four alternative “quadratic trends of 
overall growth” differ in their intrasample variability. The 
two alternatives beginning at age 7 days, far left and center 
left panels, include some wildly deviant individual analyses 
that owe to the obvious inhomogeneity of the corresponding 
age-7-to-14 analyses of the panel at upper left. So it is a rea-
sonable decision to launch the longitudinal analysis at age 14 
days rather than age 7. But also, comparing the center-right 
and far-right panels of this same lower row, there is clearly 
more noise in the lengthier of these two longitudinal ranges. 
If one intended to describe some homogenous morphoge-
netic process, observations past 90 days seem uninformative. 
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Hence out of this series of eight ages of observation, the 
most informative longitudinal analysis will plausibly be to 
compare the data from the second observation, age 14 days, 
to the data from the seventh, age 90.

Figure 15 examines this choice more closely. The upper 
left panel thus displays this specific pair of age means, still 
scaled in units of 10� , but rotated now by 19.3◦ clockwise 
so that the corresponding quadratic trend ellipse for the pair 
of age-specific averages, upper right panel, has its princi-
pal axis horizontal. (The original data were registered on 
Bregma and oriented with Lambda to the left; the rotation 
approximately corresponds to a baseline from landmark 2 to 
landmark 5, IPS–Brg, but this is not an analysis of any such 
two-point coordinates,)

In this upper right panel, the plus sign indicates the (0, 0) 
of these second-derivative coordinates. It is near one end 

of the ellipse here, which lies horizontally, indicating an 
analysis close to one of the ideal types in Fig. 8.

The 19.3◦ rotation of the Cartesian system has induced a 
corresponding rotation in each of the animal-specific quad-
ratic ellipses from Fig. 14 as in Fig. 15’s lower left panel. 
(Because these individual ellipses are based on regressions 
on nearly the same template, the trend analysis of the mean 
is very nearly the same as the mean of the individual trend 
analyses.) It is clear that these generally align with the mean 
analysis, upper right panel, but differ in both their verti-
cal position (the second derivative in the vertical direction 
at upper left) and also the left-hand endpoint of their long 
axis (to be discussed in connection with Figs. 17 and 18 
below). The final panel of this figure, lower right, makes this 
variability explicit by plotting the projection of all 18 indi-
vidual ellipses on the axes of the mean analysis. The range 
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Fig. 14  Quadratic trend ellipses for diverse age-to-age comparisons 
of the individual specimens of the Vilmann neurosagittal data set, 
using the original registration by Melvin Moss archived in Book-
stein (1991). Top row and middle row, the seven comparisons across 

successive observations. Bottom row, four alternative “end-to-end” 
representations. The panel second from left in the bottom row is the 
specimen-by-specimen deconstruction of the 18-animal analysis in 
Fig. 10
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of variation of this projection along the long axis direction 
of the quadratic comparison of means is just about fourfold 
(with the extremes arising from animals 2, 6, and 9). It not 
only always dominates the variation along the minor axis at 
90◦ to it but also is uncorrelated with that orthogonal com-
ponent. (This pair of descriptors appears not to be Gaussi-
anly distributed.)

If this neurosagittal octagon persists in its information 
content across more sophisticated analyses, particularly in 
three dimensions, it might well be a physiologically valid 
indicator at the individual level—a potential quantitative 
growth descriptor suited for studies of experimental chal-
lenge. So the quadratic trend analysis has resulted not only 
in a sample average analysis that greatly simplifies the geom-
etry, but also perhaps a new specimen-by-specimen one-
dimensional parameter, the individual animal’s extent of 
participation in this pooled growth gradient direction. Fig-
ure 16 shows the corresponding quadratic fits for all eight-
een of these experimental animals individually. The grid 
for the average, at lower right here, is clearly very close to 
a bilinear transformation as explained in “A Simple Exam-
ple: The Vilmann Neurocranial Octagons” section. Most of 
the individual grids share this bilinearity with the average. 

Those that do not are for the specimens of greatest nonlin-
earity—animals 2, 6, 9, the same that had the extremes of 
major axis length in Fig. 15.

But we are not yet finished with this more detailed growth 
analysis—we have not fully reconstructed the annotations 
implicit in Figs. 4 or 10, the association of each point of the 
ellipse with its own specific direction upon the actual plane 
of the organismal data. This built-in correspondence 
between quadratic ellipses and their associated grid dia-
grams suggests a further graphical protocol for interpreting 
the ellipses as legible, reportable features of the fitted quad-
ratic grids. Figure 17 demonstrates this protocol by enhance-
ments of the pair of displays for animal 2, the specimen of 
greatest left extension of its ellipse in Fig. 15 and greatest 
apparent rightward bulging of the grid in Fig. 16. As the left 
panel of Fig. 17 indicates, the left extremum of the ellipse 
for animal 2 is for the quadratic regression coefficient ori-
ented at 65◦ to this approximate Opi–Brg baseline. Orthogo-
nal to this, the right extremum, for transects oriented at 
−25◦ , involves second derivatives much closer to zero (i.e., 
first derivatives—forms and orientations of the little grid 
squares—that change very little along such transects). The 
left extreme, A, is close to the y-cardinal direction (open 
circle), meaning that the main feature of this quadratic gradi-
ent is close to the value of the second derivative �

2x′

�y2
 , the 

gradient of the deformed x-coordinate along the rotated 
y-axis. Over the full sample in Fig. 16, it is the curvature of 
these originally vertical grid lines that varies most from 
panel to panel. Grid lines of the other set, those that were 
horizontal before deformation, remain almost perfectly 
straight and evenly spaced along the left and right boundary 
segments of the landmark octagon: the signal of a bilinear 
transformation as encoded in the near-linearity of this ellipse 
(and also their sample average, Fig. 15 upper right).

The coefficients r through w (Eq. 3) of the fitted quad-
ratic trend, printed above this ellipse plot, are strongly pat-
terned. The rightmost three, for the second derivatives in 
the y-direction, can be treated as effectively zero, as can the 
leftmost one, the −0.67 for �

2x′

�x2
 , for now. The remaining two 

are nearly equal, so the situation is very close to the proto-
type already introduced in the second row, first column of 
Figs. 7 or 9, albeit with minus signs. The structure of the 
situation is thus summarizable with just three parameters: 
the coefficients s and t from Eq. (3), plus the angle of rota-
tion from the originally digitized coordinate data.

At the right in the figure is an explicit visualization of 
these gradients along the two specified transects. (The pair 
here were drawn through the centroid of the target land-
marks, but these quadratic trends are invariant along any 
parallel transect and along any interval upon such a transect.) 
Reading from the ellipse’s computed coordinates, direction 
A has second derivative (−4.79, 0.05)—this is clearly visible 
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Fig. 15  More detailed analysis of the third alternative in the bottom 
row of Fig.  14. Upper right, rotation to a horizontal position of the 
quadratic trend ellipse for the age 14 to age 90 mean configuration. 
The plus sign locates the (0, 0) of the coordinate system here; points 
of the ellipse near it correspond to directional transects of the quad-
ratic trend that have very low second derivative. Upper left, equiva-
lent Boas superposition after the corresponding 19.3◦ clockwise rota-
tion of the raw data. Lower left, the eighteen ellipses for individual 
animal comparisons after this same rotation. Lower right, projections 
of each of the individual ellipses on the axes of the mean ellipse 
above. The plus sign is still at (0, 0) even though the horizontal axis is 
reversed from the panel above
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in the severe reversal of shears of the little grid cells from 
the lower margin to the upper margin of this grid rectan-
gle. (There is no similar feature in the first partial warp of 
the corresponding thin-plate spline.) Explicitly, the value 
of −4.79 is the acceleration (per cm2 ) of the x-shift from the 
starting squared grid along any transect in that 65◦ direction. 
Direction B, by contrast, seems uninteresting (as a feature) 
but may perhaps be interesting as a developmental invariant 
(as it seems to be common to all eighteen of the experimen-
tal animals here—see the next figure).

The interpretation of the grid’s visual features is 
straightforward in terms of those coefficients printed above 
the ellipse. We understand the last three immediately as 
all appproximately zero, implying that the originally hori-
zontal grid lines are deformed into what are still nearly 
straight and parallel lines, with the original horizontal 

spacing now slightly attenuated toward the right (that coef-
ficient −0.67 for �

2x′

�x2
 ). The largest of the six coefficients, 

−1.98, is for �
2x′

�y2
 ; it quantifies the bending of the original 

coordinate lines of constant x into left-opening parabolas. 
The other substantial coefficient, −1.68 , is for �

2x′

�x�y
 . It speci-

fies how the slope �x
′

�x
 along the deformed originally hori-

zontal coordinate lines shrinks (i.e. has a negative �
�y
) as 

their original vertical coordinate rises. This can be easily 
confirmed, for instance by counting the original grid cells 
crossed horizontally by the segments IPS–Brg and 
Bas–ISS here, which are parallel and the same length in 
this age-90 specimen. They originally traversed 12 and 9 
coordinate cells, respectively, and thus grew in a ratio of 
3:4 over these 76 days. Thus the whole pattern is 
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Fig. 16  Quadratic trend grids (linear terms included) for each of the eighteen experimental rodents individually, and, in the final panel, for their 
Boas average (Fig. 15, upper left)
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reportable as the superposition of a quadratic bulge toward 
the right up the horizontal midline of the octagon (the 
texture of those vertical parabolas) together with a simple 
bilinear transformation extending the cranial base by some 
33% with respect to the parallel segment at the top of the 
cranial cavity.

This analysis, while suggestive, pertains to just one of the 
eighteen Vilmann animals. Comparison of the grid in Fig. 17 
to that at lower right in Fig. 16 suggests that the bilinear 
component is shared by the average even as the extent of 
that rightward bulging varies greatly over Vilmann’s little 
sample. We would do well to check whether the alignment 
of these extremes around the circuit of the ellipse’s refer-
ence directions (recall Fig. 4) persists over the full sample. 
Figure 18 confirms this hope quite elegantly, by plotting the 
direction of transect A over each point of the lower right 
panel in Fig. 15. It is clear that these directions are highly 
aligned over the entire rightmost two-thirds of the scatter, 
from ellipse major axis length 2.0 upward; only the six 
shorter ellipses rotate from this shared orientation, and that 
by only 10◦ or 20◦ . Thus this direction of greatest second 
derivative appears to be indeed an invariant of the normal 
growth of these animals, while the direction at 90◦ seems 
canalized in this respect. I know of no other morphometric 
analysis capable of unearthing so subtle a regularity of this 
classic data set. Analogous finds could well arise from the 
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Fig. 17  How to read a quadratic trend ellipse: example of a frequently 
encountered type. (left) The ellipse for animal 2 (whose grid bulges 
the most to the right in Fig. 15), with points marked at transect ori-
entations every 5◦. The extreme points A, B of the major axis are 
labelled by the corresponding transect orientations, in degrees coun-
terclockwise (positive) or clockwise (negative) of the horizontal after 
the rotation in Fig. 15. The second derivative is bipolar, so directions 
65◦ and −115◦ are the same, likewise −25◦ and 155◦ . The large open 
dot, as usual, is the fitted second derivative vector along the direction 
of the y-axis after this rotation; the large filled disk is the same along 
the rotated x-axis. (right) Corresponding extremal gradient directions, 

drawn over the quadratic trend grid itself. Transect A has a slightly 
greater negative second derivative in the direction of the grid’s x-axis 
than the precisely vertical transect indicated by the large open circle 
near it in the left panel. (In passing, this panel illustrates a point set 
down in slant type near Fig.  3 of “Geometric Fundamentals” sec-
tion: the directions of the transects borne by these ellipses are not the 
same as the directions of the ellipse’s points out of its center. Here the 
direction of greatest second derivative is roughly north by northeast, 
but the point representing that transect on the ellipse lies at the end 
of its major axis, which is almost exactly horizontal in relation to the 
ellipse’s center.)
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Fig. 18  The analogues of Axis A in Fig.  17 for all eighteen of the 
Vilmann animals, scattered as edgels on the projection plane from 
the lower right panel of Fig. 15. The homogeneity of this orientation 
of maximum second derivative is striking, particularly as the actual 
value of that maximum is so variable (Fig. 15). In a different study 
design, it might well be referred to as a character
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knockout experimental data associated with animal models 
for human birth defects.

Revisiting a Mammal Cranial Data Set

The data set on which Fig. 1 is based is the 13-point mid-
sagittal subset of a 35-landmark cranial configuration that 
arose as a revision of a data set originally exploited in 
Marcus et al. (2000). Its 55 specimens, all but the dolphin 
and the hyena from a representation kindly sent to me by 
Erika Hingst-Zaher in 2013, omit the deer-pig Babirusa 
from the 2000 sample but insert specimens of Kangaroo, 
Man, Sheep, and Boar. (This particular revised data set 
was previously analyzed in Bookstein (2018, 2019) by a 

method different from the approach put forward here. The 
2000 article also notes that the selected Elephant skull, 
along with those of Walrus and Manatee, had to be a 
young one in order to fit into their digitizing apparatus.) 
Fig. 19 scatters the landmark data via various analytic dis-
plays pertinent to their two-point shape coordinates as in 
Fig. 1. In the upper right panel, the count of three partial 
warps the residualizations from which are scattered is set 
to correspond to the six degrees of freedom for the analy-
sis by quadratic trend in the panel below it. Each partial 
warp score involves two degrees of freedom because in 
the GMM formulary it is a complex number. For an intro-
duction to this way of notating the Cartesian plane see 
pp. 370–371 of Bookstein (2018), or, for a much deeper 
pedagogical guide, Chapter 2 of Mumford et al. (2006).

−0.6 −0.4 −0.2 0.0 0.2 0.4

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

revised Marcus, 55 specimens,
 conventional Procrustes coordinates

−0.6 −0.4 −0.2 0.0 0.2 0.4
−0

.2
0.

0
0.

2
0.

4
0.

6
0.

8

nonaffine component

−0.4 −0.2 0.0 0.2 0.4

−0
.2

0.
0

0.
2

0.
4

0.
6

residuals from first three PW’s

0.0 0.5 1.0

0.
0

0.
5

1.
0

two−point coordinates, 13−7 baseline

0.0 0.5 1.0

0.
0

0.
5

1.
0

predicted forms from quadratic trend

0.0 0.2 0.4 0.6 0.8 1.0

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

quadratic residuals around the average

Fig. 19  A selection of scatterplots relevant to the information in 
Fig.  1 and those following in this section. All panels pertain to the 
distribution of the 13-landmark configurations for the 55 representa-
tives of mammalian orders as regressed individually upon the tem-
plate shown in Fig. 1. (upper left) The conventional Procrustes coor-
dinates for these 55 13-landmark configurations. (upper center) The 
nonaffine component of that Procrustes scatter, adjusted for the lin-
ear (affine) aspect of their variation around the average from Fig. 1. 

(upper right) Residuals from the first three partial warps of the con-
ventional Procrustes-spline toolkit. (lower left) The two-point coor-
dinates of the same raw data set to the longitudinal baseline used in 
Fig. 1 and later figures. (lower center) Predicted forms from the quad-
ratic trend analysis, showing roughly as much variation as the origi-
nal data at their left. (lower right) Residuals from the quadratic trend 
analysis of this paper
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A note on notation. When, as in this example, a large 
sample of target forms is to be regressed on the same 
template, the regressions can be written out all at once 
in a compact matrix expression of what the packages 
call a “multivariable regression.” But that notation, 
while useful for the programmer, does not simplify 
the exposition case by case—unlike the situation for 
principal components analysis, writing out all the 
shape coordinates of all the cases in one data matrix is 
not an insightful step toward understanding how their 
quadratic trends produce ellipses from the circle of 
directions—and does not substantially aid the task of 
visualizing the individual polar-coordinate grids and 
parameterizing the second-order ellipses at the core 
of the new methodology. Nor does the matrix nota-
tion help in the extension mentioned in “Discussion” 
section to phylogenetic contrasts, where the template 
would be different at every branch point of the phy-
logeny. So that alternative notation is not written out 
here; experienced R coders can construct it straighta-
way from Eq. (3) for themselves. For a similar reason, 
this paper is not accompanied by the Splus code that 
generated all the figures, a total of nearly 12,000 inex-
pert, unoptimized, uncommented lines. Early adopters 
of the quadratic-trend method should instead choose 
to rely on professional programmers for navigating the 
analytic geometry of all these variants.

The Four‑Panel Dashboard

The Vilmann exegeses of “A Simple Example: The Vilmann 
Neurocranial Octagons” section dealt mainly with one single 
transformation at a time, as in Fig. 10, or with its within-spe-
cies variation, Figs. 14 through 18. To extend this approach 
to multispecies samples it is helpful to have a formal data-
flow, as laid out in the dashboards to follow. For the main 
text I have selected one exemplar (Bear) near the average of 
these configurations as assessed by the net 22-dimensional 
Euclidean distance (two coordinates for each of the eleven 
moveable points) from the sample average in the two-point 
coordinate system diagrammed at left in Fig. 1, another 
(Ondatra, muskrat) near one of the extremes of this Euclid-
ean distance, and a third one, Man, of parochial interest to 
most readers. For the full set of all 55 of these, please con-
sult the Supplement to Bookstein (2023b). To understand 
the layout of any of the 55, review the three examples to 
follow here. (I am not claiming that this distance measure, 
or indeed any distance measure whether or not a sum of 
squares, makes any sense as a focal numerical quantity in a 
GMM analysis—only that this particular sorting was a use-
ful way of generating the helpful list of three specimens in 
the dashboards of Figs. 20 through 22.)

The key to Figs. 20 through 22 is as follows. At upper left 
is a conventional Cartesian plot of the quadratic fit to the 
specimen from the average in Fig. 1, with the coefficients 
r through w of the formula Q, Eq. (3), printed above. Solid 
dots, observed shape coordinates; open circles, predictions 
of the quadratic fit (including linear terms that do not con-
tribute to the second derivative). At upper right the same 
deformation is rendered in polar coordinates around the cen-
troid of the template. (This grid has been trimmed to avoid 
large expanses devoid of landmark data.) At lower left is a 
close-up of the polar deformation normalized to linear term 
(x, y) (as in Fig. 4) within which is traced the warping from 
a circle of radius 0.5 (so that the corresponding chord length 
is 1.0—the second differences are the second derivatives) in 
the template; the sums of differences of ends of diameters 
from the center here are the loci that, taken all together, 
comprise the ellipse at lower right. Cardinal directions of 
these diametral comparisons are keyed as in Fig. 4. As none 
of the ellipses here are centered at (0, 0) except by accident, 
each diagram marks the origin of its coordinates (the purely 
linear transformation) by a large + sign.
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Fig. 20  Dashboard for the quadratic trend fit of the average two-point 
shape coordinate configuration (Fig. 1) to the Bear configuration, at a 
summed squared distance of 0.028 (fourth-closest) to the grand aver-
age of Fig. 1’s two-point coordinates in this data set. Comparing the 
axis scales of the lower-right panel here to those of the same panel in 
the next two figures, we infer that the ellipse here is not far from the 
prototype of one single point discussed in connection with Fig. 9: not 
much quadratic warping at all
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Reporting Ellipses by Their Cardinal Directions

As rendered in Fig. 1 the ellipses of “Geometric Fundamen-
tals” section capture five degrees of freedom (e.g., center 
coordinate pair, major axis orientation, both axis lengths) 
of each quadratic fit’s six degrees of freedom (three coef-
ficients for the horizontal shape coordinate, three more for 
the vertical). What is missing from the five is the angula-
tion of the original Cartesian axes upon the ellipse. Here 
in Fig. 23, which enhances a subset of the information in 
the right-hand panel of Fig. 1, nineteen of the 55 ellipses 
that lay at or near the margin of the superposition there are 
named with the sixth degree of freedom indicated by sym-
bols for the cardinal directions corresponding to the four 
directional second derivatives specified in the figure legend, 
icons already introduced in “Geometric Fundamentals” and 
“A Simple Example: The Vilmann Neurocranial Octagons” 
sections. (Given any one of these along with the unlabelled 
ellipse as in Fig. 1, you have all four by the combination of 
their properties of central symmetry and conjugacy: direc-
tional derivatives along the baseline and at 90◦ to the base-
line lie at opposite ends of a diagonal of their ellipse; the 
derivatives along the ±45◦ directions lie on the conjugate 
diagonal.) For each specimen, as explained in “Geometric 
Fundamentals” section, these directional derivatives apply 
across the entirety of the fitted quadratic grid.

Figure 24 conveys the same information less redundantly, 
by eliminating the elliptical curves entirely, leaving only the 19 
pairs of cardinal directions introduced in “Geometric Funda-
mentals” section. Like the vector of six coordinates introduced 
above in Eq. (1), the quartets of points in two dimensions bear 
a total of six degrees of freedom (since the midpoints of the 
two pairs characterizing each specimen must occupy the same 
location—a total of two linear constraints). The second deriva-
tives along the baseline (filled circles in Fig. 24) are tightly 
clustered around (0, 0), not because the average shape of this 
configuration is highly elongated in this direction but because 
the observed range of the explicit second derivative vector 
(
�
2x�

�x2
,
�
2y�

�x2
) is relatively limited. This is not a function of the 

choice of baseline direction in Fig. 1—it is a fact about the 
mammals in the Marcus sample, not an artifact of the two-
point method. Second derivatives in the perpendicular direction 
(open circles), derivatives vertical in this two-point system, are 
much more widely scattered. We shall see that the ordination 
of ellipses (trend gradients) here is moderately invariant to the 
choice of that baseline among reasonable alternatives. Never-
theless the diversity of these ellipses—the diversity of direc-
tional second derivatives of a quadratic trend fit unchanging in 
its template and in its least-squares formulation—is both novel 
and remarkable, and may be telling us something important 
about the evolvability of cranial form across Mammalia.

Principal Components of Coefficients; of Cardinal 
Directions

To explore the diversity of these quadratic trend fits it 
is useful to begin with the complete display of their six-
dimensional space. Figure 25 presents a view in the form of 
three two-dimensional projections each pairing one of the 
three coefficients—for x2 , y2 , or xy—for both of the Carte-
sian coordinates of this midsagittal plane. Plainly the lists 
of the extremal forms on these three panels are distinctive, 
in fact, nearly nonoverlapping: for x2, Baboon, Giant Ant-
eater, Echidna, and Ornithorhyncus (platypus); for y2, the 
two cetaceans and again the Giant Anteater; and for xy the 
nearly collinear series Hyrax–Sheep–Man facing Beaver at 
the opposite corner of the scatter. We will shortly see echoes 
of all these positions in the multivariate analyses to follow.

Figure 26 deals with diverse multivariate statistics of 
this new ordination by quadratic trend fits. The upper pair 
of ordinations, trend coefficients versus cardinal direc-
tions, are based in exactly the same six-dimensional vector 
space to two different bases, one (rstuvw) from the regres-
sion coefficients themselves, Fig. 25, and the other from 
the redundant eight-coordinate cardinal directions (the full 
sample of 55, including the subsample of 19 in Fig. 24). 
The seven-species convex hulls of their scatters are identi-
cal as lists and nearly identical as shapes up to an affine 
transformation. But neither is acceptably in alignment with 
either of the Procrustes versions below: canonical correla-
tions with the first two dimensions of the cardinal-diame-
ters version are 0.8417 and 0.5779 vis-á-vis the full Pro-
crustes shape coordinate space and 0.9018, 0.3576 with 
the nonaffine subspace there, which is ostensibly aiming 
at the same goal. Indeed the principal components (PC’s) 
of the canonical diameters are badly misaligned with their 
analogues in the Procrustes nonaffine setting—the correla-
tion matrix of the two versions of the first three PC’s is 
⎛⎜⎜⎝

0.091 0.613 − 0.609

−0.473 − 0.307 − 0.358

−0.798 − 0.005 − 0.086

⎞⎟⎟⎠
 . In the score plots, note, for 

instance, how much greater the separation of Hyrax from 
its neighbors is in the Procrustes plots compared to its 
relatively tame location in either quadratic-trend PCA.

Back in Fig. 25, note the cluster of seven taxa at the right 
in the panel for �

2

�y2
 : Pangolin, Aardvark, Lesser and Giant 

Anteaters, Armadillo, Elephant Shrew, and Man. (We saw the 
same seven points as the cluster of open circles at the right in 
Fig. 24.) As Fig. 23 confirmed, six of these seven lie near tips 
of ellipses that are elongated only in this direction, whereas 
the seventh ellipse, for Man, differs greatly in its size, in its 
centering, and in its axis ratio—in humans, gradients parallel 
to and perpendicular to the baseline do not dominate the quad-
ratic trend description, whereas they are indeed the principal 



26 Evolutionary Biology (2024) 51:1–44

descriptors of the other six taxa in this cluster. Here in Fig. 26, 
note this same cluster of seven taxa in the principal-compo-
nent plot of cardinal directions at upper right—these seven 
points extreme on PC1 span nearly the entire range of PC2. In 
the conventional plot of Procrustes shape coordinates, lower 
left, the cluster substitutes two different taxa for the shrew and 
Man, and in the scatter for the nonlinear Procrustes subspace 
(lower right panel), which purports to represent much of the 
same information as these ellipses do, there is no analogous 
cluster at all. Clearly the quadratic approach does better than 
the Procrustes approach of Marcus et al. at adumbrating the 
visual similarities among this particular six-taxon subset (the 
mammals with sharp, elongated snouts).

In conventional Procrustes-spline GMM, the results of a 
multivariate analysis are often diagrammed as a scatterplot 
amplified by drawings at each end of each axis that inter-
pret the scatterplot’s axes as deformations. For scatters more 
heavy-tailed than bell-shaped, like the ones here, the rendering 
by endpoints of axes is not as helpful as the more complete 
rendering by the full circuit of directions over the scatterplot 
(especially as the species anchoring this circuit around the out-
side of the hull are so suggestive of the overall variability of 
the class). In Figs. 27 and 28 the plotted locations of these ori-
enting specimens are identified by the first four or five letters 
of their long names, as in Table 1. These eight would outline 
the convex hull of the scatter were it not for the position for 
Elephant (“Elef”), but as explained in Marcus et al. (2000) this 
specimen had to be a juvenile in order to fit into their digitiz-
ing apparatus. Grids are generated by reconstructing the coef-
ficients �

2

�x2
, etc., of the quadratic trend from the entries for the 

four cardinal second derivatives in the scatterplots of Fig. 20 
ff.2 Grids opposite one another are not inverse maps but instead 
renderings of opposite coefficient vectors in their quadratic 
trend formula. Figure 27 renders these first two principal com-
ponents as their effects on the 55-landmark average every 30◦ 
out of that average at an arbitrary multiple.

Figure 28 represents the same twelve quadratic trend 
grids in the less familiar polar coordinate system we have 
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Fig. 21  For the Ondatra (muskrat), distance 0.34 (fifth-largest) from 
the full sample average in the system of Fig. 1 (left). Obviously the 
closed curve in the panel at lower left (and likewise in the same posi-
tion in every other diagram of the same design) is not an ellipse, but 
still the curve in the lower right panel is elliptical, as is the prototype 
near the center of Fig. 3
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Fig. 22  For the human specimen, farthest from the average of Fig. 1 
(left) at sum of squares 1.90, owing mostly to the extreme positions 
of the inion and the frontal-parietal suture here. The behavior of this 
second derivative in the vicinity of the mandible is interesting; it will 
concern us in more detail in Fig. 29 below and in the “teardrop” anal-
ysis of “Discussion” section

2 To convert a predicted set of cardinal direction endpoints, such as one 
of these principal component loading vectors, into a quadratic trend, one 
must produce the values of all six parameters of that trend. The coeffi-
cients of x2 and y2 for both of the target coordinates are explicit in the 
locations of the endpoints of the predicted cardinal direction at angles 0◦ 
and 90◦ to the baseline. The remaining two coefficients, pertaining to the 
mixed partial �

2

�x �y
 in the two dimensions of the target configuration, can 

be derived as half the difference of the two directional derivatives in the 
(x + y) and (x − y) directions (Abramowitz and Stegun 1964, formula 
25.3.26). The multiplier here of 1

2
 adjusts the coefficient 1

4
 of their formula 

25.3.26 to account for the facts that the radii of the circle of diameters 
here is only 1√

2
 of the spacing of the grid points in that formula and that 

the dependence of the estimated derivative on these differences goes as 
the inverse square of their separation.
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already encountered in previous figures. What is intuited 
in Fig. 27 as relative enlargement of the upper left (neuro-
cranial) quadrant of the grid in the direction on which Man 

lies, for instance, is seen more cogently here in Fig. 28 as 
a rotation apart of the relevant radii—compare the angula-
tion of “ribs” in this region between the directions of Man 
and Manatee, for instance. From either of these two figures 
it is clear that the vertical reorientation of the human face 
so clear in Fig. 22 is not captured by this first pair of quad-
ratic trend principal components. It may be seen instead in 
Fig. 29, the analogous plot just for principal component 4 
alone, on which Man is a striking outlier. The effect of this 
component is both to shorten the lower jaw and to straighten 
the facial angle with respect to the rest of this midsagittal 
configuration, two characters among the familiar synapo-
morphies of Homo sapiens. At the other end, the substan-
tial negative scores for Beaver and its neighbors Hystrix 
(porcupine), Capybara, and Ondatra are consistent with the 
large residuals at the landmarks of the Ondatra lower jaw 
in Fig. 21.

Ellipse Axes, Ellipse Centers

In Figs. 1, 23, or 24 there is strikingly variability in sev-
eral aspects of these ellipses. The orientation of their car-
dinal diameters with respect to the Cartesian directions of 
the two-point registration has concerned us in connection 
with Fig. 10 of the previous section, but there is additional 
information in the lengths of the ellipses’ own semiaxes. (A 
semiaxis is the distance from the ellipse’s center to one of 
the endpoints of its axes; it is half the axis length per se.) 
Fig. 30 is an ordinary scatterplot of these two lengths for 
each of the 55 specimens in this data set. (As an additional 
quantification one might consider the product of these two 
distances, which, when multiplied by �, is the area of the 
ellipse.)

Some observations are clear from the figure. Homo sapi-
ens has by far the largest of the minor semiaxis lengths 
(and also the largest ellipse area). But Hyrax, Manatee, 
and Dugong all have nearly the same semimajor axis 
length—the range of variation in one specific direction 
across the midsagittal cranium. These three examples are 
thus quite directional in their range of second derivatives 
(cross-cranium gradients of derivative). In the other direc-
tion, Baboon appears to have the most isotropic of these 
distributions—its ellipse of second derivatives is closest 
to a circle.

At the other extreme, the animal called Tasmanian Wolf 
(TasmW) here, a thylacine, has the smallest of these ellip-
ses—it is closest to a purely linear transformation of the 
average configuration in terms of these quadratic trend 
fits. But several other species along the lower border of 
Fig. 30—notably Tapir, the primates Sifaka and Gorilla, 
and also Cheetah, Sea Otter, and Capybara—have ellipses 
that almost reduce to the flattened lines of Fig. 8. (We saw 
this pattern already in “A Simple Example: The Vilmann 
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Fig. 23  Nineteen ellipses from Fig.  1 (right) that lie at or near the 
margin of the distribution there. See text
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Fig. 24  An even less cluttered rendering: just the cardinal directions 
from Fig. 23
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Neurocranial Octagons” section for the growth analysis of 
Vilmann’s laboratory rats, a rodent in the same family as 
the capybara.) The unidimensionality of the ellipses along 
this border suggests an actual constraint of their evolution—
e.g., for the tapir there may be considerable developmental 
reorganization involved in liberating the nose for its pre-
ferred herbivore diet. In contrast, the position of Man in 

this scatter is consistent with our formal classification as a 
neotenous species, one whose heterochronies have not yet 
had “developmental time” to emerge. On the fourth PC axis, 
Fig. 29, Man is most different from Beaver; in the PC plots 
of higher explained second-derivative variation, Fig. 26, we 
are instead most contrasted with Tapir, Hyrax, Manatee, and 
Dugong. Thus the principal component analysis of Fig. 26 ff. 
seems quite sensitive in its numerical pattern to the pattern 
of semiaxis lengths in Fig. 30. Geometrically this is no sur-
prise, as the axis lengths are confounded with the separation 
of their endpoints, which, whenever they arise as cardinal 
directions, are within the scope of linear combinations of 
these reference features.

Figure 31 looks more closely at the specific situation of 
Tapir here, the rightmost point along the lower margin of 
Fig. 30. This particularly skinny ellipse is oriented along the 
horizontal in Fig. 1, the long axis of the template configura-
tion as a whole. The y term in its circuit of second deriva-
tives nearly reduces to a single value (coefficients u = w and 
v = 0 ) and its x term has two equal coefficients, s and t, 
which is one of the special cases discussed in connection 
with Fig. 9 (specifically, the negative of the configuration 
in row 2, column 1 of Fig. 9). The constancy of the regres-
sion ux2 + vxy + wy2 for the warped y-coordinate implies 
a constant positive gradient in every direction, hence, the 
increasing second derivative in x as one passes one’s eye up 
the page—these grid parabolas become steadily sharper with 
height. The dominance of the open disk and its neighbor in 
the lower-right panel corresponds to a principal direction of 
increasing separation aligned halfway between their direc-
tions—roughly the direction at 20◦ counterclockwise of hori-
zontal. This effect is negative, meaning that the spacing of 
verticals is closer toward the right side of the grid (positive 
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Fig. 25  Scatters of the six dimensions of quadratic trend coefficients 
in three pairs, one for each of the patterns in the rows of Fig. 6. Speci-
men short names are as in Table 1: the full text strings except for the 
two beginning with Aard (five letters each) and the following four: 

TasmW, Tasmanian Wolf; TasmD, Tasmanian Devil; Elef: Elephant. 
EleS: Elephant Shrew. Note the difference in scale between the 
x-squared panel and the other two, confirming the impression from 
the subsample in Fig. 23 or Fig. 24
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Fig. 26  Four principal component analyses of the 55 × 13 Marcus 
et al. (2000) data set, 2013 version, plotted by the scatter of their first 
two scores. The upper left panel shows the first two principal compo-
nents of the six dimensions laid out in Fig. 25. The principal compo-
nent analysis at upper right considers all 55 of the quartets of which 
19 were displayed in Fig. 24
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x’s) than the left, principally in the direction aligned with 
the longer diagonal of the deformed rectangles projecting 
from the form as in the panel at lower left. In the polar plot, 
upper right panel, this gradient of radial spacing is particu-
larly clear. That the roof of the calva is shortened is obvious, 
but that could have been accomplished in any of several 

Table 1  Table of specimens

Long name Plotting icon

Aardvark Aardv
Aardwolf Aardw
Armadillo Arma
Baboon Babo
Bandicoot Band
Bat Bat
Bear Bear
Beaver Beav
Boar Boar
Capybara Capy
Cheetah Chee
Dugong Dugo
Echidna Echi
Elephant Shrew EleS
Elephant Elef
Flying Lemur Flyi
Giant Anteater Gian
Gorilla Gori
Hare Hare
Hedgehog Hedg
Hippopotamus Hipp
Hyrax Hyra
Hystrix Hyst
Kangaroo Kang
Koala Koal
Lesser Anteater Less
Llama Llam
Man Man
Manatee Mana
Megachiroptera Mega
Monito Moni
Nightmonkey Nigh
Ondatra Onda
Opossum Opos
Ornithorynchus Orni
Panda Pand
Pangolin Pang
Raccoon Racc
Red Panda RedP
Sea Lion SeaL
Sea Otter SeaO
Seal Seal
Sheep Shee
Sifaka Sifa
Solenodon Sole
Suricata Suri
Tapir Tapi
Tasmanian Devil TasmD
Tasmanian Wolf TasmW
Tenrec Tenr

Table 1  (continued)

Long name Plotting icon

Threetoed Sloth Thre
Twotoed Sloth Twot
Walrus Walr
Wombat Womb
Zebra Zebr

Specimen names are as tabulated in Marcus et al. (2000) with excep-
tions as noted in the text

 PC1 versus PC2 of the cardinal diameters

Hyra

Mana

Dugo Onda Man
Arma

PangElef

Fig. 27  Interpretation of the axes of the upper right scatter in Fig. 26 
by extrapolations of the pertinent quadratic trend grids (in Cartesian 
format) every 30◦. The square grid at center bears the landmarks of 
the 55-specimen average from Fig. 1. Affine terms are omitted

 PC1 versus PC2 of the cardinal diameters

Hyra

Mana

Dugo Onda Man
Arma

PangElef

Fig. 28  The same with the axes interpreted as trimmed polar coordi-
nates instead, after the fashion of Fig. 20 ff. Again affine terms have 
been omitted
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geometrically different ways insofar as the midpoint of that 
reduced calva stayed fixed over the cranial base, shifted 
anteriorly, or shifted posteriorly. Here it apparently shifts 
mainly posteriorly, as one clearly sees in the polar grid plot 
at upper right.

The simplicity of this analysis strongly suggests that one 
search for a simple “cause”—a simple functional gradient 
accounting for the transformation of the template (a plausible 
ancestral state) with the constraints s = t, u = w, r = v = 0 of 
the regressions here. It affords an interesting contrast with the 
corresponding analysis for an entirely different animal, the 
manatee, Fig. 32. There are strong similarities here—juxta-
position of the 45◦ and 90◦ pairs, horizontality of the ellipse 
in the coordinate system of Fig. 1. Notwithstanding that the 
rank-order of the six regression coefficients r through w is 
different, the overall impression of this quadratic trend is 
remarkably similar, though more intense in the sea creature. 
That “teardrop” shape of the half-unit circle plot, lower left 
panel in both of these figures, may well be a novel character 
parameterizing the feasibility of extreme forms across a wide 
subset of the mammalian radiation. (Think of the teardrop as 
the combination of suppressed angular spacing along with 
enhanced radial spacing in the same polar sector—concentra-
tion of an intensified second derivative of a trend coefficient 
in one relatively narrow direction together with a suppression 
in the perpendicular direction.) The temptation to refer to this 
situation as a canalization should perhaps not be resisted.

Either Tapir or Manatee, similarly extreme according to 
the quadratic-trend feature space, can be profitably compared 
to a contrasting situation, a rotation at 45◦ of those cardinal 
directions. In the upper left panel of Fig. 26 the PC1–PC2 
score for the elephant (“Elef”) is relatively isolated along the 
vertical (PC2) axis, whereas the point for Manatee is where 
one expects it (far out along the PC1 axis). This divergence 
of positions corresponds to the appearance of the polar-coor-
dinate panels at upper right in Figs. 31 versus 33 below. For 
the manatee, there is a sharp convergence of polar radii along 
a northwesterly direction; for the elephant, along a northerly 
direction instead. The elephant’s half-unit circle plot, lower 
left in Fig. 33, shows a version of the teardrop pointed verti-
cally rather than to the northwest, corresponding to the rota-
tion of its cardinal directions around the ellipse at lower right. 
(There has also been an elevation of this ellipse above the hor-
izontal axis of its panel, corresponding to the positive second 
derivative of the spacing of the horizontal curves in the upper 
left panel.) In keeping with Sneath’s vision of factors it would 
be reasonable to search embryologically for some putatively 
one-dimensional form-factor that accounts fairly simply for 
this shape change, in spite of its extremely large magnitude, 
as a plausible two-parameter change of the quadratic trend 
coefficients. Teardrops may indeed be one good candidate for 
the rhetoric of form-factors that Sneath hoped for in his 1967 
article. I return to this possibility in the Discussion.

It is fair to inquire about the uncertainty of this lengthy series 
of analyses against that initial analytic decision, the choice of 
a longitudinal baseline. Figure 34 complements the right panel 
of Fig. 1 by an alternative for this highly diverse sample. It 
is a source of considerable comfort that the obvious features 
of Fig. 1 are replicated here to a great extent in spite of the 
quite different functional contexts of the baseline points chosen. 
(This alternate baseline makes an angle of 33.5◦ with the nearer 
of the axes of the usual baseline; the maximum possible such 
deviation is 45◦. ) In particular, the large ellipses are still large 
in general, and the general arrangement of these large shapes 
is similar on the page up to a linear transformation. The first 
two canonical correlations of the axis vectors between this pair 
of ordinations are 0.990 and 0.986, and the first four canonical 
correlations of the regression coefficient vectors (r, s, t, u, v, w) 
are 0.994, 0.989, 0.986, and 0.966. In short, the information 
content of the two data sets is nearly the same in spite of the 
quite different appearance of the two panels of the figure.

Complementary to the display of the intraspecimen range 
of second derivatives in Fig. 30, the axis lengths of their 
ellipses, is the information content of that ellipse’s center. 
Analytically this is the same as a morphometric quantifica-
tion introduced decades ago, the concept of roughness 
explained in Bookstein (1978). The roughness of a grid 
transformation at a grid point is defined as the second-order 
approximation of the discrepancy (corrected for cell size) 
between the deformation of the centroid of a grid cell and 
the centroid of the deformation of its vertices. According to 
the formula on page 109 of the 1978 reference, this discrep-
ancy is the vector whose x-coordinate is the sum of the two 
unmixed second partial derivatives of the x-coordinate of the 
deformation, while the y-discrepancy is the sum of the same 
two second derivatives of the y-coordinate. The mathemati-
cian would notate these components as the Laplacians 
(Δx�,Δy�) where each Δ is the sum of the two unmixed sec-
ond partial derivatives of the deformed coordinates sepa-
rately: the expansion ( �

2x�

�x2
+

�
2x�

�y2
,
�
2y�

�x2
+

�
2y�

�y2
).3 So this Lapla-

cian vector equals the sum of the vectors that are plotted 
with the filled disks and the open disks in Fig. 26, and that 
sum, in turn, is twice the average of those two disk locations, 
which is to say, the center of the ellipse. These are plotted in 
Fig. 35 (left) for each of our 55 species. (As a corollary, we 
uncover another characterization of the quadratic trend rep-
resentation: grids having a roughness vector that is the same 
everywhere.)

This ordination is intriguing. Near (0, 0) we find the 
names of the species for which the deformation fitted by the 

3 The operator Δ is sometimes written ∇2, where ∇ is the operator the 
lexicons name “nabla” that stands for either “gradient” (if it is applied 
to a scalar function) or “divergence” (if a vector). The Laplacian of a 
scalar function f is the divergence of its gradient, that is, Δf ≡ ∇ ⋅ (∇f ) , 
which, by an abuse of notation, gets to be written as ∇2.
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quadratic comparison to the average is most nearly linear: 
Koala, Hedgehog, Tasmanian Wolf, Wombat, Aardwolf, 
Panda, Capybara, Monito. Around the outline of the distri-
bution are the species for which the center of the ellipse is 
farthest from (0, 0): Armadillo, Lesser Anteater, Elephant 
Shrew. and (most extreme in either baseline direction) Giant 
Anteater versus Manatee. All these extremes represent 
shifts along the x-axis, the baseline from Fig. 1, which is 
so much longer than the perpendicular skull height dimen-
sion. The species that are most shifted in the orthogonal 
direction are fewer—Hyrax, Flying Lemur, and Elephant 
– while Dugong, Pangolin, and Aardvark show substantial 
roughness in both directions. Any of these extremes might 

qualify as a morphogenetic innovation or synapomorphy in 
analyses of how these skull forms relate to their phylogeny. 
This interpretation is stable against the change of baseline 
in Fig. 34—the alternative scatter of ellipse centers, Fig. 35 
(right), shows the same list of outliers. In neither scatter is 
the position of the center of the ellipse for Man particularly 
unusual, not even for a primate (see also Bookstein, 2018, 
Fig. 3.20c). It is not the average of these second derivatives 
over the circle of directions but their directionality per se 
that is unusual for our species among the mammals (Fig. 30).

Fig. 29  Principal component 4, 
ranging from Beaver to Man, 
with selected intermediate 
scores. The line of dots stands 
for the other 44 specimen 
names, which overlap as a solid 
block of ink when printed at any 
readable scale
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Fig. 30  A suggestive bivariate quantification: semiaxis lengths of the 
second-order derivative ellipses. See text
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Discussion

The analysis here of the 55-mammal data set is quite differ-
ent from that published by Marcus et al. The original publi-
cation (Marcus et al., 2000) emphasized mainly the matrix 

of Procrustes distances among specimens (for a more exten-
sive list of landmarks) along with the implications of those 
distances for a cladogram or a phylogeny. I have severely 
criticized Procrustes distance in a range of papers over the 
last decade (see Bookstein, 2015, 2016, 2018, 2021) and 
need not repeat the critique here except for a summary: Pro-
crustes distance is not a meaningful biological quantity, as it 
depends too much on the investigator’s subjective choice of 
landmarks, it has divided out a potentially meaningful factor 
(size) using a biologically meaningless formula (Centroid 
Size, see Bookstein 2021), and, by treating all landmarks 
with complete algebraic symmetry, it offers no access to 
prior anatomical or functional insights that might direct 
interpretation of multivariate analyses of shape coordinates. 
For example, the ordination in Fig. 30 of the directionality of 
a quadratic trend, a quantity that likely relates to evolvability 
in more general senses, is inaccessible from the standard 
Procrustes or thin-plate multivariate algebra.

In general, quadratic regressions may be expected to 
organize some potentially important aspects of landmark 
configuration data more effectively than either the Procrustes 
maneuver or the various thin-plate spline visualizations of 
the resulting shape coordinates whenever the biological 
phenomenon under exploration (in “A Simple Example: 
The Vilmann Neurocranial Octagons” section, the pattern 
of rodent neurocranial growth; in “Revisiting a Mammal 
Cranial Data Set” section, the huge diversity of geometric 
arrangements of the adaptively radiated mammalian cra-
nium) involves large-scale effects on these configurations. 
The scatterplot at lower right in Fig. 19 assured us that most 
of the variation over this class in this 13-landmark con-
figuration is captured by the trends here that, beyond any 
linear terms, support the straightforward parameterization 
displayed in Fig. 1. The ellipses that organize these circuits 
of directional derivatives correspond to a space of just six 
degrees of freedom better for morphological interpretation 
(i.e. more anatomically organized) than either the thin-plate 
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Fig. 32  The same for the manatee. Note the similarity to Fig.  31 in 
spite of the very different ecology of the creatures
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Fig. 33  The same for the elephant
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Fig. 34  Critique of Fig. 1 (right) by change of baseline to 12–5 in the 
numbering of Fig. 1 (left), anterior foramen magnum to fronto-nasal 
sagittal, which makes an angle of 33.5◦ with the baseline of the other 
figures in this section
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spline or the multivariate analysis of the whole set of 22 or 
26 shape coordinates can manage. In the presence of diver-
sity as great as what is laid out in Fig. 1, we must protect 
ourselves from the utter arbitrariness of the original data 
resource here, the finite scheme of disarticulated landmark 
or semilandmark locations. The quadratic regressions draw 
the original landmark data, whatever their count (as long 
as it is greater than 6), into a summary designed to suggest 
explanations of a morphodynamic or biomechanical sort, 
explanations plausibly associated with the embryology or 
ecology of these highly diverse genera.

In this way the quadratic trends rescue D’Arcy Thompson 
from the sheer obscurity of the method (if any) by which 
his line drawings were generated, while at the same time 
their distillation into those six-parameter ellipses of second 
derivatives rescues Peter Sneath from his unfortunate preoc-
cupation with distances and sums of squares. Together these 
formalisms, one old and one new, may help to deprecate 
GMM’s current focus upon Procrustes shape coordinates 
and thin-plate splines, both of which seemed much more 
promising back in 1993 than they seem today. Manatee and 
Tapir are satisfactorily close in the principal component 
scatterplots of the regression coefficients and the cardinal 
directions, Fig. 26. But adjacency in principal component 
plots is much less informative than similarity in a-priori geo-
metric subspaces dealing explicitly with a-priori patterns of 
landmark rearrangement, the spaces where patterns lead to 
morphodynamic or functional explanations. Then closeness 

in principal component projections is much less informative 
than closeness in explicit character spaces defined a-priori—
in the comparisons of Figs. 31 through 33 this is that “tear-
drop shape” of the half-circle plots at lower left.

We have seen how the parameters of this paper’s ellip-
ses seem meaningful beyond their algebraic identity as 
linear combinations of shape coordinates. Three different 
presentations of the complete space of these shape repre-
sentations have been introduced. One iconography, Fig. 25, 
is the full set of six regression coeffients in the appropri-
ate Cartesian setting of three complex numbers. Another 
representation, Fig. 23, shows the ellipses in full relevant 
detail for a perspicuous subsample of 19 interesting forms, 
while a third view, combining Fig. 24 (the scatter of just 
the cardinal directions) with Figs. 30 and 35 (the geomet-
ric parameters of the ellipses per se), parameterizes these 
ellipses in geometric rather than algebraic terms. Each of 
these involves just six large-scale parameters regardless of 
the count 2k − 4 of dimensions of the actual shape space, 
and each interpretation is intrinsically more cogent than any-
thing offered in the conventional GMM toolkit. (Recall how 
“Geometric Fundamentals” section guided us in interpreta-
tions of the patterns of the largest two or three regression 
coefficients out of the sextet.) Restricting shape space to this 
six-dimensional subspace, in other words, achieves D’Arcy 
Thompson’s purpose—a simpler vision of shape comparison 
regardless of how complicated the template may be—while 
also serving as a potentially feasible character space such as 
Peter Sneath was hoping for: geometric patterns that could 
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Fig. 35  Complement to Fig. 30: scatterplot of the centers of the ellip-
ses in Figs. 1 or 34. The location of each point is the vector of separa-
tion between the quadratic prediction of the centroid of a grid square 
and the centroid of the prediction of the corners of that square. Labels 

are the short names of the 55 species as in Figs. 25, 26, or 29. (left) 
For the baseline of Fig. 1. (right) For the alternate baseline at right in 
Fig. 34. The extreme taxa are the same
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be exogenously tested for meaning phylogenetically, mor-
phodynamically or functionally.

But these adaptations of otherwise standard bivariate and 
linear multivariate strategies to the new quadratic regres-
sions are clearly not the end of this programme. The exam-
ples in the preceding two sections suggest some further 
methodological speculations: whether it is worth going to 
the next order of polynomial trends (cubics rather than quad-
ratics, the way Sneath did), what accounts for the consider-
able difference between splines and regressions (of which 
an example will be displayed in Fig. 39), and whether it is 
worth considering third derivatives of the landmark coordi-
nates instead of their third powers. This composite thrust can 
in turn be approached in two different ways: by an alternative 
spline supplying replacement grids in toto, or instead, adapt-
ing a familiar tool from applied image analysis, by attending 
to the simpler task of turning those teardrops into vector-
valued characters. Following brief excursions into each of 
these extensions I will proffer a tentative summary of their 
implications for morphometric method: we need to become 
much more clear about what is meant by “a configuration of 
landmarks” over multiple organisms and how to justify the 
design of any such configuration.

When Would a Cubic Fit be Worth Pursuing?

It is a necessary characteristic of quadratic trend fits that the 
second derivative of the deformation in any direction be con-
stant across the grid. Whatever the rotation of the original 
Cartesian system upon the template, any convex-downward 
grid line must reside within a family of parallels all likewise 
convex-downward, and similarly for convex-upward, con-
vex-leftward, or convex-rightward options. Of course real 
examples do not have the algebraic perfection of the explicit 
models in Eq. (3)—this paper makes no assumption that 
any shape comparison is actually a quadratic (or any other) 
polynomial—but there is, as noted in Bookstein (2023a), a 
considerable cognitive cost to the passage from quadratic to 
cubic fits: not just the additional 2 ⋅ 4 = 8 degrees of freedom 
of the least-squares fits, but also the visual complexity of the 
deformed Cartesian axes that result.

Especially in a context of biomechanical or morpho-
dynamic interpretation, it is convenient to have a glossary 
of potentially meaningful refinements of that quadratic 
model. The cubic alternative originally broached by Sneath 
(1967) embraces two attractive options: the appearance of 
an S-shape in a deformed Cartesian axis curve (in geomet-
ric language, a point of inflection of the curve where the 
tangent changes sides and the curvature changes sign), or 
the appearance of a U-shaped gradient in spatial derivatives 
along some deformation of a Cartesian grid line. In fact 
these prototypes were already visible in Sneath’s Fig. 25, 
but went unremarked there.

These cubic extensions turn out to arise empirically in 
the data set just reviewed from the quadratic point of view, 
the diversity among 55 mammalian exemplars. The same 
grid-trimming maneuver we have already seen in Figs. 20 
through 22 can be applied instead to the more familiar Car-
tesian grid style as restricted to the interior of the convex 
hull of the mean landmark template in Fig. 1. (As Bookstein 
(2023a) notes, trimming the resulting deformation grids is 
now essential if their curves are not to fold illegibly over one 
another outside the outlines of the form under study.) There 
results the 133-point template at left in Fig. 36. We shall 
exploit this template to explore the effect of regressing the 
target’s x and y shape coordinates on nine predictors instead 
of the five involved in the quadratic analyses: not only x, y, 
x2, xy, and y2 of the template but also four more terms x3, 
x2y , xy2 , and y3—in other words, to fit cubic trend grids 
instead of the quadratic trends of Eq. (3). I have not been 
able to construct a geometry analogous to the ellipses here 
for the eight-dimensional cubic terms of these regressions. 
Instead I treat the 133 vertices of these trimmed representa-
tions as a 266-dimensional set of variables for multivariate 
analysis (x and y coordinates for each of the 133 vertices), 
and pass the difference between the two regressions, cubic 
minus quadratic, to an ordinary principal-component analy-
sis of their covariation over the 55 specimens of the data set.

The resulting analysis of 266 dimensions has only eight 
degrees of freedom. Eigenvalues in units of squared shape 
coordinates are 1.174, 0.570, 0.216, 0.160, 0.139, 0.110, 
0.076, and 0.052—the other 257 round to zero to seven deci-
mal places—and of the eight only the first two are potentially 
meaningful ordinations of the data, the other six being indis-
tinguishable from spherical. Figure 36 shows these first two 
eigenvectors as grid deformations of the trimmed template, 
and Fig. 37 scatters the 55 specimens over the corresponding 
scores. There is no canonical setting of the sign for either of 
these components—they can point in either direction.

These two principal components are easily verbalized. 
The positive direction of PC1 (Fig. 36, upper center) rep-
resents the U-shaped cubic trend already mentioned: first 
derivatives small at the ends of a northwest-to-southeast axis 
but larger in the center of that same axis. The first deriva-
tives in question here are in the x-direction (baseline direc-
tion) of this coordinate system. The negative direction –PC1 
merits, of course, the opposite description. Perpendicular 
to it in the shape space of these 133 vertices and bearing 
just about half the variance as PC1’s is the second principal 
component (Fig. 36, lower row), which very clearly mani-
fests the S-curve deformations among one of the coordinate 
axes, along with a component of that same northwest-to-
southeast U-shape already noted in PC1 but now aligned in 
the y-direction (which the top row of the figure showed not 
to be involved in PC1).
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The way our visual system processes these grids is dis-
tinctly different from its processing of the quadratic grids in 
Figs. 20 through 22. Algebraically the contrast is a simple 
resetting of an integer quantity—now it is the third direc-
tional derivatives, not the second derivatives, that are con-
stant across the scene—but without any further graphical 
annotation we directly perceive the extrema at both ends 
of the ESE–WNW diagonal in the top row of Fig. 36 and, 
even more automatically, the horizontal S-curving present in 
either panel of the bottom row. That S-curve actually prof-
fers two features, not just one: the misalignment of left-end 
and right-end apparent shears and the vertical concentration 
of dilation or reduction in the NNE–SSW direction in the 
center by comparison with the periphery. In this way features 
of cubic trends exploit a visual syntax that is fundamentally 
local, corresponding to the classical systematist’s search for 
“characters” that was one motivation for Sneath (1967). Our 
eyes disassemble the scene into a report by regions as well 
as gradients. The upper left panel of Fig. 36 permits a label-
ling of the anatomy of these regions and trends in terms of 
the classical subdivisions and directions of the mammalian 
skull; once that information is adjoined, any or all of these 
grid features might prove to have some morphodynamic, 
genomic, or phylogenetic basis in particular sample designs.

The 55 pairs of scores on these two PC’s are scattered 
by species short name (Table 1) in Fig. 37. Species that are 
phylogenetically close do not noticeably cluster well in this 
ordination—note, for instance, the discrepancies among the 
positions of Baboon, Gorilla, and Man or those for any of 
the sets of neighboring ellipses in Fig. 23. Figure 38 pre-
sents a selection of six of these cubic-minus-quadratic con-
trasts from different regions of the scatter. That for Bear is 
closest to the (0, 0) of this ordination; the corresponding 
deformed grid shows hardly any features at all—the cubic 
trend is indistinguishable from the quadratic in this case. 
PC1 is exemplified by the contrast of Zebra with either Man 
or SeaLion (the propinquity of which might be considered an 
embarrassment to any great-chain-of-being theorist); PC2, 
by the orthogonal contrast of Elephant with Seal (small “l” 
here, versus capital “L” for SeaLion). The grid for Gorilla 
(not shown) is mainly an intensification of that for Elephant, 
thus even more distant from that for Man.

Should we quantify the net import of this additional octet 
of regression coefficients by its effect on the residual sums of 
squares of the resulting analyses? Simple calculations yield 
a net mean square for variation of the full sample around 
the mean template equal to 0.1773 in squared shape coor-
dinate units. The simplest geometrical analysis, the 4-d.f. 
uniform term of the thin-plate toolkit, reduces this mean 
square by 0.1033, to a residual mean square of 0.0740; the 
next 6 degrees of freedom of the quadratic analysis lower 
this by 0.0476, leaving a mean squared residual of 0.0264; 
and the final eight d.f. of the cubic extension explain 0.0195 

of that, leaving, at the end, 0.0068 for the final six degrees of 
freedom. Thus the incremental contribution of each degree 
of freedom of the cubic fit is only (0.0195/8)/(0.0476/4) = 
20% of the quadratic terms. Effects so minuscule are prob-
ably uninterpretable at any clade-wide level—it is likelier 
that only the individual diagrams along the lines of those 
in Fig. 38 will serve for evo-devo speculations. The gradi-
ent of decline in these explained sums of squares is neatly 
analogous to the decline in explanatory power of successive 
Legendre polynomials under a random-walk model for time 
series, Bookstein (2012), or the succession of partial warps 
of steadily higher specific bending energy under the intrinsic 
integration model of Bookstein (2015).

Thus a more intuitive alternative to ordination of these 
cubics by the coefficients of global deformation models, an 
approach that proved quite helpful for quadratic fits, is this 
focus on regional features. In view of the 18-dimensional 
complexity of cubic grids, extensions of trend analysis to 
higher dimensionalities than the quadratic should probably 
treat landmark or semilandmark shape coordinates not as a 
single homogeneous vector space but instead, following the 
suggestion of Bookstein (2023a), as an anatomical compos-
ite of regions diverse in their embryology and function—the 
evo-devo point of view, not the GMM one. In our running 
mammalian example, while some parameterizations of the 
quadratic analysis might lead to meaningful ordinations in 
particular clades, aspects of these cubic deformations and 
their principal components might better be interpreted as 
individual traits, to be interpreted embryologically or func-
tionally, rather than as algebraic components of any sample-
wide template-spanning shape space.

Trends Versus Interpolating Splines: The Contrasting 
Roles of Landmarks

Turn now from discussion of the dimensions of this sim-
plified shape space to a more detailed examination of the 
grid figures themselves, the rendering of the picture area 
in-between the landmarks of the data set. Equation (3) of 
“A Simple Example: The Vilmann Neurocranial Octagons” 
section declares that the transformation grid we want for a 
quadratic trend is the minimizer of a sum of squares over 
what is represented as a prediction error at each landmark 
in turn: the displacement of the predicted location of a land-
mark from its location as actually observed in some speci-
men. That equation writes the numerical task here as the 
computation of numbers a, b, c, d, e, f, r, s, t, u, v, w that 
together minimize

(4)
∑
(x,y)

|(x�, y�) − Q(x, y)|2
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where Q is the quadratic trend function from Eq. (3), (x, y) 
and (x�, y�) are the Cartesian coordinates of template and 
target, respectively, the sum is over the list of the landmark 
locations themselves, and as before the vertical bars stand 
for ordinary distance on the picture plane. Six of the result-
ing values, the coefficients r, s, t, u, v, w,  of Q’s quadratic 
terms, comprise one possible sextet of specimen descriptors 
(the paper touches on several others).

Remembering that the values r through w encode the 
actual second derivatives of the fitted mapping Q, it is 
instructive to juxtapose the assignment of minimizing 
expression (4) to the task that is solved by the conventional 
thin-plate spline as it has been exploited since the early 
1990s throughout the GMM community. This is the task of 
choosing the function Q out of the restricted family of pos-
sible Q’s constrained a-priori to exactly match the values 

at the landmarks—Q(x, y) = (x�, y�) at each pair of locations 
— that minimizes the quite different-looking expression

The symbol R2 here stands for the whole Cartesian plane, 
out to infinity, and the subscripts i,  j,  k range only from 1 
to 2. The i and the j stand for the two Cartesian dimensions 
of the template, which can be the same (x and x, or y and y) 
or different (x and y or the opposite, which give the same 
�
2Q

�xi�xj
, as it happens), and k is 1 or 2 for the Cartesian coordi-

nates of the target.
What is being minimized in Eq. (5) isn’t the error of fit 

of the function Q at the landmarks—that error is identically 

(5)∫
R

2

∑∑∑
i,j,k=1,2

(
�
2Qk

�xi�xj

)2
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Fig. 36  The only two meaningful principal components of the differ-
ence between quadratic and cubic fits for the 55 exemplars of mam-
malian midsagittal cranial variability. In the guide to trimming, the 
panel at upper left, the smaller plotted points correspond to the 133 

grid vertices of the text while the larger dots locate the sample aver-
age two-point shape coordinates to the same baseline (Fig.  1) on 
which most of the other figures of this 13-gon analysis have relied. 
The eigenanalysis was of the locations of those 133 smaller dots
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zero as the essential restriction on Q in the statement of this 
other problem—but is instead a property of those second 
derivatives in Eq. (5) that were taken to be constant coef-
ficients in the formula for Q of expression (4): their own 
sum of squares, integrated (added up) over the whole pic-
ture, should be a minimum. This is no longer any sort of 
error at the landmarks—it is, rather, a quite different kind 
of error that would arise if we compared the function Q to 
one that had all of its second partial derivatives zero, which 
is to say, an exactly linear map. Formula (4) cares about the 
landmark locations; formula (5), about the grid in-between 
and all the way to the edges of the picture and beyond. The 
formulas that give us this second kind of optimizing Q are 
very clever indeed—mathematicians derived them only in 
the 1960s—but the values of their coefficients (the vectors 
L−1H of Bookstein (1989) and other presentations) are of 
no empirical interest at all, only the integral of summed 
squared second partials that engineers quickly recognized 
as the bending energy of an idealized thin plate. And in for-
mula (5) the locations (x�, y�) of the target landmarks are not 
of any explicit interest, either: only that the function Q(x, y) 
exactly reproduces each of them.

Then several formal relationships between Eqs. (4) and 
(5) are noteworthy. Either optimum is rotatable—when 
one of the Cartesian coordinate systems is rotated, both 
the minimizing spline (5) and the quadratic regression (4) 
rotate directly with (x�, y�) and inversely with (x, y). And both 
approaches can be proven to supply unique global minimiz-
ers except under singular circumstances (e.g., all landmarks 
in a line). But the differences are more numerous, and more 
salient. Most importantly, there is no “error” at landmarks 
in (5), the quantity whose sum of squares is minimized in 

(4). Instead, what is minimized in (5) is the integral of the 
variation from point to point of what could be regarded as 
a model for variation of the regression coefficients b, c, e, f 
over position—the squared partial derivatives of the linear 
part of the fitting function Q, which constitute the second 
partial derivatives that the definition of the function Q in 
formula (3) sets to be constant everywhere. And while Eq. 
(4) involves a sum over the landmarks alone, expression (5) 
integrates over not just the interior of the landmark con-
figuration but all the way out to infinity (which is why these 
maps must become linear toward infinity—r, s, t, u, v, w all 
have to drop to zero pretty fast for their integrals to be finite 
at all, let alone minimized).4

Sums of squares of position discrepancies are not equiva-
lent to integrals of sums of squares of second partial deriva-
tives either numerically or conceptually. The transformation 
grids produced by the two techniques can be quite dissimilar 
(for a relatively tame example, see the first two frames of 
Fig. 39—many other examples are on display in the fig-
ures of Bookstein 2023a). The coefficients of Q that serve 
as characters in the quadratic trend approach are mere nui-
sance variables in the spline approach, never examined or 
subjected to multivariate analysis until they are summed 
after each is multiplied by the very peculiar formula r2 log r 
where r is the same Pythagorean distance as in formula (4), 
but now applied to an entirely different argument, driven 
not by the configuration of landmarks but instead by the 
continuum of gridded points themselves as they relate to the 
various data points of the template one by one. But in the 
quadratic-trend graphics, the error of fit landmark by land-
mark is explicit in the relation between the filled disks and 
the open disks in contexts like Fig. 20, while the six second 
derivatives of Q, hinted at in the variation of the shapes of 
the little grid squares across the diagram, become explicit 
when the polar coordinate construction is assessed by the 
second-difference method of Fig. 4.

In short, the two approaches to landmark configuration 
analysis, polynomial trend fits versus thin-plate splines, suit 
wholly different explanatory styles. The coefficients that 
the trend method uses to export biometric meaning are dis-
carded immediately after computation by the spline. The 
second partial derivatives of Q, the relevant constants of the 
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Fig. 37  Scatter of scores for 55 specimens on the principal compo-
nents of Fig.  36. The ordination for Man appears to be mainly an 
intensification of that for SeaLion, although such an interpretation is 
unlikely to bear any evolutionary meaning

4 But it is no help to restrict the region of integration in Eq. (5) to 
just the interior of the tissue outline. The resulting bending energy 
integral would no longer be a simple, elegant quadratic form (Book-
stein 1989, 1991) in the registered landmark coordinates, and the 
bending spectrum of the spline itself would cease to be a useful rota-
tion of the shape coordinate space per se, so that the interpretation of 
its features in terms of an ordering by spatial scaling would be lost. 
But GMM needs those tools in the course of subsequent multivariate 
analyses like the one in Fig. 19 or the extension to the BE-PwV plots, 
Bookstein (2015, 2018), that serve as one tool for local descriptions 
in the classic GMM toolkit.
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quadratic trend fit, are the minimand of the spline method, 
which refers to the embedding space of the landmarks in 
a manner to which the regression equation has no access. 
And the error of fit of the trend method is forced to exactly 
zero in the spline method. This paper argues that, in view 
of the arbitrariness of the landmark lists driving GMM data 
sets from the outset, one of these assignments is much more 
conducive to subsequent biological insight than the other is.

The displays in Fig. 19 already permitted us to quan-
tify the net modeling power of this paper’s quadratic trend 

analyses vis-à-vis an analogous attempt at large-scale mod-
eling, the partial warps of the thin-plate approach (Book-
stein, 1989, 2014, 2018). The upper right panel, for the 
spline-based approach, reduces the landmarkwise variances 
of the upper left panel by a factor of 0.65; the equivalent 
comparison along the lower row, for this paper’s quadratic 
approach, reduces the summed variances by a factor of 0.85. 
The analyses in the upper row allow the coefficients of the 
prediction function to vary but require them all to attenu-
ate sharply toward zero away from the origin; those in the 

Fig. 38  Quadratic-cubic con-
trasts, graphed as the 133-vertex 
grids trimmed to the template as 
in Fig. 36, for a selection of six 
exemplars from Fig. 37. That 
for Bear is closest to the (0, 0) 
of this scatter (recall Fig. 20 as 
well); the effect of PC1 is close 
to the contrast between the grids 
for SeaLion and for Zebra; that 
of PC2, for the contrast between 
grids for Seal and Elephant
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lower row leave those coefficients constant, instead optimiz-
ing the predictive accuracy of that single shared quadratic 
regression. Clearly the constant-coefficient approach inher-
ited from Sneath (1967) dominates the varying-coefficient 
approach of the thin-plate consensus in this context of 
predictive accuracy per se. The discrepancy between the 
approaches is understandable—the regression approach is, 
after all, a least-squares optimization already, one that would 
become exact after 14 more terms are added, but these addi-
tional terms involve higher powers of x and/or y that are 
correlated with the quadratic terms already present and so 
are unlikely to add much accuracy overall; whereas the first 
three components of the spline’s principal warp decomposi-
tion are suboptimal for any decomposition except bending 
energy, but that is not a sum of squares of anything referring 
to the actual morphology of the organism, bounded as it is 
in extent.

A Different Thin‑Plate Spline

The quadratic trends analyzed and diagrammed so far in 
this paper are regression fits that leave unexplained varia-
tion at each landmark. In the other approach to combina-
tions of squares, the thin-plate spline formalism, the map 
is an interpolation rather than a regression, and the sum 
of squares that is being minimized is not a net prediction 
error but rather a sort of complexity, the version the lit-
erature calls “bending energy.” For the conventional thin-
plate spline, bending energy is one quantification (albeit 
perhaps a peculiar one) of the departure of its Q from 
a linear map. But ever since the initial promulgation of 
these splines there has existed an alternative, the quadratic 
thin-plate spline, that likewise fits each landmark exactly, 
by analogy with our conventional thin-plate spline, but 
for which the drift term (the polynomial part that is not a 
function of the distance of a grid point from every land-
mark location in turn) is a quadratic map rather than a 
linear one. This is the thin-plate spline that minimizes a 
different kind of “bending” energy, namely,

sum of the integrals of the squared third derivatives of the 
map (y1, y2) of x1 and x2. And the additional contribution of 
each landmark, to be multiplied by some complex number, 
takes the form r4 log r instead of r2 log r. (In other words, 
this so-called quadratic thin-plate spline minimizes the inte-
gral over the whole picture of the sums of squares of defor-
mation’s third derivatives for all maps that exactly match the 
landmarks, whereas the cubic regression posits constancy 
of these derivatives over the whole picture plane.) For the 
theory of this spline, which is a close analogy to the usual 
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linear-trend spline of the conventional GMM toolkit, see 
Kent and Mardia (2022). I have exploited it once before, 
in Bookstein (2004), where, however, it was applied to a 
comparison of forms that differed hardly at all.

At upper right in Fig. 39 is the Vilmann comparison as 
in “A Simple Example: The Vilmann Neurocranial Octa-
gons” section but using this exact fit with quadratic drift (not 
“trend”) curve analogous to the quadratic fit with regression 
errors that was displayed in Fig. 10. Clearly it is failing to 
cope with the situation along the cranial base (right-hand 
margin of the figure in this orientation), where it appears 
to be rolling up the paper on which the image is printed 
rather than telling us anything useful about the gradient of 
the interpolation there. The same impression of an unreal 
scrolling is apparent in applications to several of the Marcus 
mammalian crania. Three examples are displayed here, for 
three of the forms extreme in some of the panels in Fig. 26: 
Elephant, Beaver, and, of course, Man. In the present con-
text of a highly radiated clade this alternative morphometric 
praxis does not appear promising—cubic regressions likely 
make better sense than minimization of third derivatives.

A Potential Character: The “Teardrop”

Toward the end of “Revisiting a Mammal Cranial Data 
Set” section I suggested that the emergence of a teardrop 
in the half-unit polar plot of second directional derivatives 
might actually be a potential character. That Sneath’s hope 
for a feature space was mostly ignored during the entire 
late-20th-century development of the current “morphomet-
ric synthesis” was an unfortunate oversight on the part of all 
its developers, including me. Figure 40 hints at a potential 
phylogenetic use of this quadratic trend approach in Sneath’s 
spirit. At left I have compiled all 55 of the half-unit out-
line curves from all the four-panel figures like the exem-
plars scattered throughout this essay. (Note that these curves 
have more information than just the quadratic trends—they 
combine both parts of the regressions in Eq. 3, not only the 
ellipses for the quadratic trend but also the linear terms with 
coefficients b, c, e, f.) There is a central skein of curves that 
differ little from circles, plus a variety of apparent deviations 
showing sharper curvature. It is convenient to parameter-
ize these deviations by one classic measure of curvature, 
the change in direction between each of the line-elements 
of those deformed circles and their neighboring element, 
divided by the length of the shortest chord that spans the pair 
from its discretized directional oval. When we characterize 
our 55 species by the maximum of this improvised index, 
the top fifteen selections are an interesting list of species. 
The right panel of Fig. 40 draws these 15 deformed circles 
by themselves, now after a centering just to simplify the 
graphic, and labels each with its short species name at the 
vertex of maximum curvature using the index just explained.
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The fifteen vertices can be reviewed in five groups that 
are quite suggestive of biological interpretations, as follows. 
Toward the top of the diagram are two forms, Sheep and 
Elephant, which peak in a direction perpendicular to the 
long axis of Fig. 1. Counterclockwise from them is a cluster 
of four forms of which two, Manatee and Tapir, aroused 
our special interest in “Revisiting a Mammal Cranial Data 
Set” section in connection with the zeroing of one of their 
ellipses’ semiaxes. A third, Dugong, is ecologically similar 
to Manatee, while Hyrax (associated with the most deformed 
polar circle out of all 55 of Marcus’s exemplars) is phy-
logenetically related to Elephant in the preceding cluster. 
Continuing counterclockwise, Ondatra (muskrat) and Beaver 
clearly overlap in their ecology. Our circuit next encounters 
a pair of singletons, Gorilla and Man; in view of their phy-
logenetic proximity, the separation might be attributed to H. 
sapiens’s neoteny. A final cluster of five species (Pangolin, 
Echidna, Aardvark, Lesser Anteater, Giant Anteater) collects 

some of the forms with snout very highly compressed verti-
cally (a cluster that would incorporate four more forms of 
the next five highest curvatures, including Elephant Shrew, 
Armadillo, Tenrec, and Bandicoot, not shown). Taken as a 
whole, the clustering here seems quite distant from a ran-
dom pattern, but ought to be considered to represent some 
combination of niche and evolvability over the whole class 
of mammals. In my opinion, some less improvised version 
of this clustering may well justify deeper explorations.

Note how very nonlinear this collection of tools is, begin-
ning with the nonlinearity of the predictors x2, xy, y2 from 
the template—the coefficients of the fitted quadratics are, of 
course, nonlinear in the template data already, based as they 
are in the inverse of their 5 × 5 covariance matrix. While the 
center of each fitted ellipse and also its cardinal directions 
are linear in those fitted coefficients, the organismally rel-
evant graphic summaries—eccentricity of the ellipse, close-
ness of one of the endpoints of its major axis to (0, 0)—are 
not. The polar graphic is linear in the regression coefficients 
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Fig. 39  Top row, three different versions of a transformation grid as 
applied to the fourth column of Fig.  10 (the 13◦ rotation of a care-
fully chosen two-point registration of the Vilmann octagons). (left) 
Conventional thin-plate spline, relaxing toward linearity outside the 
form. (center) The quadratic trend recommended for this application, 
simplifying the pattern of grid lines into a vector of six parameters 

each a second derivative in some direction that is constant over the 
grid. (right) A different quadratic generated by an adjustment of the 
thin-plate spline formula itself. Bottom row, examples of this quad-
ratic thin-plate spline (“TPSQ”) for three of the 55 cranial 13-gons in 
the revised Marcus mammalian data set. See text
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but nonlinear in its argument (x, y) = 1

2
(cos �, sin �) , where 

the constraint locking the radius at 1
2
 is set to half the distance 

between the landmarks of that arbitrarily chosen baseline, 
so that the chord of these contrasts across the template’s 
circle is constant in length at 1.0. The teardrop descriptor 
combined these with aspects of the linear part of those fitted 
quadratics: for each of the 55 specimens we located the max-
imum around the polar circuit of a one-dimensional sum-
mary of a two-dimensional regression prediction spanning 
the full configuration of landmarks but parameterized as a 
function of direction, not position, and inasmuch as what we 
are taking the maximum of is already a second derivative 
(for that is what our index of curvature is approximating), 
the result per se must be understood as having located the 
zero of a third derivative. In comparison with the hidden 
sophistication of this tactic, details of the Procrustes ver-
sus the two-point registration (a choice mandated in order 
that there be shape or form coordinates to be regressed) are 
trivial.

The teardrop regionalizes the reportage of a quadratic 
trend in a way partly analogous to the way a cubic trend 
analysis regionalizes, but with some differences. Instead of 
a separated pair of regions of the digitizing plane (PC1 in 
Fig. 36) or a pair of directions highlighting two different 
styles of features (PC2), the teardrop represents a combina-
tion of a single direction of extension with a diminished 
spacing in the perpendicular direction—in effect, a local fea-
ture of the global strain map borne by the ten-dimensional 
mixed linear-quadratic trend (coefficients b, c, e, f,  and r 
through w in Eq. 3) when rendered in polar coordinates 
this way. The rhetoric of this account of teardrops is analo-
gous to an image processing tool quite different from the 
deformation-based approach of GMM: the medial axis or 

symmetric axis of Blum (1973). Textbook reviews of this 
alternative include (Bookstein, 1991), Section 3.5, and, for 
the extension to three-dimensional data, Siddiqi and Pizer 
(2008). Blum argued that the way our visual system auto-
matically constructs medial axes is built into the design of 
the brain’s visual cortex. Similar innate algorithms might be 
responsible for both the perception of homogeneity of the 
quadratic trends of this paper and the unconformities of the 
cubic extension. We see these features with an immediacy 
that no visual processing of numerical tables can imitate. 
Algebraically, what we are examining is a vector of length 
4: the two coordinates of that peak of curvature, the direction 
of the axis of the pinching there (medial axis of the feature, 
in Blum’s sense), and the actual curvature of the deformed 
circle there.

Such visual processing algorithms must be nonlinear. 
(In particular, the four teardrop coordinates suggested in 
the previous paragraph are a strongly nonlinear dimension 
reduction of the ten-dimensional representation in equa-
tion (3).) The cardinal diameters are linear in the quadratic 
regression coefficients, and so their principal components, 
Fig. 25 through Fig. 28, are likewise accessible from the data 
set of these vectors, though the necessary matrix notations 
would be clumsy. But the extraction of the principal axes of 
the second-derivative ellipses, Fig. 30, was already beyond 
the capabilities of that standard toolkit, as the ellipses in 
question are not based on data-driven covariances, and the 
detection of the clusters in Fig. 40 is clearly beyond any 
standard GMM software system—it is, indeed, a task for 
the natural intelligence of the investigating biologist, one 
who is aware of the currently accepted phylogeny of these 
same specimens. Clearly linear multivariate analysis alone 
is not adequate preparation for the biometrics of landmark 
configurations. Of course there are many other branches of 
geometry applicable to biometrics as well—tensor calcu-
lus, differential geometry of surfaces, catastrophe theory, 
projective metrics, fractal geometry, hyperbolic geometry, 
to name just a few. That we have learned how to teach the 
linear vector geometry of covariance matrices is no reason 
to privilege it among this multitude of toolboxes.

Concluding Comment: The Relation of Landmarks 
to Grids, and to Biology

We are thereby brought face to face with a question that 
was implicit but mostly overlooked in the literature of 
thin-plate spline deformations from their first publication 
(Bookstein, 1989) on: what is the epistemology of these grid 
diagrams—what reality do they so persuasively appear to 
be claiming? To the extent that GMM is imagined a compo-
nent of the science of biology rather than a subtheme of the 
artificial intelligence of shape recognition or classification 
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or the intellectual property of industrial biometric applica-
tions such as security or animal husbandry, I believe it is 
important to align with Thompson rather than the current 
GMM synthesis on this matter: to have the role of GMM be 
to generate hypotheses, not to test them, so that the job of 
the grid diagrams per se is specifically to serve as graphi-
cal metaphors of biological explanations that go on to be 
tested experimentally, as Przibram argued fully a century 
ago, or at least by explicit confrontation with data resources 
exogenous to morphology. The finding in Fig. 10, repeated 
in the upper central panel of Fig. 39, is thus a provocation 
to generate some explanation of why four of the six param-
eters of a quadratic trend fit are indeed close to zero in this 
growth data set. Likely, in view of the commonalities over 
the specimens of the closely related comparisons unearthed 
in Fig. 18, their vanishing, together with the resulting biline-
arity of the growth deformation, is saying something impor-
tant about the regulation of rodent neurocranial form; what 
might that bilinearity be announcing?

Similar to this concern about the biological meaning of 
the transformation grids is a concern for the meaning of 
the data that delimit them. Sneath (1967) proceeded past 
the six-coefficient stage of these quadratic transformations 
to consider the next level as well, the ten-coefficient stage 
that supplements the Q of Eqs. (3) or (4) with terms in x3 , 
x2y , xy2 , and y3 , and I suggested a tentative multivariate 
approach to this extension in Fig. 36 through Fig. 38. How-
ever, I think that in applications to most data sets of evo-
lutionary or developmental design it would be ineffective 
to proceed with global summaries or derived parametriza-
tions from this model or any other coefficient space of such 
high geometric complexity. Rather, the GMM community 
should turn to a serious, principled probe into what we 
mean by a “configuration of landmarks” in the first place. 
How are these lists constructed, and when do we decide 
to stop adding landmarks to them, or even to delete some? 
(As MacLeod 2017 wryly notes, “GM approaches to mor-
phological analysis yield markedly different results depend-
ing on the morphological features sampled.”) The relation 
of landmark points to the theory of homology has hardly 
been explored since the pioneering work of Nicholas Jardine 
more than 50 years ago (Jardine, 1969). And what about 
semilandmarks, those representations of curving form that 
can number in the thousands or even higher now that pow-
erful software can run almost autonomously on affordable 
multicore machines? Before extending the length of these 
coefficient vectors further I think the field ought to decide 
what it means to be a configuration, for instance, how and 
where boundaries are to be drawn between the global analy-
sis of one composite form and a series of analyses of diverse 
component subforms followed by their synthesis using some 
non-morphometric method adapted from the lore of machine 
learning (MacLeod 2017 and references therein).

If simplification of a grid report until it is comprehen-
sible is indeed the ultimate bioscientific role of a revised 
GMM, none of today’s standard GMM tools—not Procrustes 
shape coordinates, not their principal components, not the 
thin-plate splines that purport to visualize their multivariate 
patterns—are capable of supplying the appropriate rheto-
ric for the announcement of empirical pattern findings in 
a language suggestive of future organismal explanations. 
Their occasional usefulness in tasks of discrimination or 
classification notwithstanding, none of this technology 
accommodates information about the spatial arrangement 
of landmarks along with the spatial disposition of the curves 
that summarize the comparisons of the anatomical regions 
they delineate.

Neither the sum of squares that the Procrustes method mim-
imizes nor the sum of squared loadings that the method of 
principal components maximizes comprises the appropriate 
currency of a biometric pattern analysis; nor does the bending 
energy of a thin-plate spline. What is required instead is an 
interpretation of the landmark configurations as expressions of 
causes or effects of their anatomical organization in life, prior 
to being digitized. It is the explicit calibration of the bilinear 
model in Fig. 10 or its validation over the sample in Fig. 23 
that justifies the design of Vilmann’s octagon of landmarks.

This finding does not, of course, constitute an explanation 
of “the origin of form in force,” the way D’Arcy Thompson 
would have had it. It is only a striking new suggestion of 
how a properly morphogenetic investigation, one based in 
biomathematics and biophysics as well as geometry, might 
proceed to explore the hypothesis generated here on purely 
morphometric grounds. And ultimately the phylogenetic 
hints in the scatter of mammal skull trend ellipses, Fig. 23, 
and the teardrop analysis, Fig. 40, may serve the same role 
in justifying the midsagittal component (Fig. 1) of Marcus 
et al. cranial landmark configurations. Because the current 
GMM toolkit is not capable of serving biological science 
in this way, I put forward the quadratic technology of this 
article as a possible first step in liberating GMM from the 
current straitjacket of Procrustes shape coordinates and thin-
plate splines into which the synthesis of the 1990s has inad-
vertently cast it.
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