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Abstract
Recent papers by Cardini et al. (Evolutionary Biology 46:307–316, 2019) and Bookstein (Evolutionary Biology 46:271–302, 
2019) show that, when there are many variables and when sample sizes are small, scatterplots made using the between-groups 
principal components analysis method can appear to indicate clear group differences with little or no overlap between sam-
ples even though the samples are all drawn from a single multivariate normally distributed population. The corresponding 
scatterplots made after a canonical variates analysis (CVA) show an even more extreme separation of groups even though 
the usual test statistics yield the correct uniform distribution of probabilities. Users of CVA are usually concerned about the 
problems of small sample sizes and correlated variables but the problems discussed here are present even for large samples 
and uncorrelated variables. Some less-appreciated properties of sampling from high-dimensional spaces and the “curse of 
dimensionality” are reviewed to find a simple explanation for these problems. The ratio of variables to sample size is a useful 
index to predict when false clusters and these other problems may arise. While dependent upon the same variables, this index 
is not based on Marchenko and Pastur (Mathematics of the USSR–Sbornik 1:457–483, 1967) as discussed by Bookstein 
(Evolutionary Biology 44:522–541, 2017). It is also shown that multiple regression analysis can have related problems when 
there are large numbers of independent variables. The explanation for these problems is an incompatibility of showing both 
points separated by their full p-dimensional distances and low-dimensional projections of points in the same plot. Some 
implications for geometric morphometric and other multivariate analyses in biology are also discussed.

Keywords Between-groups principal components analysis · bgPCA · CVA · False clustering · Multiple regression · Curse 
of dimensionality

Introduction

The papers by Cardini et al. (2019) and Bookstein (2019) 
well-document a problem in interpreting scatterplots made 
after using the between-groups Principal Components 
analysis (bgPCA) method. When sample sizes are small 
relative to the number of variables used in a study repeated 
samples taken from the same population can appear dis-
tinct and may not even overlap. The papers cited above 

and Fig. 1 shows examples for samples from a standard 
multivariate normally distributed data randomly divided 
into equal-sized groups. The scatterplots seem to sug-
gest that the samples were taken from populations with 
quite different means even though the samples were all 
drawn from the same standard multivariate normal dis-
tribution. The problem is quite general as the “groups” 
could correspond to different species that one would like 
to distinguish, treatment and control groups, specimens 
from different habitats, males and females, etc. With the 
availability of newer technologies, investigators are now 
able to obtain data on many variables and that can give 
rise to the problems discussed in this paper— especially 
when measurements cannot be collected from comparably 
large numbers of specimens. For example, in many appli-
cations using geometric morphometric based on 3-dimen-
sional landmarks and semilandmarks the number of shape 
variables can easily be much larger that the number of 
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available specimens. It can also be a problem in ecology 
when, for example, many environmental variables are used 
to predict the abundance of a species or in genetic studies 
using many genetic markers.

The purpose of the present note is not to propose a solu-
tion for the problem but rather to provide an explanation for 
why there is this problem with statistical analyses of multi-
variate data. While it is easiest to find examples of the prob-
lem when using high-dimensional data, Figs. 1 and 3 show 
that examples can also be found using relatively few vari-
ables when sample sizes are small relative to the number of 
variables. Some properties are related to what is often called 
the “curse of dimensionality” (Bellman 1957). The problem 
is more general than the comparison of groups using the 
bgPCA method. It needs to be taken into consideration in 
evolutionary biology and other fields especially when many 
variables are used. It is particularly a problem when sam-
ple sizes are not large relative to the number of variables 
used. Cardini and Polly (2020) recently proposed a cross-
validated form of bgPCA, XbgPCA. This procedure reduces 
the apparent magnitude of the false distinctiveness of the 
groups being compared. Some properties of the bgPCA, 
CVA, and XbgPCA methods are described below followed 
by a description of some perhaps counter-intuitive proper-
ties of high-dimensional spaces. Finally, these properties are 
used to explain when groups (even artificial ones) sampled 
from the same population are expected to seem very distinct 

when analyzing high-dimensional data. Related effects of 
high dimensions on multiple regression analysis are also 
discussed.

Note all of the sampling experiments described below 
used random samples of size ni from a single p or q-dimen-
sional standard multivariate normal (multivariate Gaussian) 
distribution with mean μ=0 (a vector of p zeros) and covari-
ance matrix ∑ = I, where I is a p × p identity matrix. For 
the bgPCA, CVA, and XbgPCA analyses g samples of size 
ni were used. Only the equal sample size case is considered 
here so the total sample size is n = gni. Using unequal sam-
ple sizes introduces some interesting additional complexities 
that may further mislead an investigator (Bookstein 2019). 
For example, means from smaller samples will tend be 
shown as more distinct from groups that are based on larger 
sample sizes (because means with smaller sample sizes have 
larger standard errors) and thus randomly deviate further 
from the true mean. The multivariate normal distribution 
was used for the sampling experiments not because it was 
realistic for biological data but because it corresponds to 
simple multidimensional cloud of points with no patterns 
or dependencies among variables, and no structure other 
than having a higher density of points near its mean. In an 
actual study the variables should be carefully selected to 
capture the variation that was interest and would usually 
be expected to be correlated, have unequal variances, and 

Fig. 1  Examples of the results 
of applying bgPCA to random 
data, with ni = 8 and p = 15 
variables. The four plots are 
the first four set of samples 
obtained in a sampling experi-
ment. Convex hulls are shown 
to indicate group membership 
and the numbered red points 
show the locations of the group 
means. See Cardini et al. (2019) 
and Bookstein (2019) for more 
extreme examples
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other complexities which, for simplicity, are ignored in the 
present paper.

Between‑Groups PCA (bgPCA)

This method was originally proposed by Yendle and MacFie 
(1989) as an alternative to Canonical Variate Analysis 
(CVA, see below) to produce a plot showing variation 
within and among groups when the numbers of variables is 
too large to allow the use of CVA (CVA is undefined when 
p >

∑
ni − g ). Even with adequate sample sizes, there are 

often practical problems in the application of CVA because 
biological variables are usually correlated (often highly cor-
related). The bgPCA method can still be used in such cases.

One of the attractions of the bgPCA method is that the 
computations are simple and seem easy to understand.

(1) Compute the among-group covariance matrix, 
� =

1

v

g∑
i

ni(�i − ̄̄�)t (�i − ̄̄�) , where v =
∑

ni − g , (the 

number of degrees of freedom), �i is the row vector for 
the mean of the ith group, and ̄̄� is the grand mean, 
again as a row vector. The superscript “t” indicates 
matrix transpose. While this equation weights the mean 
for each group by its sample size, that may not be 
appropriate for all applications, see Bookstein (2019).

(2) Compute the eigenvectors, E, of A (just the first g-1 
eigenvectors because there can be at most g-1 eigenval-
ues greater than 0). Thus, all of the variation among the 
g means is perfectly captured by the g-1 dimensions.

(3) Project the group means and the original samples onto 
these vectors and construct a scatterplot of these pro-
jections.

As documented by Cardini et al. (2019) and Bookstein 
(2019), the scatterplots produced by this method often show 
distinct differences between groups (often with little or no 
overlap between groups) for data divided at random into 
groups. The examples in Fig. 1 show the groups looking 
much more distinct than what would expect intuitively for 
samples with no true differences among the means. Note 
that relatively few variables and sample sizes are used in 
these examples to show that it is not just a problem when 
exceptionally large numbers of variables are used as perhaps 
implied by Cardini et al. (2019) and Bookstein (2019). The 
number of variables was also kept small in these examples 
so that the same data could also be used as examples for 
the CVA method. The reason for the false distinctiveness 
of groups was attributed by Cardini et al. (2019) as mostly 
due to the fact that while the magnitudes of the differences 
among the means of the g groups can be shown perfectly in 
g-1 dimensions, only a fraction of the variation in the min (p, 

n−g) dimensions of within-groups variation can be shown in 
just g-1 dimensions. If the within-group variation is under-
represented, then the relative amount of among-group vari-
ation will seem much larger than it should be. While true, 
a more fundamental reason will be described below. The 
method proposed by Dhillon et al. (2002) should have a sim-
ilar problem because their projections are also only based on 
the observed differences among the observed means.

In order to further investigate the patterns of distinctive-
ness of groups for various combinations of p and ni, it is 
convenient to construct coefficients that measures the degree 
of overlap between pairs of samples. Two coefficients are 
considered here. Because the concern here is only with the 
special case where ∑ = I, a simple choice is the Oij coef-
ficient used by Cardini et al. (2019). It gives the average 
proportion of points in one group that are actually closer 
to the mean of a second group than they are to the mean of 
their own group. With broad overlap a point is about equally 
likely to be closest to either mean so the maximum value is 
0.5. Another convenient coefficient, Hij , is the average pro-
portion of points in a group that are also within the convex 
hull of a second group. The maximum value of this coef-
ficient is 1.0 because with complete overlap all points in 
one group would also be within the convex hull of the other 
group. In both cases low values imply less overlap and hence 
more distinct appearing groups. Both plots in Fig. 2 show 
the same sharp reduction in overlap of groups as p increases 
and ni decreases.

Canonical Variates Analysis (CVA)

This method was originally proposed by Rao (1948) and 
is sometimes called multiple-group discriminant analysis 
or multi-class linear discriminant analysis. It is a standard 
multivariate method that has often been used in evolutionary 
biology. For example, Klingenberg and Monteiro (2005), 
Cardini (2003), Mitteroecker and Bookstein (2011), Rohlf 
et al. (1996), and many others. It can be viewed as a gen-
eralization of the method of linear discriminant functions 
(Fisher 1936). While the computations are usually defined as 
a single main operation using the eigenvectors of the AW-1 
matrix (where W is the average within-groups covariance 
matrix and A is the among groups covariance matrix is used 
by the bgPCA method). It is helpful here to note that the 
results can also be described as a 2-step process: a stand-
ardization of the data using inversely weighted eigenvectors 
of the pooled within-group covariance matrix followed by 
applying bgPCA to this transformed data as follows:

1. Standardize the data by multiplying the data matrices, 
Xi, for each group by the matrix ��−1∕2 , where � is the 
matrix of eigenvalues and E is the matrix of eigenvectors 
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of the pooled within-group covariance matrix, W. Note 
that using this step requires that none of the eigenvalues 
are equal to or even just very close to zero. The standard-
ized data will have an average within-group covariance 
matrix equal to an identity matrix.

2. Perform a bgPCA using this transformed data.

 Campbell and Atchley (1981) and Klingenberg and Mon-
teiro (2005) for a description of this approach. What the 
multiplication by ��−1∕2 does is to uniformly stretch the 
space in directions in which there is less variation within 
groups and to compress the space in directions in which 
there is more variation within groups so that the average 
within-group variances will all be equal to 1. In the present 
example the true amount of variation is the same in all direc-
tions but by chance there will be differences in the amount 
of variation in different variables. The standardization step 
removes those differences. It also rotates the space so that 
the variables are on average uncorrelated within groups. 
The usual concern about the practical application of this 
method is that it tends to overfit when the variables are too 
highly correlated or have small variances within groups and 
thus some of the eigenvalues will be very small. There has 
been much work on practical methods to solve this problem. 
See, for example, Nørgaard et al. (2006). Domingos (2012) 
discuss this in the context of machine learning where there 
are large numbers of variables. He relates this to the “curse 
of dimensionality” (Bellman 1961b). He also suggests that 
there is a “blessing of non-uniformity” meaning that due to 

correlations the space is effectively not as high dimensional 
as it seems (however, this means that the covariance matrix 
will tend to be singular and require special methods so it 
is, perhaps, not really a “blessing”). Many, see for exam-
ple, Campbell (1979), have proposed alternatives to the 
standard procedures such as using generalized inverses and 
resampling methods.. However, that is not the problem of 
interest here where we are only considering samples from a 
single standard multivariate normal distribution. However, 
Bookstein (2017) shows that even for such data the theo-
rem by Marchenko and Pastur (1967) predicts that as p and 
n increase to infinity (but with their ratio y = p/n fixed at 
some constant value), the ratio, �1∕�p , of the largest to the 
smallest eigenvalues of the covariance matrix is expected to 
approach 

�
1 +

√
y
���

1 −
√
y
�
 . The �1

/
�p ratio is called the 

condition number for a matrix and large values indicate that 
a matrix will be difficult to invert accurately. Thus, prob-
lems are expected when using large numbers of variables 
even when analyzing such ideal independent multivariate 
normally distributed data.

Figure 3 shows examples of CVA scatterplots using the 
same data used in Fig. 1. The apparent clustering of points 
around their group means is more extreme than found for 
the bgPCA method for the same data. If one were to use 
these CV axes as variables to ascertain group membership 
for new samples in a taxonomic study, then one would dis-
cover that one could not predict group membership nearly 
as accurately as implied by the scatterplot. It seems that 
correcting for chance differences in variation in different 

Fig. 2  Reduction of overlap between groups as a function of sample 
size within each group and the number of variables. a Proportion, Oij , 
of points in one sample that are closer to the mean of another sam-
ple. Regions where the height of the surface is near zero correspond 
to cases where groups have little or no overlap. The maximum Oij is 
0.5 for the case where the sample means are essentially identical so 

that points are almost equally likely to be closest to either mean. b 
Proportion of points in a sample that also belong to the convex hull 
of another sample. The maximum possible Hij is 1.0 corresponding 
to the case in which all the points in one group are also within the 
convex hull of the other group. Plots based on 50 replications for each 
combination of ni and p 



5Evolutionary Biology (2021) 48:1–16 

1 3

directions exaggerates the problem found using the bgPCA 
method. Surfaces for the overlap statistics, such as shown 
in Fig. 2 for the bgPCA method, would decline even faster 
as p increased and ni decreased (but with the constraint 
that n-g > p). One should not be surprised by this increased 
separation as CVA is designed to provide a projection of 
the multivariate space that maximizes any observed dif-
ferences (even those just due to chance) among the means 
relative to the variation within the groups.

More extensive sampling experiments with the same 
sample sizes and numbers of variables show, see Fig. 4, 
that the distributions of probabilities for several stand-
ard test criteria are consistent with the expected uniform 
distributions. Thus, despite how unusually distinct the 
groups look in Fig. 3, they are consistent with what one 
should expect by chance when there are no true differences 
among the sample means. It is our visual expectation of 
that is wrong. Note: these probabilities were computed 
using the full p-dimensional space not its projection into 
the g-1-dimensional space of the among group variation. 
Doing so would greatly mislead and would not yield the 
expected uniform distribution of probabilities.

As Kovarovic et al. (2011) noticed, artificially adding 
random variables to a study using discriminant analysis 
can seem to improve the separation of groups. They found 
(p. 3012) that: “increasing the number of predictors may 

increase … group separation in scatterplots of non-cross-
validated DFAs, even if those predictors are random num-
bers which do not add any relevant information on group 
differences”. This is expected because having some “real 
variables” in a study does not alter the fact that using just 
large numbers of random variables can, as shown in Fig. 3, 
give the impression that even randomly defined groups are 
distinct.

Cross‑Validated bgPCA (XbgPCA)

Cardini and Polly (2020) suggest using a leave-one-out 
cross validated bgPCA as a way to correct for the false 
impression of group differences such as illustrated in 
Fig. 1. This method is performed by separately determin-
ing the coordinates of each point in the scatterplot by pro-
jecting each observation onto bgPCA axes that were com-
puted using group means that ignored that observation. 
This increases the computational effort but that is not a 
problem these days. Several examples are shown in Fig. 5. 
This procedure adds some noise to the location of each 
point and greatly reduces the apparent distinctiveness of 
the groups. While, compared to Fig. 1, the distinctness of 
the groups is greatly reduced in the scatterplots, an effect 
can still be detected for some combinations of ni and p. 

Fig. 3  Examples of CVA 
applied to the same data (with 
ni = 8 and p = 15 variables) as 
in Fig. 1
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Fig. 4  Histograms of prob-
ability, P, values using four 
standard MANOVA test 
criteria. Based on sampling 
experiments such as shown in 
Fig. 1 but replicated 10,000 
times. This shows that results 
such as shown in Fig. 3 are not 
unexpected

Fig. 5  Examples of the use of 
an XbgPCA using samples of 
data such as used in Fig. 1. The 
false distinctiveness of groups is 
much reduced and look about as 
one might expect for three sam-
ples from the same population
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Figure 6 shows plots of overlap statistics used in Fig. 2 
for this method. The range of sample sizes considered was 
reduced from that of Fig. 2 to better show the reduced 
overlap for smaller sample sizes. Figure 7 shows several 

examples of scatterplots using smaller sample sizes that 
Fig. 6 shows will tend to result in less overlap between 
groups especially for the Hij criterion. Note: as discussed 
later, this criticism is not entirely fair because, even in 

Fig. 6  Average degree of overlap between samples as a function of 
sample size within each group and the number of variables as in 
Fig. 2 but using a leave-one-out cross-validated bgPCA, XbgPCA, as 
in Cardini and Polly (2020). a Proportion of points in one sample that 
are closer to the mean of another sample. The maximum expected is 
0.5 for the case where the sample means are essentially identical so 
that points are almost equally likely to be closest to either mean. b 

Proportion of points in a sample that also below to the convex hull of 
another sample. The convex hull is computed in the g-1-dimensional 
space constructed by the bgPCA method. The maximum possible 
value is 1.0 corresponding to the situation in which the two convex 
hulls coincide so that all points are within both convex hulls. Based 
on 50 replications for each combination of ni and p 

Fig. 7  Examples of scatterplots 
using the leave-one-out cross 
validated bgPCA suggested 
by Cardini and Polly (2020). 
Convex hulls are shown to 
enclose the range of variation in 
each sample and the numbered 
filled dots show the locations of 
the group means. A sample size 
of ni = 5 and p = 15 dimensions 
were used because Fig. 6 sug-
gested there would be less over-
lap for this combination of ni 
and p. While there is overlap as 
in Fig. 5, the groups sometimes 
overlap little or not at all. How-
ever, the XbgPCA scatterplots 
seem much less misleading than 
those produced by bgPCA
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the original full p-dimensional space, samples of smaller 
size will tend to overlap less (see Figs. S1 and S2 in the 
supplement).  

Multiple Regression Analysis

Testing for differences among group means using anova or 
MANOVA is just a special case of multiple regression or 
multivariate multiple regression. That suggests that multiple 
regressions with large numbers, k, of independent variables 
relative to the sample size may also have related problems. 
Let � be an n × p matrix (or vector if p = 1) of n observa-
tions on p dependent variables and � an n × (q + 1) matrix 
of q independent variables plus a dummy variable with all 
values equal to 1 so as to include the mean or intercept in 
the regression model. It is convenient to write the regression 
equations in terms of a “hat” matrix, � = �(�t

�)
−1
�

t so 
that the predicted values, �̂ , of the dependent variables can 
be computed as �̂ = ��(it puts a “hat” on the matrix � , 
and thus its name). This equation shows that the predicted 
values, like the scores along the PC axes in a PCA or the 
canonical axes in a CVA, can be visualized as a projec-
tion from a higher to a lower dimensional space (from q + 1 
dimensions down to p dimensions). In this case from a space 
of q independent variables to a space of p dependent vari-
ables. An important difference is that the � matrix will not 
usually be an orthogonal matrix as it is in a PCA. Figure 8a 
shows a typical histogram from a sampling experiment 
using n = 600 samples of q = 450 independent variables (just 
normally distributed random numbers) and a single dummy 
dependent variable with half the values set to -1 and the 
other half set to 1 (as if one wished to predict which of two 

groups an observation belongs). Plotting a histogram of the 
�̂ values (see Fig. 8a) suggests that one can make good pre-
dictions as there is only a small area of overlap between the 
�̂ values for the two groups. Figure 8b shows the expected 
uniform distribution of P-values from tests for each of the 
10,000 replications of this sampling experiment. Again, a 
plot of the projections can be very misleading even though 
the usual tests yield the correct distribution of probabilities. 
The degree of overlap is a function of q, n, and p. However, 
the sample size cannot be less than q in order to be able to 
invert the �t

� matrix.
One can also perform a similar experiment for 3 groups 

by using two dependent variables with values correspond-
ing to codes for differences among three groups (e.g., such 
as 1,1,−2 and 1,−1,0). Scatterplots of the �̂ values for two 
sampling experiments are given in Fig. 9 for two sample 
sizes. The scatterplots resemble those shown earlier for 
the bgPCA method.

There can also be problems for the more usual case of pre-
dicting a continuous dependent variable using a suite of con-
tinuous independent variables. Figure 10 shows the results 
of a sampling experiment predicting a dependent variable 
that is just the sequential observation number. The prediction 
would appear to be even better if smaller sample sizes were 
used. One intuitive explanation for this phenomenon is that if 
you use enough random variables then by chance some may 
happen to correlate with any given dependent variable. The 
likelihood of this is increased by the fact a multiple regres-
sion analysis is a powerful technique that is able to consider 
all possible linear combinations of the independent variables 
and thus it may be able to find combinations of variables that 
appear to be predictive – at least in the given sample though 
they are not expected to be predictive in new samples.

Fig. 8  Results of a sampling experiment using regression to predict 
membership in one of two groups. a Example of a histogram of Ŷ  val-
ues from a regression of a dummy variable consisting of 300 “−1” 
values followed by 300 “1” values. The matrix of independent varia-
bles was a 600 × 450 matrix of normally distributed random numbers. 

The degree of separation of the two “groups” is typical of the results. 
b Histogram of probability, P, values for tests of the regression coef-
ficient in 10,000 replications of the sampling experiment described in 
(a). As expected, the distribution is close to uniform
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Some Properties of High‑Dimensional 
Spaces

While the use of resampling suggested by Cardini and 
Polly (2020) seems to mostly solve the problem of the 
bgPCA method showing false distinctness of random 
groups (at least for larger sample sizes), there is a need 

to better understand why the bgPCA method shows such 
false distinctiveness of random groups. The explanation 
lies in some mathematical and statistical properties of 
high-dimensional spaces. Some well-established but less 
well-known (at least among biologists) properties of high 
dimensional spaces are described below. The term “curse 
of dimensionality” (Bellman 1961a) is often used to refer 
to those properties that make computations more difficult 

Fig. 9  Results of sampling experiments with two dependent variables 
that encode three groups. Filled dots show the locations of the means. 
One dependent variable used values (1, 1,−2) and the other used (1, 
−1, 0).The matrix, X, of independent variables consisted of 450 nor-

mally distributed random variables (a). Scatterplot of �̂
1
 vs �̂

2
 based 

on a sample size of 600. b Scatterplot based on a sample size of 500. 
Note that the groups appear more distinct than in a which was based 
on a larger sample size

Fig. 10  Regression of y on X where y is a vector with the ith element 
equal to i and X is a matrix of independent variables and consists 
of 600 samples of 450 normally distributed random numbers. a An 

example plot of y vs.�̂ . b Distribution of probability, P, values from 
tests for each if the 10,000 replicates of the sampling experiment. As 
expected, the distribution is close to uniform
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and harder to interpret in higher dimensions. Many proper-
ties may seem surprising at first.

Volumes of Hyperspheres

First, consider the volume of a unit p-ball (a p-dimensional 
hypersphere of radius, r = 1) in a space of p dimensions (also 
called an n-ball). In one dimension it would degenerate to a 
line from -1 to 1 with a length of 2. In two dimensions it is 
a circle with area V2 = �r2 , which is just � for a unit circle 
because r = 1. The volume of a unit sphere is V3 =

4

3
� . For 

higher dimensions, the volume of a unit p-ball is.

Vp =
�p∕2

(p∕2)!
 for p even and Vp =

2

(
p−1

2

)
!(4�)

p−1

2

p!
 for p odd.

Figure 11a is a plot of the p-volume as a function of p 
ranging from 1 to 20. The volume increases at first but then, 
surprisingly, it reaches a maximum at p = 5 and then rapidly 
decreases. The volume of a p-ball is important here because 
this quantity is needed below to compute the expected 
volume of a convex hull for a sample of n points from a 
p-dimensional multivariate normal distribution.

In contrast to the unit p-ball, the volume of a unit p-cube 
(each side of length 1) stays the same because  1p = 1. How-
ever, a p-cube with each side ranging from -1 to 1 is more 
relevant here as it just encloses a unit p-ball centered on 
the origin. Its volume, 2p , increases without bound. Thus, 
while one can visualize the unit p-ball just fitting within the 
cube ranging from -1 to 1 along each side, the p-ball would 

take up a rapidly decreasing proportion of the volume of the 
p-cube. However, the p-ball is not “shrinking” as p increases 
because its radius is still 1 and it still touches the center of 
the faces of the p-cube it is embedded in. Some, for example 
Lamb (2016), have suggested that one should think of the 
p-ball as becoming increasingly “spiky” because while the 
p-ball touches the faces of the p-cube as its volume shrinks. 
The corners take up a higher and higher proportion of the 
volume of the p-cube as p increases. Thus, the p-ball extends 
less and less into the corners.

Expected Volumes of Convex Hulls 
and Confidence Ellipsoids

Convex hulls are often used to show the outer bounds of a 
sample of points. They can be useful in two or three dimen-
sions as a graphic technique to simplify scatterplots showing 
many samples when they overlap broadly. Figures 1, 3, 5, 
and 7 above, Cardini et al. (2019), and many others provide 
examples. The volume of a convex hull is also one way to 
compare the overall range of observed variation of samples. 
Of course, an adjustment has to be made if the sample sizes 
are not equal because, as shown below, the volume of a con-
vex hull is expected to increase with sample size because 
points further from the mean will usually be observed in 
larger samples.

An approximation to the expected volume, VHp,n , of the 
convex hull of a sample of size n from a p-dimensional 

Fig. 11  a Volume of a unit hypersphere as a function of dimensional-
ity. Maximum is at p = 5. b The expected volume of a convex hull for 
a sample of size n from a p-dimensional standard multivariate nor-
mal distribution. For a given sample size, the volume increases and 
then decreases as the number of dimensions increase. It uniformally 

increases as ni is increased. Note that the axes are rotated relative to 
earlier surface plots. Note also that the convex hull is computed in the 
g-1 dimensional space of differences among means and not the full 
p-dimensional space which would require ni > p 
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multivariate normal distribution was given by Affentranger 
(1991) as:

 where Vp is the volume of the unit p-ball as given earlier and 
o(1) indicates additional first-order terms are need for the 
approximation. The need for additional o(1) terms implies 
that the approximation may not be very accurate, and in fact 
it considerably underestimates the volume. However, except 
for small sample sizes, the rate of increase with increasing 
sample sizes is only slightly underestimated and approxima-
tion is good enough to understand how its volume changes 
with increasing p and n. Because the volume of a p-ball 
at first increases and then rapidly drops to near zero as p 
increases, the volume of the convex hull must also increase 
and then decrease. The dimension with maximum volume 
depends on the sample size because more deviant observa-
tions are expected in larger samples. Figure 11b shows a plot 
of an approximation to the expected volume as a function 
of p and ni.

Another way to measure the amount of volume taken up 
by a sample of points in different dimensions is to compute 
the volume of a confidence ellipsoid (also called and an 
equal frequency ellipsoid) that is expected to enclose the 
sample 100(1 − �)% percent of the time. Anderson (2004) 
gives the following formula for the volume, VCp,� , of this 
ellipsoid:

where C(p) = 2�
p

2

/
Γ
(

p

2

)
 and Γ() is the gamma function (a 

generalization of the factorial function for non-integer val-
ues). For the case considered here, |�| = 1 because � = � . 
Unlike the volume of a p-ball or a convex hull for a sample 
from a multivariate normal distribution, the volume of the 
ellipsoid steadily increases with p. However, as in the case 
of a p-ball, it occupies a steadily decreasing fraction of the 
volume, 

(
2
√

�2
p,�

)p

 , of a p-cube that would just enclose it. 
The fraction quickly becomes close to zero (less than 1% for 
p > 9).

The pattern is the same, multivariate samples of points 
will occupy only a tiny fraction of the multivariate sample 
space when p is not small. This rejection would seem to 
reduce the degree that independent samples from the same 
population would overlap as p becomes large because 
samples with small volumes are less likely to intersect by 
chance than those that would occupy a large fraction of the 
space. This property and some properties of distances in 
high-dimensional spaces are explored in the next section.

VHp,n = Vp(log n)
p

2 (1 + o(1))

VCp,� =
C(p)

[
�2
p,�

] p

2

p
|�|−

1

2

Distribution of Squared Euclidean Distances 
to the Mean

The squared distances, d2
i
 , between points from a multivari-

ate normal distribution and their sample mean is distributed 
as proportional to �2

p
(Anderson 2004). The mean of a �2

p
 dis-

tribution is equal to its degrees of freedom and its variance 
it twice that, p and 2p in the present case for sampling from 
the p-dimensional standard multivariate normal distribution. 
This means that as p increases, the distribution of squared 
distances becomes concentrated away from zero. Figure 12a 
shows histograms of squared distances for various numbers 
of dimensions. Thus, as the number of dimensions get large, 
only a small fraction of the points will be close to their mean 
even though that is where the density of the distribution 
is highest. In terms of distances, one should visualize a 
sample from a high-dimensional multivariate normal dis-
tribution not as a hyper-spherical cloud of points with most 
points near the mean but rather as like the surface of a ball 
with radius 

√
p from the center (Vershynin 2018). This is 

because while the density is highest close to that region that 
accounts for only a small fraction of the space occupied by 
the sample. The space between, for example, radii of 2 and 
3 from the center includes a much larger portion of the space 
than that between radii of 1 and 2 from the center. From 
Fig. 12a one can also see that the distribution of distances 
is also skewed to the right. For very large p the distribution 
of points from the centroid is expected to be close to 

√
p 

and thus the distribution of points will be close to that of a 
uniform distribution on the surface of a sphere of radius 

√
p 

as discussed in Exercise 3.3.6 of Vershynin (2018).

Distances Between Random Points

The distribution of squared distances between random pairs 
of points is also of relevant here. Squared distances between 
random pairs of points from a multivariate standard normal 
distribution are distributed as 2�2

p
 (Anderson 2004), where 

the degrees of freedom are, again, equal to the number of 
dimensions. This means that in high dimensions there will 
be relatively few points that are close neighbors. The average 
squared distance between points, d2

ij
 , is 2p. Said in another 

way, if one visualizes randomly selected points as endpoints 
of vectors from the origin then pairs of such vectors will tend 
to be almost orthogonal in high dimensional spaces (Vershy-
nin 2018). Another interesting property is that the ratio (
max d2 −min d2

)/
min d2 goes to zero as p increases, see 

Beyer et al. (1999) and Houle et al. (2010). This implies that 
for high dimensional spaces it will become less useful to 
perform cluster analyses that search for sets of close points. 
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However, Houle et al. (2010) suggest that ranking of dis-
tances is still useful and suggest using nearest neighbor net-
work relationships. The distribution of squared distances 
between sample means is similar because a point is just a 
mean with a sample size of 1. Thus the squared distance 
between two sample means is distributed as 2

ni
�2
p
 (Anderson 

2004). These imply that when using very large numbers of 
dimensions it will become more difficult to distinguish close 
means from more distant ones.

Sampling experiments were performed generating two 
samples of points from the same population for various 
numbers of dimensions. The resulting data (both points 
and means) were then projected onto a vector through the 
means of the two samples (Fig. 12c shows an example). The 

variance of the projection for points within the same group 
was close to 1. This may be surprising because the average 
squared distance to the mean is p in the original p-dimen-
sional space. As in bgPCA, the squared difference between 
the projections of the sample means of the two groups grows 
steadily larger as the number of dimensions increases. It 
also increased when the sample size was reduced. Figure 13 
shows a plot for ni = 10 (upper solid dots) and 40 (middle 
solid dots). The average standard deviation for these samples 
is shown as open triangles. The average d2 between means is 
2p

/
ni as one would expect for the full p-dimensional space. 

The solid and dashed lines on Fig. 13 are based on this theo-
retical relationship and clearly fit the observed points well. 
The dotted line is just for a variance of 1.0 for all p. This 

Fig. 12  Histograms from sampling experiments. a Histograms of 
the squared distance, d2, between random points and their sample 
mean for various numbers of dimensions, p. b Histograms of dis-
tances between random pairs of points for spaces of different num-
bers of dimensions, p. c Histogram of projections of points on a 
vector between a pair of means (each mean based on 100 points). d 
Histogram of 200 points projected onto a vector connecting two ran-

domly selected points (their positions in the histogram are identified 
by the numbers “1” and “2” at the extreme tails of the distribution. 
The number of dimensions used for C and D was p = 1000. Note the 
scale of variation is very different in C and D. This is because the 
average squared distance between points is 2p whereas for means it is 
just 2p

/
ni
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vector through the two means is, of course, the first bgPCA 
axis when there are just two groups.

The above experiment was repeated using a vector between 
a random pair of points rather than means. Histograms of these 
projections, for example, Fig. 12d shows that the projections 
(ignoring the projections of the two reference points) are con-
sistent with a standard normal distribution. This might seem 
counter-intuitive but Fig. 3.9 of Vershynin (2018) shows that 
the projection of a uniform distribution on the surface of a 
sphere of radius 

√
p onto a line converges to the standard uni-

variate normal as p → ∞ . However, the two reference points 
are shown as extreme outliers located at each end of the dis-
tribution. Note that the distance between the reference points 
(the two means or the pair of random points) is much larger in 
Fig. 12d than the distance between means in Fig. 12c. This is 
because the variance of points is 1 but for means it is only 1

/
ni . 

Perhaps surprisingly, while one can visualize the multivariate 
cloud of points as a hyper-spherical normal distribution with 
a variance of 1.0 in any direction and thus its projection onto 
any vector a univariate standard normal distribution, the aver-
age squared distance between any pair of points, 2p, becomes 
very large as p increases. In a sense, the distances between 
selected data points or means are on a different scale than the 
projections of the within-group scatter. Thus, the distribu-
tion of projections and the difference between means should 
not be shown in the same plot without some adjustment (see 

the Supplement). This is the key property that explains why 
samples appear so different when using bgPCA with many 
variables.

Discussion

Some of the properties and relationships between volumes 
and distances in high-dimensional spaces may seem counter-
intuitive because our intuition is based on our everyday experi-
ences with at most three dimensions. In my early training I was 
told that while going from spaces of one to two and then three 
dimensions had some different properties, but beyond three it 
was satisfactory to visualize the space as just extensions of the 
properties of 3-dimensional spaces. The “curse of dimension-
ality” seemed then to be just a complexity of computation and 
not important for the usual interpretation of statistical analyses 
of biological data. It seems I was misled!

The results reported above have several important impli-
cations for analyses using large numbers of variables not 
only in morphometrics but other field which now have 
access to large numbers of variables such as in genetics.

The Key Insight

Figure 12 illustrates what seems to be the key insight that 
explains much of the results of the sampling experiments 
performed in this study. In a high dimensional space, 

Fig. 13  Plot of the square root 
of the average squared distance 
between two means as a 
function of p for sample sizes, 
ni, of 10 (upper solid dots) and 
40 (lower solid dots). Based on 
sampling experiments using 100 
replications. The average 
standard deviation for these 
sampling experiments is also 
shown (open triangles). The 
upper two curves plot the 
expected relationship 
⌢

d =

√
2p

/
ni , which appears to 

fit the observed results perfectly. 
The lower, dotted, line shows 
the expected � = 1 for all values 
of p 
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Projecting all of the data points onto a vector constructed to 
go exactly through the sample means of two groups (any two 
groups whether meaningful or randomly defined will usu-
ally result in a plot like Fig. 12c with the distance between 
the means equal to their distance in the full p-dimensional 
space but the distribution of the individual data point con-
sistent with a sample from a univariate normal distribution. 
If instead, one projects the points onto a vector that goes 
exactly through two sample points then the result will be 
that those two points (separated by their actual distance in 
the p-dimensional space) will be shown as outliers as in 
Fig. 12d but with the other points still appearing consistent 
with a sample from a univariate normal distribution. On the 
other hand, projecting points onto a random vector should 
usually produce a distribution of projections just as expected 
for a sample from a single univariate normal distribution 
(Bickel et al. 2018). Of course, there is some chance that a 
randomly constructed vector might go sufficiently close to 
some points or means to yield distributions as in Fig. 12c, 
d but that becomes increasingly unlikely as the number of 
dimensions increases. The necessary degree of closeness 
was not investigated here except to observe that cases like 
those shown in Fig. 12c, d were not found among a large 
number of sampling experiments using random vectors. Sin-
gle outliers did appear occasionally indicating that a ran-
dom vector must have passed close to one of the data points. 
None were observed as extreme as shown in Fig. 12d. One 
can, of course, generalize these remarks to projections onto 
a g − 1-dimensional space that passes exactly contains the g 
means in a bgPCA.

The fact that groups in a bgPCA analysis become more 
and more distinct as more random variables are added 
beyond n-1 might seem puzzling because the distances 
among n points can always be captured exactly in n-1 
dimensions and thus adding more variables beyond that 
does not increase the actual number of dimensions occu-
pied by a data set. If a principal components analysis (PCA) 
were performed on the entire dataset then all eigenvalues 
past n-1 will be zero because there would be no variation 
in the highest dimensions. Thus, a sample actually occu-
pies at most min (p, n − 1) dimensions no matter how large 
p becomes. However, adding additional variables past n-1 
does in fact cause the groups to appear to be more and more 
distinct. The separation between groups such as shown in 
Fig. 12b, c will become greater and greater as p increases 
beyond n-1. The discussion above about the distribution of 
distances between points reveals why. It is because the dis-
tances between points (whether individual observations or 
means) increases as p increases because a squared distance 
is the sum of p squared differences. If a projection captures 
the actual distance between means then the groups will look 
more distinct relative to the projection of the within-group 
variation which does not get inflated as p increases.

Bookstein (2002), page 144, makes a related point for 
landmark data. If, for example, one has recorded k, 2-dimen-
sional landmarks for n = 2k − 3 specimens then for any par-
titioning of the sample into two groups it is possible to find 
a dimension in the space that will completely separate the 
groups and have zero variation within the arbitrary groups 
along that dimension. This is because k landmarks corre-
spond to a shape space of 2k − 4 dimensions. Having a sam-
ple size one larger than that ( n = 2k − 3 ) makes it possible 
to define an additional dimension that contrasts any arbitrary 
pair of groups that one might construct. In terms of variables 
rather than landmarks, with groups of size n1 and n2, the 
first group fills at most n1-1 dimensions and the second n2-1 
dimensions. This means that together that maximally require (
n1 − 1

)
+
(
n2 − 1

)
= n − 2 dimensions to represent the 

two samples. One can add one more dimension by adding 
a dummy variable that encodes the group membership. For 
example, it could have values of 1 for members of one group 
1 and -1 for members of the group 2. This dummy variable 
would provide a dimension that perfectly distinguish the two 
groups. There would be no variation within groups for this 
variable. What a method like pgPCA does is to directly find 
such dimensions using the group means (see Fig. 9).

Inferences About Clusters and Other Patterns

Projection pursuit (Friedman and Tukey 1974) is a well-
known method for searching high-dimensional data to find 
“interesting” projections that reveal insights into the struc-
ture of s high-dimensional data set. Interesting is usually 
defined as projections that are maximally different from a 
normal distribution, for example strongly bimodal indicating 
the presence of clusters. Hou and Wentzell (2011) suggested 
doing this by searching for projections that minimize kurto-
sis because that would indicate bimodality. Unfortunately, 
the search can be trivialized in very high-dimensional spaces 
by selecting vectors that go through the means of any arbi-
trary pair of groups as projections onto such vectors will 
show bimodality with perfect separation of the groups.

van der Maaten and Hinton (2008) suggested that If one 
expected the relationships to be nonlinear, rather than simple 
round or elliptical clusters methods such as t-SNE (t-Distrib-
uted Stochastic Neighbor Embedding) would be useful visu-
alization at different scales in very high-dimensional data. 
This is because nearest-neighbor relationships may still be 
useful for clustering even though distances become relatively 
more concentrated around the mean distance in very high-
dimensional data. Aggarwal et al. (2001) proposed the use of 
fractional distances (such as d2∕3 ) to spread out the distances 
to reduce the problem in clustering high-dimensional data.

As described earlier, ordination methods such as bgPCA 
will necessarily give distorted views because the ordination 
plots are constructed to try to show both the p-dimensional 
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distances between the means and the projections of the 
within-group variation of the a priori defined clusters. As 
shown earlier, the CVA method (when the number of varia-
bles is not too large) has the same problem as bgPCA. When 
there are large numbers of variables a PCA is first performed 
to reduce the number of dimensions and a CVA performed 
on the reduced data. If the number of dimensions is suf-
ficiently reduced and sample sizes large enough then this 
may avoid some of the problems. It would of course reduce 
the ability of CVA to detect subtle differences that may only 
be reflected in a few variables. These approaches were not 
investigated here.

Suggestions for Applications Using Large Numbers 
of Variables

Ordination plots produced using methods such as PCA and 
PCOORD (Principle coordinates analysis, Gower (1966)), or 
MDSCAL (non-metric multidimensional scaling, (Kruskal 
1964)) of the entire dataset do not exaggerate the distinct-
ness of any groups because the plots they produce are just 
low-dimensional approximations of the relationships among 
all of the points. While an eigenvector could happen to go 
exactly through two data points or group means and cause 
the problems described above, it is unlikely for high dimen-
sional data. A very conservative approach would be to just 
use an ordination method to display a low-dimensional view 
of the total variation. If the groups are very distinct (and 
the differences are in dimensions that account for a large 
proportion of the overall variance then group differences 
should be visible in a 2 or 3-dimensional PCA ordination. 
This approach is conservative because it will not reveal 
differences if they were more subtle and just involved as 
few variables with smaller variances and thus would only 
be visible in higher dimensions. If finding such differences 
is important then larger sample sizes are needed. One may 
wish to at least first try using a method like PCA to see if 
differences between the expected groups are large. Unfor-
tunately, specimens often differ greatly in size so that the 
effects of allometric variation may dominate and hide group 
difference. In that case one could try to restrict sampling to 
avoid specimens that differ greatly in size or one could try 
some method of size adjustment. However, a PCA may still 
not show group differences unless the differences account 
for a large proportion of the total variance.

Figures 1, 2, 3, 4, 5, 6, 7 show that the number of vari-
ables does not have to be exceptionally large in order to 
encounter the problems described here if sample sizes are 
not large. It is unclear just how large samples sizes need to 
be to avoid the problems described above. As noted by Car-
dini et al. (2019), Bookstein (2017, 2019), the p∕n ratio is 
important rather than the absolute magnitude of n or p (or q 
in the case of multiple regression analysis). Investigators are 

usually encouraged to plot their data as a guide to checking 
and interpreting the numerical results from a statistical anal-
ysis. Unfortunately, as shown above, in studies using high-
dimensional data it is the low dimensional plots themselves 
that can be misleading, and more trust should be placed on 
proper numerical results – especially results using cross-
validation methods.

In many morphometric studies very large numbers of 
landmarks and semilandmarks are now used in morpho-
metric studies because they have become easier to obtain. 
But having so many variables makes the studies somewhat 
exploratory in nature and that needs to be taken into account 
in the statistical analyses. See recent discussions about these 
methods in Cardini (2020) and Goswami et al. (2020). The 
high density of points makes the visualizations impres-
sive and realistic looking compared to those using just a 
few landmark points. Large numbers of variables should 
increase the chances of capturing whatever differences there 
may be between groups. It will, of course, provide a more 
realistic depictions of the organisms. The problem is that 
unless sample sizes are very large the problems illustrated 
above are almost certain to arise. The present results showed 
that clear differences can be found between arbitrary groups 
when using high dimensional data unless sample sizes are 
large compared to the number of variables. The separation 
of groups may seem perfect even though there are no true 
differences among the means.

When the p/n ratio is large it is not useful to just report 
that one is able to find some combination of variables that 
shows a clear separation between groups as such differences 
can be found even for random partitions of data.

What one should do next in a practical application is to 
study the results and try to discover whether the apparent dif-
ferences found using high-dimensional data can be described 
in terms of functional or developmental differences that can 
be described in terms of relatively few variables that are 
biologically meaningful to the study. The apparent result 
should then be confirmed checked using new samples of 
specimens. Unfortunately, obtaining new independent data 
is unrealistic in many types of applications so at least cross 
validation methods must be used to obtain some confidence 
in the results.

Acknowledgements Special thanks to Fred L. Bookstein for his exten-
sive and insightful comments on an earlier version of this paper. Help-
ful discussions with Andrea Cardini about problems with using very 
large numbers of landmarks are also appreciated as well as the helpful 
comments from anonymous reviewers.

Funding Self-funded.

Data Availability Only simulated data were used.



16 Evolutionary Biology (2021) 48:1–16

1 3

Code Availability No formal documented software was produced. Sam-
pling experiments were carried out using MATLAB.

Compliance with Ethical Standards 

Conflict of interest The author declares that he has no conflict of inter-
est.

References

Affentranger, A. (1991). The convex hull of random points with spheri-
cally symmetric distributions. Rend. Sem. Mat. Univ. Poi. Torino, 
49(3), 359–383.

Aggarwal, C. C., Hinneburg, A., Keim, D. A 2001 On the Surprising 
Behavior of Distance Metrics in High Dimensional Space. In: Data-
base Theory, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 
420-434

Anderson, T. W. (2004). An introduction to multivariate statistical analy-
sis (3rd ed.). Hoboken: John Wiley.

Bellman, R. (1961). Adaptive control processes: A guided tour (Karreman 
mathematics research collection). Princeton: Princeton University 
Press.

Bellman, R. E. (1957). Dynamic programming. Princeton, NJ: Princeton 
University Press.

Bellman, R. L. (1961). Adaptive control processes. N.J.: Princeton Uni-
versity Press.

Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U 1999 When is 
“Nearest Neighbor” Meaningful? In 7th International Conference 
on Database Theory – ICDT’99 (Lecture Notes in Computer Sci-
ence), Springer, New York, Vol. 1540, pp. 217–235, Doi: https ://doi.
org/10.1007/3-540-49257 -7_15.

Bickel, P. J., Kur, G., & Nadler, B. (2018). Projection pursuit in high 
dimensions. Proceedings of the National Academy of Sciences, 
115(37), 9151–9156. https ://doi.org/10.1073/pnas.18011 77115 

Bookstein, F. L. (2002). Creases as morphometric characters. In N. 
MacLeod & P. L. Forey (Eds.), Morphology, shape and phylogeny 
(pp. 139–174). New York: Taylor & Francis.

Bookstein, F. L. (2017). A newly noticed formula enforces fundamental 
limits on geometric morphometric analyses. Evolutionary Biology, 
44(4), 522–541. https ://doi.org/10.1007/s1169 2-017-9424-9

Bookstein, F. L. (2019). Pathologies of between-groups principal compo-
nents analysis in geometric morphometrics. Evolutionary Biology, 
46(4), 271–302. https ://doi.org/10.1101/62744 8

Campbell, N. A. (1979). Some practical aspects of canonical vari-
ate analysis. Journal of Applied Statistics, 6(1), 7–18. https ://doi.
org/10.1080/02664 76790 00000 02

Campbell, N. A., & Atchley, W. R. (1981). The geometry of canonical 
variates analysis. Systematic Zoology, 30(3), 268–280. https ://doi.
org/10.1093/sysbi o/30.3.268

Cardini, A. (2003). The geometry of the marmot (Rodentia: Sciuridae) 
mandible: Phylogeny and patterns of morphological evolution. Sys-
tematic Biology, 52, 186–205. https ://doi.org/10.1080/10635 15039 
01928 07

Cardini, A. (2020). Less tautology, more biology? A comment on “high-
density” morphometrics. Zoomorphology. https ://doi.org/10.1007/
s0043 5-020-00499 -w

Cardini, A., O’Higgins, P., & Rohlf, F. J. (2019). Seeing distinct groups 
where there are none: spurious patterns from between-group PCA. 
Evolutionary Biology, 46(1), 307–316. https ://doi.org/10.1007/
s1169 2-019-09487 -5

Cardini, A., & Polly, P. D. (2020). Cross-validated between group PCA 
scatterplots: A solution to spurious group separation? Evolutionary 
Biology, 47, 85–95. https ://doi.org/10.1007/s1169 2-020-09494 -x

Dhillon, I. S., Modha, D. S., & Spangler, W. S. (2002). Class visualization 
of high-dimensional data with applications. Computational Statistics 
& Data Analysis, 41, 59–90.

Domingos, P. (2012). A few useful things to know about machine learn-
ing. Communications of the ACM, 55(10), 78–87. https ://doi.
org/10.1145/23477 36.23477 55

Fisher, R. A. (1936). The use of multiple measurements in taxonomic 
problems. Annals of eugenics, 7(2), 179–188.

Friedman, J. H., & Tukey, J. (1974). A projection pursit algorithm for 
exploratory data analysis. IEEE Transactions on Computers, 23, 
881–885.

Goswami, A., Watanabe, A., Felice, R. N., Bardua, C., Fabre, A.-C., & 
Polly, P. D. (2020). High-density morphometric analysis of shape 
and integration: The good, the bad, and the not-really-a-problem. 
Integrative and Comparative Biology, 59(3), 669–683.

Gower, J. C. (1966). Some distance properties of latent root and vector 
methods used in multivariate analysis. Biometrika, 53(3/4), 325–
338. https ://doi.org/10.2307/23336 39

Hou, S. F., & Wentzell, P. D. (2011). Fast and simple methods for the 
optimization of kurtosis used as a projection pursuit index. Analytica 
Chimica Acta, 704, 1–15.

Houle, M. R., Kriegel, H.P., Kröger, P., Schubert, E., Zimek, A (2010) 
Can Shared-Neighbor Distance Defeat the Curse of Dimensional-
ity? Paper presented at the 22nd International Conference, SSDBM, 
Heidelberg, Germany

Klingenberg, C. P., & Monteiro, L. R. (2005). Distances and directions 
in multidimensional shape spaces: Implications for morphometric 
applications. Systematic Biology, 54(4), 678–688.

Kovarovic, K., Aiello, L. C., Cardini, A., & Lockwood, C. A. (2011). 
Discriminant function analyses in archaeology: Are classification 
rates too good to be true? Journal of Archaeological Science, 38(11), 
3006–3018. https ://doi.org/10.1016/j.jas.2011.06.028

Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness 
of fit to a nonmetric hypothesis. Psychometrika, 29, 1–27.

Lamb, E. (2016). Why you should care about high dimensional sphere 
packing. Roots of unity, Scientific American, New York

Marchenko, V. A., & Pastur, L. A. (1967). Distribution of eigenvalues for 
some sets of random matrices. Mathematics of the USSR Sbornik, 
1, 457–483.

Mitteroecker, P., & Bookstein, F. (2011). Linear discrimination, ordina-
tion, and the visualization of selection gradients in modern mor-
phometrics. Evolutionary Biology, 38(1), 100–114. https ://doi.
org/10.1007/s1169 2-011-9109-8

Nørgaard, L., Bro, R., Westad, F., & Engelsen, S. B. (2006). A modifica-
tion of canonical variates analysis to handle highly collinear multi-
variate data. Journal of Chemometrics, 20, 425–435.

Rao, R. C. (1948). The utilization of multiple measurements in problems 
of biological classification. Journal of the Royal Statistical Society, 
Series B, 10(2), 159–203.

Rohlf, F. J., Loy, A., & Corti, M. (1996). Morphometric analysis of old 
world talpidae (Mammalia, Insectivora) using partial warp scores. 
Systematic Biology, 45, 344–362. https ://doi.org/10.1093/sysbi 
o/45.3.344

van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. 
Journal of Machine Learning Research, 9, 2579–2605.

Vershynin, R. (2018). High-dimensional probability: An introduction 
with applications in data science. Cambridge: Cambridge Univer-
sity Press.

Yendle, P. W., & MacFie, H. J. H. (1989). Discriminant principal com-
ponents analysis. Journal of Chemometrics, 3(4), 589–600. https ://
doi.org/10.1002/cem.11800 30407 

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/3-540-49257-7_15
https://doi.org/10.1007/3-540-49257-7_15
https://doi.org/10.1073/pnas.1801177115
https://doi.org/10.1007/s11692-017-9424-9
https://doi.org/10.1101/627448
https://doi.org/10.1080/02664767900000002
https://doi.org/10.1080/02664767900000002
https://doi.org/10.1093/sysbio/30.3.268
https://doi.org/10.1093/sysbio/30.3.268
https://doi.org/10.1080/10635150390192807
https://doi.org/10.1080/10635150390192807
https://doi.org/10.1007/s00435-020-00499-w
https://doi.org/10.1007/s00435-020-00499-w
https://doi.org/10.1007/s11692-019-09487-5
https://doi.org/10.1007/s11692-019-09487-5
https://doi.org/10.1007/s11692-020-09494-x
https://doi.org/10.1145/2347736.2347755
https://doi.org/10.1145/2347736.2347755
https://doi.org/10.2307/2333639
https://doi.org/10.1016/j.jas.2011.06.028
https://doi.org/10.1007/s11692-011-9109-8
https://doi.org/10.1007/s11692-011-9109-8
https://doi.org/10.1093/sysbio/45.3.344
https://doi.org/10.1093/sysbio/45.3.344
https://doi.org/10.1002/cem.1180030407
https://doi.org/10.1002/cem.1180030407

	Why Clusters and Other Patterns Can Seem to be Found in Analyses of High-Dimensional Data
	Abstract
	Introduction
	Between-Groups PCA (bgPCA)
	Canonical Variates Analysis (CVA)
	Cross-Validated bgPCA (XbgPCA)
	Multiple Regression Analysis
	Some Properties of High-Dimensional Spaces
	Volumes of Hyperspheres
	Expected Volumes of Convex Hulls and Confidence Ellipsoids
	Distribution of Squared Euclidean Distances to the Mean
	Distances Between Random Points
	Discussion
	The Key Insight
	Inferences About Clusters and Other Patterns
	Suggestions for Applications Using Large Numbers of Variables

	Acknowledgements 
	References




