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Abstract
Using sampling experiments, we found that, when there are fewer groups than variables, between-groups PCA (bgPCA) may 
suggest surprisingly distinct differences among groups for data in which none exist. While apparently not noticed before, 
the reasons for this problem are easy to understand. A bgPCA captures the g − 1 dimensions of variation among the g group 
means, but only a fraction of the 

∑

ni − g dimensions of within-group variation ( ni are the sample sizes), when the number 
of variables, p, is greater than g − 1. This introduces a distortion in the appearance of the bgPCA plots because the within-
group variation will be underrepresented, unless the variables are sufficiently correlated so that the total variation can be 
accounted for with just g − 1 dimensions. The effect is most obvious when sample sizes are small relative to the number of 
variables, because smaller samples spread out less, but the distortion is present even for large samples. Strong covariance 
among variables largely reduces the magnitude of the problem, because it effectively reduces the dimensionality of the data 
and thus enables a larger proportion of the within-group variation to be accounted for within the g − 1-dimensional space 
of a bgPCA. The distortion will still be relevant though its strength will vary from case to case depending on the structure 
of the data (p, g, covariances etc.). These are important problems for a method mainly designed for the analysis of variation 
among groups when there are very large numbers of variables and relatively small samples. In such cases, users are likely 
to conclude that the groups they are comparing are much more distinct than they really are. Having many variables but just 
small sample sizes is a common problem in fields ranging from morphometrics (as in our examples) to molecular analyses.
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Introduction

As a general trend, modern science tends to generate a very 
large number of variables (p) from samples that can vary 
widely in size (n) and often includes few individuals relative 
to the number of variables. Indeed, the ‘Omics’ revolution, 
brought forward by the rapid advancement of informatics 
and molecular biology, offers some of the best examples of 
this trend. For instance, microarray analyses may include 
hundreds of genetic markers from a relatively small number 
of individuals (Culhane et al. 2002 is an example). How-
ever, statistically analyzing such high dimensional data with 
relatively small sample sizes (p/n ratios) is an important and 
challenging problem.

A variety of methods for dimensionality reduction are 
available in the statistical literature (Izenman 2008). Among 
these, principal component analysis (PCA) is still probably 
the most popular in biology. A PCA is a rigid rotation of 
the multidimensional space of all the variables followed by 
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a projection of the data onto relatively few orthogonal axes 
that together account for as much of the overall variance as 
possible, though there is no reason for the axes themselves 
to be especially meaningful biologically. When p ≥ n, a PCA 
can only extract at most n − 1 uncorrelated dimensions that, 
together, contain all the information about the variances and 
covariances of the original p variables (all p dimensions can 
be extracted when p < n). Often, there are dominant direc-
tions of variance so that a relatively small number of PCs 
may account for most of the variation. The first (higher 
order) PCs capture the major aspects of covariation in the 
sample and the later PCs the smaller ones. Bookstein (2017) 
first brought attention to the Marchenko-Pastur theorem that 
shows that large p/n ratios cause an exaggeration of the sizes 
of the eigenvalues for the first PCs relative to those of the 
last PCs, thus giving a misleading impression of the relative 
importance of the patterns that they seem to suggest. The 
initial motivation for the present paper was to investigate 
whether large p/n ratios might cause problems for the rela-
tively new and increasingly popular type of PCA, between-
group PCA (bgPCA). In this method a PCA is performed on 
the covariance matrix based on the g sample means (rather 
than on the original data matrix) followed by the projection 
of the original n samples onto these bgPC axes. Plots of 
these axes are then used to illustrate the distances between 
sample means and allow a user to judge the distinctiveness 
of the groups.

Phenotypic variation is complex and, although the num-
ber and choice of morphometric descriptors should be 
determined by the specific study hypothesis (Oxnard and 
O’Higgins 2011), morphometric studies are often explora-
tory, tending to employ large numbers of variables, which 
make this discipline typically highly multivariate (Blackith 
and Reyment 1971). This is intrinsically true for landmark 
coordinate-based GM (geometric morphometrics), because 
each additional landmark or semilandmark adds two vari-
ables to a 2D study or three to a 3D study. While the p/n 
ratios are very variable (Table 1), datasets used in GM stud-
ies often have many more measurements than specimens. 
This is particularly common in, but not exclusive to, anthro-
pology, the discipline in which semilandmark methods for 
the analysis of curves and surfaces were developed and are 
widely employed to study human evolution (Bookstein 1997; 
Gunz and Mitteroecker 2013; Slice 2005). Semilandmarks 
are typically closely spaced sets of arbitrary points used to 
‘discretize’ anatomical features, such as curves and surfaces, 
that are devoid of clearly corresponding landmark points; 
therefore, they can greatly increase the number of variables 
in a study. Indeed, a propensity for morphometrics to employ 
large numbers of variables has become especially evident 
in the last decade, thanks to new, cheaper and faster instru-
ments for the acquisition and analysis of 3D images. For 
instance, almost 60% of about 1000 entries, retrieved at the 

end of 2018 in Publish or Perish (https ://harzi ng.com/resou 
rces/publi sh-or-peris h) using google scholar to search “geo-
metric morphometrics AND semilandmarks”, were papers 
published since 2013.

Description of the bgPCA Method

An important topic in biology is the description and inter-
pretation of group differences in multivariate spaces Vari-
ous approaches have been suggested to summarize among 
group variation in scatterplots (ordination methods) and 
to classify individuals in groups. Yet, today’s most com-
monly multivariate technique for separating groups is still 
multi-group linear discriminant analysis (DA), also known 
as canonical variates analysis (CVA), originally proposed by 
Fisher (1936) and Mahalanobis (1936). However, a limit for 
using DA/CVA in a study is that, for statistical reliability, 
it requires sample sizes greatly exceeding the count of vari-
ables in the analysis (Mitteroecker and Bookstein 2011), and 
indeed it is not even computationally defined if p > n − g . 
In these instances, a between-group PCA (bgPCA) has been 
suggested as an interesting potential alternative to explore 
group structure. To our knowledge, this method was origi-
nally proposed by Yendle and MacFie (1989) who called 
it “discriminant principal components analysis” (DPCA), 
though it does not involve a standardization by the within-
group variation as in DA and CVA. Another early paper is 
Culhane et al. (2002), who applied it to the analysis of high-
dimensional microarray data. While bgPCA has similari-
ties with discriminant functions, but also, as discussed by 
Boulesteix (2005), has relationships to partial least-squares 
dimension reduction methods. Compared to DA/CVA, 
bgPCA is just a PCA and does not involve standardizing the 
variables based on the variation within groups (Seetah et al. 
2012). Also, as with DA/CVA, bgPCA has been used for 
classification, and thus for predicting group affiliation based 
on bgPCs, an aim which should be achieved with a cross-
validation, as exemplified by leave-one-out jack-knife used 
in Culhane et al. (2002) and Seetah et al. (2012). However, in 
contrast to a DA/CVA (Kovarovic et al. 2011; Mitteroecker 
and Bookstein 2011), a bgPCA does not require p ≤ n − g , 
which is why it has been claimed that “in… between-group 
PCA there is NO restriction on the number of variables” 
(https ://www.mail-archi ve.com/morph met@morph ometr ics.
org/msg05 221.html).

The bgPCA procedure is used to reduce the dimensional-
ity of multivariate data to just those dimensions necessary 
to account for the differences among the g group means. 
Each sample is based on ni individuals for a total sample size 
of n =

∑

ni or n = gni in the case of equal sample sizes, as 
will be assumed here for simplicity. A bgPCA is performed 
by projecting the original n × p data matrix, X, onto the 
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matrix, E, of the normalized eigenvector of the among-group 
SSCP matrix 𝐀 =

g
∑

i

ni
�

�̄�i − ̄̄𝐱
�t�

�̄�i − ̄̄𝐱
�

 , where �̄i is the row 

vector for the mean of the ith group and ̄̄𝐱 is the grand mean 
vector. The A matrix is at most of rank g − 1 because it is a 

PCA of just the matrix of g means so only the first g-1 eigen-
values can be greater than zero and thus only the first g − 1 
columns of E need to be retained. The n × (g − 1) trans-
formed data matrix is then ��

= �� . Based on these, the 
transformed within-group and among-group SSCP matrices 

Table 1  Examples of papers 
showing the wide range of 
p/N and N/g ratios used in 
Procrustean GM studies 
involving groups

The number of shape coordinates is used as a proxy for p (i.e., without considering the loss of dimen-
sions in the superimposition and, if applicable, because of sliding semilandmarks or ‘symmetrization’). 
N is either the number of individuals or, if individuals were averaged in the between group analyses, the 
number of taxa. The average number of specimens per group (with g being the number of groups) is also 
shown. In parenthesis, structure used as an example if multiple ones were measured. Studies using bgPCA 
are emphasized in bold

Study Semiland-
marks?

N p p/N g p/g N/g

Hublin et al. (2017) (root surface) Yes 69 1650 23.9 5 330 14
Neubauer et al. (2018) Yes 127 2805 22.1 5 561 25
Torres-Tamayo et al. (2018) Yes 80 1245 15.6 4 311 20
Knigge et al. (2015) Yes 87 567 6.5 4 142 22
Gunz et al. (2012) Yes 80 312 3.9 2 156 40
Bookstein et al. (1999) Yes 21 50 2.4 8 6 3
Schlager and Rüdell (2015) Yes 534 1110 2.1 4 278 134
Baab (2016) (Bodo dataset) – 24 42 1.8 2 21 12
Gonzalez et al. (2013) – 59 93 1.6 5 19 12
Sansalone et al. (2018) – 53 72 1.4 2 36 27
Domjanic et al. (2015) Yes 134 170 1.3 2 85 67
Benazzi et al. (2011) Yes 38 48 1.3 3 16 13
Green et al. (2015) Yes 279 258 0.9 5 52 56
Gómez-Robles et al. (2011) Yes 129 94 0.7 10 9 13
Fruciano et al. (2016) (fish body) Yes 61 44 0.7 2 22 31
Chiozzi et al. (2014) (fish body) Yes 62 44 0.7 5 9 12
Kubiak et al. (2017) – 85 60 0.7 4 15 21
Cucchi et al. (2011) Yes 114 80 0.7 9 9 13
Fruciano et al. (2017) (all landmarks) – 138 93 0.7 23 4 6
Serb et al. (2017) Yes 933 606 0.6 6 101 156
Pallares et al. (2016) – 249 132 0.5 9 15 28
Chemisquy et al. (2015) (upper molar) Yes 103 52 0.5 5 10 21
Sanfilippo et al. (2010) – 160 72 0.5 2 36 80
Seetah et al. (2012) – 67 24 0.4 4 6 17
Cooke & Terhune (2015) – 169 60 0.4 7 9 24
Ritzman et al. (2016) Yes 315 90 0.3 4 23 79
Klenovšek and Jojić (2016) – 215 58 0.3 6 10 36
Franklin et al. (2013) – 400 93 0.2 2 47 200
Cardini & Elton (2008) – 1126 258 0.2 30 9 38
Fruciano et al. (2011) – 223 40 0.2 9 4 25
Corti et al. (2001) – 277 44 0.2 12 4 23
Ivanovic et al. (2009) – 166 26 0.2 9 3 18
Dapporto et al. (2011) – 130 20 0.2 2 10 65
Cardini & O’Higgins (2004) – 354 52 0.1 14 4 25
Souto-Lima & Millien (2014) (skull) – 212 30 0.1 3 10 71
Franchini et al. (2014) – 297 40 0.1 3 13 99
Cardini (2003) – 388 18 0.0 14 1 28
Astúa (2009) – 1079 38 0.0 56 1 19
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are ��

= �t�� and ��

= �t�� = � , the diagonal matrix 
of the first g − 1 eigenvalues of A (note: the superscript “t” 
indicates matrix transpose; also, while the equation for A 
given above weights the mean for each group by its sample 
size, that may not be appropriate for many applications, see 
Bookstein 2019, but it is used here for generality). Impor-
tantly, the number of bgPCs cannot be more than g − 1. 
Thus, with just two groups, there are only two group means, 
and one needs a single dimension to represent differences 
between two points; thus, when g = 2, there is only one 
bgPC. If there are three groups, the differences among the 
three corresponding means can be fully described by a plane 
passing through the three mean points, and thus by just two 
bgPCs. With g > 3 the rationale is the same and the number 
of bgPCs is g − 1, but the geometric representation is not as 
easy, because we cannot represent multivariate spaces with 
more than three dimensions in a single scatterplot and even 
a 3D scatterplot (as with g = 4) can be difficult to interpret 
(Mitteroecker et al. 2005).

Sampling Experiments

To investigate the effect of varying p/n ratios on bgPCA, 
sampling experiments were performed using both isotropic 
data (independent variables with equal means and variances 
called Model 1 below) and data constructed from an actual 
morphometric study but with no true differences among the 
group means (called Models 2–3 below). Figure 1 shows 
the result of bgPCAs using g = 3 groups with the same true 
means (i.e., no real group differences), a constant total sam-
ple size (n = 120), and an increasingly larger numbers of var-
iables (p = 12, 120 or 360). On the left (Fig. 1a) are bgPCA 
plots for isotropic data (Model 1, below) for g = 3 groups of 
identical size ( ni = n∕3 = 40 ). On the right (Fig. 1b), the 
same ni , g and p are used as in Fig. 1a but based on cor-
related morphometric variables from real data, which have 
been randomly divided into three groups so that there are 
no real group differences. Convex hulls for each group are 
shown in order to identify group memberships for each sam-
ple. Rather than showing the groups superimposed as one 
might expect, because there are no true differences, Fig. 1 
shows that bgPCA created an apparent clustering of the 
samples around their group means as first noticed by one of 
us (AC). The groups appear increasingly distinct from one 
another as the p/n ratio increases because larger numbers 
of variables are used. The effect is particularly evident for 
isotropic data and less pronounced but still present for cor-
related variables.

The sampling experiments, shown in Fig. 1, were based 
on two different models, one (Fig. 1a) being the same as 
model 1 (below) and the other (Fig. 1b) being similar to 
models 2–3 (below). In all instances, there are no true 

differences among the means of the groups and the groups 
have the same size. Thus, in more detail, the models used in 
the more extensive sampling experiments described below, 
were:

Model 1  A purely isotropic model with p independent 
random normally distributed variables, each 
with μ = 0 and σ = 1. This model was used for 
Figs. 1a, 2, and 4 below

Models 2&3  Random normally distributed variables with 
the same true covariance matrix as that of 
a real morphometric dataset, but with all 
means equal to zero:

Model 2  Procrustes shape coordinates from a sample 
of 45 adult yellow-bellied marmot (Marmota 
flaviventris) left hemimandibles. The original 
2D configuration consists of 10 landmarks 
and 50 semilandmarks, with the semiland-
marks slid in TPSRelw (Rohlf 2015) using 
the minimum Procrustes distance criterion. 
This data matrix was then used to compute 
the covariance matrix among the variables 
and its corresponding eigenvector matrix and 
eigenvalues. All eigenvectors that had posi-
tive eigenvalues were retained. These were 
then used as described below to generate 
random data matrices with the covariance 
matrix taken from the original dataset

Model 3  Procrustes shape coordinates from a sam-
ple of 171 adult male vervet monkey skulls, 
which are part of a larger published dataset 
(Cardini and Elton 2017). There were 86 3D 
skull landmarks (Cardini et al. 2007; Car-
dini and Elton 2017). As with Model 2, as 
described below, these were used to generate 
samples of random variables with the same 
true covariance matrix as in the original data

A sample, X, from a population with a given true covari-
ance matrix of Σ was generated using the following relation-
ship. � = ���1∕ 2 , where Y is an n × p matrix of independ-
ent random normally distributed numbers with zero means 
and unit variances, E is a matrix of the p, p-dimensional 
normalized eigenvectors of Σ, and Λ is the p × p diagonal 
matrix of its eigenvalues. A difference between sampling 
experiments using the isotropic model (Model 1) and all oth-
ers based on actual data (Models 2 and 3) is that the maxi-
mum number of eigenvectors that can be computed is limited 
to the number of variables in the original study because the 
method cannot construct more dimensions than are in the 
original data. For models 2 and 3, random samples of the 
rows (corresponding to the variables) of matrix E were used 
to generate variables. When the desired p was greater than 
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the original number of variables, variables were obtained by 
sampling the rows of E with replacement.

In the sampling experiments that follow, the data were sub-
jected to a bgPCA using code written by FJR in MATLAB 
and group separation was assessed by computing an index of 
overlap between pairs of samples. Let Oij be the proportion of 
individuals in a group i that are closer to the mean of group j. 
When the dispersions in two groups i and j do not overlap, Oij 
will be equal to 0 and will approach 0.5 for a pair of groups 
that overlap almost perfectly, because in that case a point is 
equally likely to be closest to either mean. The average, Ōij 

for all pairs of samples in a particular analysis is used as the 
measure of overlap. Initially, the amount of overlap between 
convex hulls was considered, but this has some unsuitable 
properties (such as rapid decrease in the probability of over-
lap as the number of dimensions increases even without the 
bgPCA transformation).

Fig. 1  bgPCA scatterplots 
(computed using Morpho – 
Schlager 2017—and drawn 
using Adegraphics—Siberchicot 
et al. 2017) showing the increas-
ing spurious separation of 
random groups as p/n increases: 
a normal multivariate isotropic 
(i.e., uncorrelated variables) 
model; b normal multivariate 
model with covarying variables 
(based on the covariance matrix 
of a set of adult male vervet 
cranial linear measurements)
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What Happens When n or g are Changed 
Relative to p?

Figure 2 summarizes the results of sampling experiments 
using Ōij as a measure of overlap and varying g, ni , and p. 
The figure uses ni rather than n because the total size is 
not relevant for the computation of average overlap as they 
depend on the relationships among pairs of samples and not 
the number of samples (and thus not on the total sample 
size). The sampling experiments used g = 3 and 6 groups, 
sample sizes of ni = 20 and 40, and a range of values for 
the number of dimensions, p. Figure 2 shows the expected 
outcome that overlap is larger when p is smaller, ni larger, 
and when there are more groups. The effect of p is strongest 
for the isotropic model, but the effect is clear for all three 
models. The companion paper also demonstrates the effect 
of relaxing the assumption of equal sample sizes.

Mathematical Interpretation: Why 
the Apparent Separation of Groups as p 
Increases?

Because the Ōij index seems difficult to work with analyti-
cally, an alternative index inspired by the partitioning of 
sums of squares in an anova or MANOVA was investigated 
for the simple null model (Model 1) used above, i.e., sam-
ples of independent normally distributed random variables 
from the same population. As an approximation, covariances 
among the variables are ignored (as they should be mini-
mal for isotropic data) and the group differences described 

in terms of the traces (sums of the diagonal elements) of 
the usual within and among-groups sums of squares matri-
ces, rather than the usual multivariate test statistics such 
as Wilks’ Lambda or Lawley–Hotelling U statistics, which 
require the computation of the matrix inversion and deter-
minants of the sums of squares matrices.

The reader should carefully note that all expressions in 
Table 2 are based just on the g − 1-dimensional space of the 
bgPCA transformed data. Thus, the within-group sums of 
squares here only refers to that part of total within group 
sums of squares expected in the g − 1-dimensional subspace. 
This table is not intended for and should never be used for 
statistical testing (unlike that of a standard MANOVA, 
which would use the variation in the p-dimensional space 
of the original variables even if resampling procedures are 
used), and is specifically designed to produce an explanation 
for the apparent differences between groups such as shown 
Fig. 1a.

As above, let A represent the among-groups SSCP matrix 
based on all p variables and E its matrix of normalized 
eigenvectors. After projecting the data for all samples onto 
these vectors, one has a bgPCA transformed data matrix 
��

= �� . At most, only the first g-1 columns of E and thus 
�′ are nonzero, so we will use only the first g-1 columns. Let 
�′ be the among-groups SSCP matrix based on this trans-
formed data matrix. The sum of the eigenvalues of A and �′ 
are equal because all of the variation among g means is cap-
tured in a g-1-dimensional space. Similarly, one can define 
W as the within-groups SSCP matrix using the original p 
variables and �′ as the equivalent matrix using the projec-
tions of the data onto E. Note that its trace tr

(

�′

)

 will, in 

Fig. 2  Plots of Ōij (average 
overlap between groups) from 
sampling experiments for three 
models: Mod1 (isotropic), 
Mod2 (Marmot Procrustes 
shape coordinates), and Mod3 
(Vervet Procrustes shape 
coordinates), using g = 3 or 6 
groups and ni = 20 and 40. In 
all models, there is less overlap 
when there are fewer groups and 
smaller ni as p increases
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general, be less than that of W because only within-group 
variation in the g − 1 dimensions in which the means differ 
is preserved by the projection onto the g − 1-dimensional 
bgPCA space. The W matrix has n-g degrees of freedom 
and thus would require min(n − g, p) dimensions to account 
for all the within-group variation.

Consider sampling experiments, such as described in the 
prior section for Model 1, where ni specimens are in each 
sample (assuming equal sample size, so that n = gni ) are 
drawn from the same p-dimensional multivariate normal 
distribution, that has a mean vector � = �p (a vector of p 
zeroes) and a covariance matrix of � = �p (a p × p identity 
matrix). The true W matrix would then be (n − g)�p with 
tr(�) = p(n − g) . The true among groups variance com-
ponent matrix, �A , is �p because there are no true differ-
ences among the population means. However, due to sam-
pling error the expected among-groups covariance matrix is 
� + ni�A . For the transformed data, the trace of the observed 
among-groups SSCP matrix is unchanged by the transfor-
mation because all of the variation among g means will 
be accounted for by the g − 1 eigenvectors. However, the 
trace of the expected within-groups SSCP matrix will be 
reduced by the fraction (g − 1)∕p assuming the remaining 
n–g dimensions of within-group variation are just a random 
sample of the total variation (reasonable here because, as 
mentioned above, there are no actual differences). These 
relations are conveniently summarized in the format of a 
MANOVA table (Table 2), but just using the trace of each 
matrix divided by g − 1 as a summary of the relative amounts 
of within and among samples variation captured in the 
bgPCA space only.

Note that the Fiso ratio defined in Table 2 (ratio of traces 
of among to within group MS using only the g − 1 bgPCs) 
is analogous to an F-ratio and is a function of just p and g. 

The subscript “iso” is to remind the reader that it assumes 
isotropic data and is not the usual F employed for statisti-
cal testing (that, as mentioned, should not be done using 
the equations of Table 2). Likewise, the “iso” in the sub-
script of R2

iso
 is to remind the reader that this is not the 

usual squared multiple correlation coefficient, because 
this statistic, as it is computed here using only the bgPCA 
variance, is only aimed at assessing the amount of appar-
ent group separation. Thus, a value near zero would imply 
that groups account for little of the total variation and val-
ues near 1 imply that most of the variation is between 
groups rather than within groups. Figure 3 shows plots 
of R2

iso
= p

/(

p + g
(

ni − 1
))

 as a function of ni and p for 
g = 3 and 6 that illustrate how R2

iso
 increases as a func-

tion of p (suggesting more distortion with more variables), 
but decreases as a function of ni (indicating less separa-
tion of groups with larger samples). For a given p and 
ni , if g is smaller, and therefore also n = gni is smaller, 
the denominator in the R2

iso
 formula is reduced and R2

iso
 

becomes larger, which is why the R2

iso
 surfaces in Fig. 3 

are higher for g = 3 than for g = 6. This is because adding 
more groups increases the dimensionality of the bgPCA 
space and thus should account for a larger proportion of 
the within-group variation.

The reader should note that larger R2

iso
 implies more sepa-

ration and thus less overlap as measured by Ōij . Figure 4 
shows a scatterplot Ōij as a function of R2

iso
 using the data 

from Fig. 2. The slope of the relationship differs for data 
from the different models. The slope is less steep for the 
models with correlated variables. Within each dataset the 
scatter corresponds to the effects of different values of g and 
ni . The R2

iso
 statistic is somewhat ad hoc, but Fig. 4 shows 

that it is a useful predictor of overlap for isotropic data.

Table 2  MANOVA-style table summarizing expectations after a 
bgPCA transformation with g equal-sized samples of size ni all drawn 
from the same p-dimensional normally distributed population with 

mean � = �p (a vector of p zeros) and covariance matrix � = �p (a 
p × p identity matrix)

Because the table assumes equal-sized samples, n = gni. The expressions for the traces of the SS matrices are given along with their MS after 
division by degrees of freedom. The Fiso ratio is also given in analogy to the usual F ratio and the proportion of the total variation accounted for 
by differences among means, R2

iso
 , is also given. Note that these are not the usual F and R2 coefficients from an anova or a multiple regression 

analysis—they are expected values assuming the isotropic model, unlike a standard MANOVA where one estimates between-group variance 
relative to within-group using all original variables, here computations are only within the g-1 dimensions of the bgPCA transformed data and 
cannot be used for statistical testing. This means that the within-group component shown in the table only refers to the residual variance left 
unexplained by groups in the g-1 dimensional bgPCA space (i.e., the within-group variation one sees in the scatterplots such as in Fig. 1)

Source of variation df Trace SS Trace MS Fiso ratio

Among g − 1 tr
(

��

)

= p(g − 1) p p∕(g − 1)

Within g
(

ni − 1
)

tr
(

��

)

=

(g−1)

p
pg

(

ni − 1
)

= (g − 1)g
(

ni − 1
)

g − 1

Total n − 1 tr
(

��

+��

)

= (g − 1)p + (g − 1)g
(

ni − 1
)

= (g − 1)
(

p + g
(

ni − 1
))

(

p + g
(

ni − 1
))/(

gni − 1
)

R2

iso
p(g−1)

(g−1)(p+g(ni−1))
=

p

p+g(ni−1)
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The expressions in Table 2 are compared in Table 3 
with the results from two sampling experiments. The 
example in the upper half is for the case where there are 
fewer variables but larger sample sizes in each group. The 
second for the case where the number of variables is larger 
and sample sizes are smaller. The values are averages over 
10,000 replications and show the close agreement with the 

expected values (given in parentheses) computed using the 
formulas from Table 2.

The Effect of Covariation Among Variables

The isotropic Model 1, used in the previous section, is based 
on the unrealistic assumption that the variables are independ-
ent and have equal variances. Intuitively, one might expect 
that data with highly correlated variables might be less 
prone to overestimating of the degree of group separation, 
and indeed the sampling experiments presented in Figs. 1b, 
2 and 4 do show less spurious separation for data with cor-
related variables (i.e., the models using vervet and marmot 
covariance matrices). If, as an extreme case, because of a 
strong correlation between variables, all of the variation in 
a dataset could be accounted for with just g − 1 dimensions, 
then all of the within-group variation would also be captured 
by the g − 1 among-groups dimensions of the bgPCA and no 
information would be lost. The R2

iso
 statistic described above 

should then be close to 0 and Ōij should measure the correct 
amount of overlap between groups, which should be close 
to 0.5 if there are no real groups).

In order to investigate the effect of covariation using sam-
pling experiments, one must specify a model for the pattern 
and strengths of the correlations. The selection of a model 
can be simplified because one can rotate the data matrix 
to its principal axes, so that one need only consider mod-
els that differ in how the eigenvalues decrease as a func-
tion of their number. For independent variables they would 
decrease somewhat according to the Marchenko–Pastur 
formula (Bookstein 2017), but for highly correlated vari-
ables they would decrease more rapidly. A very simple 
model is that the logs of the eigenvalues, ln

(

�i

)

 , decrease 
linearly as a function of the log of their number, that is, 
ln
(

�i

)

= a − b ln (i) or as �i = e−bi , where a is a constant 

Fig. 3  Expected relationship between R2

iso
 and ni and p. a For g = 3. b For g = 6 groups. Note that the height of the surface is lower when sample 

sizes are larger, more groups, and fewer variables (see Table 2)

Fig. 4  A scatterplot of Ōij (average overlap between groups) against 
R2

iso
 using the results of the sampling experiment shown in Fig.  2. 

Within each dataset it shows a tight negative relationship between 
Ōij and R2

iso
 with a shallower slope for datasets that have more highly 

correlated variables. Dotted lines connect points for g = 3 groups and 
dashed lines for g = 6 groups. For isotropic data R2

iso
 is smaller when 

there are more groups. For each of the three models, sampling experi-
ments with smaller g and larger p/n tend to be lower and to the right 
(spuriously less overlap and larger R2

iso). Curves for different sample 
sizes are plotted but indistinguishable
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greater than 0 (ignored here) and b determines how rap-
idly the eigenvalues decrease. This approach also models 
the effect of unequal variances for the different variables. 
More realistic models with a factor structure could have 
been investigated, but this model seems sufficient to illus-
trate the effect of different proportions of the variance being 
accounted for by the first g − 1 dimensions. Figure 5a shows 
examples with b varied from 0 to 1. Larger values of b yield 

increasingly rapid declines of successive eigenvalues, which 
imply stronger correlations among variables.

Figure 5b shows the results of, sampling experiments 
with g = 3 groups of ni = 20 observations each, with p rang-
ing from 3 to 80, and each replicated 1000 times, for the b 
values used in Fig. 5a. The effect of increasing correlations 
among the variables was to reduce the size of the expected 
R2

iso
 statistic implying a larger Ōij and thus less spurious 

Table 3  Two sampling experiments showing averages based on 10,000 replicates of the null model with all samples drawn from the same inde-
pendent and normally distributed population with mean 0 and variance 1

Expected values based on Table 2 are given in parentheses. The upper table is an example with smaller p and large sample sizes. The lower table 
has a larger p and smaller sample sizes. As with Table 2, all computations are done using only using the g − 1 = 2 dimensions from a bgPCA. 
Note that, unlike the formulas in Table 1, the traces are divided by g − 1 to give an average diagonal element

p = 20, g = 3, ni = 40

Source of variation df Trace SS/(g − 1) Trace MS/(g − 1) Fiso Ratio

Among 2 20.0380 (20) 10.0190 (10) 10.1124 (10)
Within 117 116.9471 (117) 0.9995 (1)
Total 59 136.9851 (137) 1.1511 (1.1513)
R2

iso
 = 0.1460 (0.1460)

p = 80, g = 3, ni = 10

Source of variation df Trace SS/(g − 1) Trace MS/(g − 1) Fiso ratio

Among 2 79.9698 (80) 39.9849 (40) 41.4724 (40)
Within 27 27.0319 (27) 1.0012 (1)
Total 29 107.0016 (107) 3.6897 (3.6897)
R2

iso
 = 0.7469 (0.7477)

Fig. 5  a Plot showing the effect of varying b the rate of decrease of 
the eigenvalues (λi) for a hypothetical covariance matrix with p = 80 
variables. The curve for b = 1 is similar to those usually observed in 
morphometric data. b Plot showing R2

iso
 values for the results of sam-

pling experiments for simulated data based on the models shown in 
a. The slope b was varied from 0 to 1 to increase the level of cor-
relation among the variables. Experiments were performed using 
1000 replicates for g = 3 groups of size ni= 20. The solid line shows 

the expected relationship, R2

iso
= p

/(

p + g
(

ni − 1
))

 , for uncorrelated 
data that closely matches the results from this sampling experiment. 
This plot shows that for the bgPCA method the proportion of the total 
variance accounted for by the variance among groups is expected to 
increase as the number of variables increases but less so as the overall 
level of correlation among the variables increases. For large ni , the 
slope of the curve would approach the abscissa if the correlations 
were such that only the first g-1 eigenvalues were greater than 0
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clustering of points around the means. Many morphomet-
ric datasets follow patterns like that shown for b equal to 1 
or even larger values of b. For instance, the curve for the 
marmot mandible dataset (Model 2) would be even more 
extreme than the curve shown for b = 1 The curve for the 
vervet data (Model 3) is less extreme. Thus, it is not sur-
prising that Fig. 1 shows that for data with highly correlated 
variables there will be much less spurious group separation 
than that found for the isotropic model (Model 1).

Discussion

The primary focus of the present paper is on the reasons for 
the apparent clustering of points around the means of arbi-
trary groups and predicting the magnitude of this distorted 
summary of group differences. In contrast, the companion 
paper, Bookstein (2019), examines the effect of large p/n 
ratios on the bgPCA method in relationship to the predic-
tions of the Marchenko-Pastur theorem as described in 
Bookstein (2017), along with two other aspects of the prob-
lem: the role of variations in sample sizes of the groups, 
and the effect of correlations among the variables based on 
a variety of factor models. It also suggests ways of evaluat-
ing the impact of these effects when analyzing actual data 
sets. We use sampling experiments and examples from our 
own field, morphometrics, i.e. the quantitative study of bio-
logical forms (Blackith and Reyment 1971, Bookstein 1991, 
2018). However, the issue and its implications are general 
and apply similarly to multivariate data used to compare 
groups in other fields such as genetics.

In our analyses we found that bgPCA ordinations may 
tend to exaggerate differences between groups relative to 
the amount of within-group variation. In extreme cases, with 
few groups, small samples and very many variables, bgPCA 
may consistently show perfect separation of the groups even 
when there are no true differences among group means. This 
is in part because the g − 1 dimensions of a bgPCA capture 
the entire amount of variation among the g group means, 
but only a fraction of the variation within each group when 
p > g − 1. Thus, most of the variance within groups is lost, 
when p is much larger than g − 1. With small samples, the 
groups may appear quite distinct, but any apparent group 
differences will largely be an artefact of very large sam-
pling error (Cardini and Elton 2007; Cardini et al. 2015). 
This is because any inaccuracies in group mean estimates 
are completely captured by the bgPCs, as if they were true 
differences, and used to define the g − 1-dimensional space.

Not surprisingly, one can also see in Fig. 2 that, with 
the same p and g, larger samples overlap more than smaller 
samples. Indeed, whether there are true differences or not, 
the range of variation within a sample is expected to increase 

as its sample size increases and thus there is a greater chance 
of overlapping.

In summary, the distortion showing a consistent spuri-
ous degree of separation between groups is not a promising 
property for a method that was proposed to analyze data 
with large numbers of variables and small samples, but the 
picture is complex, because the gravity of the problem, as 
nicely exemplified by Fig. 4, varies sharply from case to 
case. Indeed, the severity of the distortion depends on both 
g and ni relative to p, as well as on how strongly variables 
covary and whether true differences are indeed present (a 
case which we did not explore in our simulations). This is 
not unlike what Kovarovic et al. (2011) found in a study of 
discriminant analysis (DA). They remarked that (p. 3012): 
“increasing the number of predictors may increase … group 
separation in scatterplots of non-cross-validated DFAs, even 
if those predictors are random numbers which do not add 
any relevant information on group differences”. However, 
with bgPCA, this well-known problem of DA may be even 
more serious, because in bgPCA there is no theoretical limit 
to the number of variables that can be used to summarize 
groups and thus p can be much larger than n and g, as in 
many publications (Table 1).

Among the factors that might reduce the distortion, or 
even make it negligible, covariance is one of the most inter-
esting, as it is expected in most biological datasets. The rea-
son why covariance mitigates against the problem of bgPCA 
spurious group separation is that, with correlated variables, 
the number of independent dimensions is effectively reduced 
and, therefore, operationally, it is as if the p

/

g
(

ni − 1
)

 ratio 
was smaller. The degree to which it is smaller depends on 
the strength of the covariances. Yet, the problem is clearly 
still there, as both separation and R2

iso
 still increase with p. 

Thus, the main conclusion is the same: even with covari-
ances, with a large p

/

g
(

ni − 1
)

 ratio, not only might one 
see groups that appear overly separated, as in our sampling 
experiments, but also, if there are true groups, the differ-
ences will be inflated by a case-specific degree, which is 
difficult to predict a priori.

There are many reasons to expect strong covariances in 
studies using Procrustes-based GM. Some covariance is 
introduced by the fact that, for 2D data, the superimposition 
reduces the 2q-dimensional variation of the raw coordinates 
(with q being the number of landmarks) to the 2q–4 dimen-
sions of shape space (Rohlf and Slice, 1990). In addition, 
covariation will depend on factors such as the number and 
distribution of the anatomical points. For example, land-
marks that are very close together and closely spaced sem-
ilandmarks are expected to be highly correlated (Cardini 
2018). Thus, the marmot data includes slid semilandmarks 
and 90% of the total variance in these data can be accounted 
for by just the first 10 PCs (out of the 44 possible because 
n = 45 and p = 120). By contrast, the vervet data requires 56 
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PCs (out of the 170 possible because n = 171 and p = 251) to 
account for the same percentage of total variance. Figure 2 
shows that the curves for the marmot data are higher (more 
overlap and thus less false clustering) than the curves for the 
vervet data (less overlap and thus stronger false separation of 
the groups). Note that these results do not suggest that one 
should purposely add highly correlated variables to reduce 
the distortion expected in the results of a bgPCA. Adding 
perfectly correlated variables to an existing dataset will not 
change the effective dimensionality of a dataset and thus 
will not alter the degree of false clustering expected in the 
results of a bgPCA.

On the other hand, in datasets where strong correla-
tions among variables are expected, such as is common 
in GM, where additional covariance is introduced by the 
Procrustes superimposition itself (Rohlf and Slice, 1990) 
and many semilandmarks are used (because physically 
close semilandmarks tend to covary strongly), one might 
hope to circumvent some of the issues raised in this paper 
by reducing the number of variables used in the bgPCA. 
Indeed, in GM studies, it is often the case that distance 
matrices among specimens assessed using a few landmarks 
are highly correlated with those derived from the full set of 
landmarks plus many semilandmarks (Skinner et al. 2009; 
Ferretti et al. 2013; Watanabe 2018; Galimberti et al. 2019). 
This can be assessed formally, for instance, through matrix 
correlations where testing whether full (all landmarks and 
semilandmarks) and reduced (a subset of the full configu-
ration) data matrices are highly correlated. Thus, smaller 
ratios of p

/

g
(

ni − 1
)

 can be achieved at the outset, simply 
by limiting the number of variables used in the study. If 
this is done, the resulting visualizations of shape differences 
among specimens will be less detailed, because fewer land-
marks are used, but results of bgPCA will be less likely to 
be misleading.

It is important to bear in mind that scatterplots are not 
the only tool for assessing group differences. Results from 
a bgPCA should be complemented by tests of significance, 
as well as by cross-validated classifications of groups (e.g., 
Seetah et al. 2012). However, they must be performed using 
the full p-dimensional space (unlike the statistics in the ‘ad-
hoc’ MANOVA Tables 2 and 3, using only bgPCs with the 
specific aim of assessing the magnitude of spurious group 
differences in the bgPCA sub-space). With small samples, 
and/or negligible group separation in the full data space, 
group differences using all p variables will be non-signif-
icant, thus alerting the user that any appearance of group 
separation in bgPCA scatterplots should be regarded with 
extreme suspicion. Also, as one of the main aims in the 
formulation of bgPCA by Culhane et al. 2002 was classi-
fication, the results should be checked by cross-validating 
bgPCAs in the full data space. Finding a cross-validated 
accuracy only negligibly different from that expected by 

chance should warn users about likely distortions in the 
scatterplots.

In conclusion, big datasets are increasingly common, but 
having very many variables does not ‘counterbalance’ the 
effect of small n; it could make it worse, as shown here and 
in Bookstein (2019). Thus, we show that in attempting to 
assess group distinctiveness using bgPCA there is a poten-
tial trap, in that spurious apparent groupings may emerge in 
scatterplots, especially when the subspace spanned by the 
g-1 bgPCs does not adequately reflect within group varia-
tion, as is increasingly likely to happen when p/n is large 
and g is small. The appearance of spurious groups in bgPCA 
offers a good reminder of how a large number of descrip-
tors might bring problems as well as benefits, with the 
problems sometimes potentially outweighing the benefits. 
Indeed, as with other methods (Hair et al. 2009; Bookstein 
2017), bgPCA provides another example of the potential 
perils of high dimensional data, and of the possible misuse 
of techniques and misinterpretation of findings, when the 
basic issues of sampling error and data dimensionality are 
not clearly borne in mind.
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