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Abstract
Studies of morphological integration and modularity are a hot topic in evolutionary developmental biology. Geometric mor-
phometrics using Procrustes methods offers powerful tools to quantitatively investigate morphological variation and, within 
this methodological framework, a number of different methods has been put forward to test if different regions within an 
anatomical structure behave like modules or, vice versa, are highly integrated and covary strongly. Although some explora-
tory techniques do not require a priori modules, commonly modules are specified in advance based on prior knowledge. 
Once this is done, most of the methods can be applied either by subdividing modules and performing separate Procrustes 
alignments or by splitting shape coordinates of anatomical landmarks into modules after a common superimposition. This 
second approach is particularly interesting because, contrary to completely separate blocks analyses, it preserves informa-
tion on relative size and position of the putative modules. However, it also violates one of the fundamental assumptions on 
which Procrustes methods are based, which is that one should not analyse or interpret subsets of landmarks from a common 
superimposition, because the choice of that superimposition is purely based on statistical convenience (although with sound 
theoretical foundations) and not on a biological model of variance and covariance. In this study, I offer a first investigation 
of the effects of testing integration and modularity within a configuration of commonly superimposed landmarks using 
some of the most widely employed statistical methods available to this aim. When applied to simulated shapes with random 
non-modular isotropic variation, standard methods frequently recovered significant but arbitrary patterns of integration and 
modularity. Re-superimposing landmarks within each module, before testing integration or modularity, generally removes 
this artifact. The study, although preliminary and exploratory in nature, raises an important issue and indicates an avenue 
for future research. It also suggests that great caution should be exercised in the application and interpretation of findings 
from analyses of modularity and integration using Procrustes shape data, and that issues might be even more serious using 
some of the most common methods for handling the increasing popular semilandmark data used to analyse 2D outlines and 
3D surfaces.
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Modularity, Integration, and the ‘Procrustes 
Paradigm’ in Geometric Morphometrics

The analysis of modularity and integration using geomet-
ric morphometrics methods based on Procrustes shape 
coordinates has become increasing popular in evolutionary 
developmental biology (Mitteroecker and Bookstein 2007; 
Klingenberg 2009, 2013a, 2014). Simplifying, the main 
question asked in this type of studies is whether morphology 
varies during ontogeny and evolution as a single highly inte-
grated structure or as an ensemble of more or less loosely 
correlated subunits (called modules); in this second case, 
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the covariation within parts of the module is expected to be 
higher than among parts of different modules. For instance, 
one might assess the strength of the covariation between 
the face, vault and cranial base during cranial ontogeny in 
humans (Bookstein et al. 2003): if low, that means that these 
anatomical regions might change relatively independently 
(of course, within reasonable limits) and thus behave like 
‘modules’; if high, it implies that cranial shape varies as 
whole in a highly coordinated fashion, so that changes in one 
region are accompanied by modifications in all the others, 
and, in theory, one can predict changes in the face or vault 
by knowing what happens in the cranial base or vice versa 
(Klingenberg 2013a).

Landmark-based geometric morphometrics employs 
Cartesian coordinates of corresponding anatomical points, 
called landmarks, to quantify size and shape (or form, when 
size and shape are put back together—Mitteroecker et al. 
2013) of different individuals, ontogenetic stages, species 
etc. (Adams et  al. 2004, 2013; Cardini 2013). Shape is 
obtained from the original raw coordinates by standardizing 
size and minimizing translational and rotational differences 
in a sample. This is generally achieved using a generalized 
Procrustes analysis (GPA—Rohlf and Slice 1990), which is 
a least square procedure that, after dividing the raw coordi-
nates by their centroid size, centers all observations at their 
centroids and iteratively rotates them to minimize the sum 
of squared distances to the sample mean.

The Procrustes superimposition, however, is not the only 
method to obtain shape coordinates from Cartesian coor-
dinates of landmarks. Also, a GPA is clearly not based on 
any biological model of developmental and evolutionary 
variation, as it is simply a least square approach like, for 
instance, that used in an ordinary linear regression to find 
an approximation for the relationship between a predictor 
and a dependent variable. To make a crude analogy using 
molecular biology as an example, one can think of the Pro-
crustes superimposition as akin to devising an alignment of 
DNA sequences that simply maximizes the correspondence 
of all bases by weighting them all equally. However, this is 
not what molecular biologists normally do, because we have 
a good understanding of molecular evolution and know that 
changes in certain positions are more likely to occur (e.g., 
the third base of a codon), deletion or insertion may be more 
frequent in less conserved genes, some DNA regions evolve 
more slowly than others etc. Thus, sophisticated alignments 
can be tried, which take our knowledge of molecular evo-
lution into account (Felsenstein 2004, chap. 29). For mor-
phology, in contrast, we do not have the same type of deep 
understanding as for DNA changes, and we have therefore 
adopted the ‘Procrustes paradigm’ (Adams et al. 2013) to 
minimize positional differences, because of its desirable 
statistical properties and generally better performance com-
pared to alternative methods (Rohlf 2000a, b, 2003; Adams 

et al. 2004). It is thus important to always bear in mind 
that Procrustes, by far the most used method in landmark-
based geometric morphometrics, is a very convenient and 
mathematically well defined (Rohlf 2000a, b, 2003) but 
biologically arbitrary choice to derive shape coordinates. 
This is true also for other superimposition methods, such as 
Bookstein’s baseline or resistant fit (Rohlf and Slice 1990; 
Bookstein 1991). Indeed, most of the issues raised by this 
study apply to those methods as well. In fact, these issues 
do not detract from the demonstrated merits of Procrustes, 
that led to the current paradigm in geometric morphometrics 
(Adams et al. 2013). However, raising them, although in 
the context of a set of very specific types of analyses, might 
help to recall some of its limitations, that have largely been 
acknowledged since the early days of geometric morphomet-
rics by the leading figures of this field, as nicely reviewed 
by O’Higgins (2000).

Approaches to Modularity and Integration 
Using Procrustes Shape Data

In studies of modularity and integration one has a battery of 
potential tests that can be employed on Procrustes shape data 
(Mitteroecker and Bookstein 2007; Márquez 2008; Klingen-
berg 2009, 2013a; Goswami and Polly 2010; Fruciano et al. 
2013; Adams 2016; Adams and Collyer 2016; Goswami 
and Finarelli 2016). However, as nicely reviewed by Baab 
(2013), and in more detail by Klingenberg (2009, 2013a), 
when a priori modules are part of a single structure, such as, 
for instance, the cranium, before any test is done, one has 
first to take a decision between two different approaches. 
The first is sometimes (Klingenberg 2011) called the ‘within 
a configuration’ approach. In this case, a morphometrician 
does a single Procrustes superimposition including all land-
marks, obtains a unique set of shape coordinates and then 
splits these shape coordinates into modules made of differ-
ent subsets of landmarks. Alternatively, using the ‘separate 
blocks’ approach (Klingenberg 2011), one can start with the 
raw data (no superimposition), split them into modules and 
then perform separate Procrustes superimpositions for each 
module.

The difference between the two approaches is substantial, 
because, in the first case, the relative size and positional dif-
ferences of all modules are preserved, with all data being in 
the same common shape space (Bookstein et al. 2003; Klin-
genberg 2009; Baab 2013). In the second approach, in con-
trast, each module is in its own separate and unique shape 
space, while the information on the relative size and position 
of the modules is discarded. The initial decision of which 
approach to follow has, therefore, potentially profound influ-
ences on results, and one or the other strategy might be more 
appropriate depending on the specific structure and scientific 
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question (Baab 2013; Klingenberg 2009, 2013a). Never-
theless, it has recently been argued in MORMPHET, the 
email discussion list of morphometricians, that the within 
a configuration method might lead to more interpretable 
results “as with a single GPA one is able to characterize 
covariation patterns among sets of variables whose spatial 
relationships have been retained throughout the analysis” 
(Dean C. Adams, on January 24th 2018). Indeed, as men-
tioned, using separate blocks, the knowledge about relative 
sizes and orientation of modules is lost, or only partially 
preserved if they contain at least a few common landmarks 
(Klingenberg 2009), thus potentially removing part of their 
true covariance.

Why Procrustes Shape Data Are ‘Special’

In general, Procrustes shape variables are analysed using 
multivariate methods, many of which have been borrowed 
from traditional morphometrics (Neff and Marcus 1980; 
Marcus 1990). However, Procrustes shape coordinates are 
‘special’ because, as anticipated in the previous section, the 
choice of the method to superimpose specimens and obtain 
shape is biologically arbitrary (O’Higgins 2000). In practice, 
this means, for instance, that the coefficients of a principal 
component analysis (PCA), or those of a multivariate linear 
regression of shape onto a predictor, cannot be interpreted as 
in traditional morphometrics, as they depend on the choice 
of the superimposition. For the same reason, Procrustes 
shape variables, such as shape coordinates or partial warps 
(Bookstein 1991), cannot be analysed one at a time (Rohlf 
1998). Similarly, patterns of variation of single landmarks 
from a larger configuration should not be analysed or inter-
preted after a common superimposition.

In contrast, as long as the full set of multivariate shape 
variables (all Procrustes shape coordinates or partial warps) 
are examined, and results, including the visualization, are 
interpreted by integrating findings over the whole set of 
landmarks in a configuration, the outcome is correct and 
generally robust to the choice of the superimposition. This 
is exemplified in Fig. 1 (reproduced from Viscosi and Car-
dini 2011) using simple triangles. With triangles, one can 
visualize the overall shape similarity relationships using 
a scatterplot of the first two PCs, that together summarize 
100% of variance. Regardless of whether shape coordinates 
are obtained using Procrustes or a different method, such 
as Bookstein’s baseline (1991), which for 2D data rescales, 
translates and rotates all specimens so that they overlap in 
two points (the ‘baseline’), the pattern suggested by the 
scatterplots, as well as the visualization using the thin plate 
spline (TPS—Bookstein 1991; Klingenberg 2013b) trans-
formation grids, are virtually identical in both cases. In con-
trast, PC loadings and displacement vectors (which represent 

shape differences as ‘displacements’ of landmarks in a target 
shape relative to a reference, such as the sample mean) are 
radically different using one or the other superimposition 
method.

Can Procrustes Introduce Covariance That 
May Lead to Spurious Results in Analyses 
of Integration and Modularity Within 
a Structure?

The aim of this study is to explore the consequences of 
the Procrustes superimposition in analyses of integration 
and modularity, with a main focus on the popular within 
a configuration approach. This approach might be particu-
larly problematic, because it makes use of subsets of points 
after a common superimposition. To frame this issue in a 
less abstract manner, one can make a comparison with the 
potentially misleading interpretations of displacement vec-
tors in the visualization of shape differences. In this sense, 
breaking a set of Procrustes shape coordinates into mutually 
exclusive subsets of landmarks might be seen as analogous 
to picking up one displacement vector (or a few) from a 
bigger configuration and interpreting its(/their) direction as 
meaningful on its(/their) own, instead of more accurately 
relating it to the directions of all the other vectors in the 
entire configuration. For instance, the displacement vector of 
landmark three, with data superimposed using Bookstein’s 
baseline, as shown in the upper portion of Fig. 1, indicates 
a sharp upward and backward movement of that specific 
point. In terms of the magnitude of change, that vector looks 
approximately three times longer than the same vector after 
a Procrustes superimposition (lower half of the figure). In 
fact, looking at the TPS grids, or mentally joining the tips of 
the vectors with lines to form a triangle, clearly shows that 
the real change is in both cases a transformation from an 
equilateral triangle to an almost right triangle.

Thus, in the example using displacement vectors, the 
appearance of a difference in patterns, after one or the other 
type of superimposition, was purely an artifact of splitting a 
set of jointly superimposed points into subsets of landmarks. 
The problem may be similar adopting the within a configura-
tion approach in studies of integration and modularity, and 
thus lead to potentially spurious findings. In contrast, this 
should not happen using the separate blocks approach on 
mutually exclusive modules within a structure, as each ‘mod-
ule’ is re-superimposed, thus avoiding the between module 
covariance, which could otherwise create an appearance of 
integration. However, one might still wonder whether the 
separate blocks approach might in fact lead to the opposite 
issue: spuriously higher covariance within modules relative 
to that between them, and thus an artifactually higher degree 
of modularity. This is a potential issue that, although briefly 
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discussed, will be not investigated in this paper and is left 
as an open question for future research.

Simulated Examples

To explore the issue outlined in the previous section, data 
were created by adding isotropic normally distributed ran-
dom variation (henceforth called simply ‘isotropic noise’, 
for brevity) around each landmark of a configuration. Since 
the original variation in the raw data is random, and simi-
lar in magnitude across all landmarks in that configura-
tion, any strong pattern of variance–covariance structure in 
shape is purely the result of the Procrustes superimposition. 
Thus, also any appearance of integration or modularity will 
be an artifact of the Procrustes alignment used to extract 
shape from the original Cartesian coordinates of the raw 
landmarks.

2D data, and just two arbitrary ‘modules’, were used for 
simplicity in all analyses. However, to investigate a few 
different scenarios, several different configurations were 
employed, and sample size (N) and the amount of isotropic 
noise was varied across them. The number of points in each 
module ranged from 50:50 to ca. 3:4. Half of the datasets 
employed simple geometric figures (e.g., an hexagon or a 
circle), and the other half used configurations from previous 
studies on marmot mandibles (e.g., Cardini 2003; Cardini 
and Tongiorgi 2003), as examples of more complex shapes 
and less evenly distributed landmarks.

In two datasets (the circle example and one of the man-
dible datasets), semilandmarks were included together 
with conventional landmarks. Semilandmarks are points 
used to discretize curves or surfaces, which lack prop-
erly corresponding landmarks (Bookstein 1997; Gunz 
and Mitteroecker 2013). The semilandmarks of these two 

(a1) Bookstein baseline
superimposition

Procrustes
superimposition

raw
data

PCA of shape coordinates shape visualization

(a2)

(a3)

(a4)

(b1)

(b2)

(b3)

(b4)

1 2

3

Fig. 1  Example of the effect of different superimpositions on the 
interpretation of results (reprinted from Fig. 9 of Viscosi and Cardini 
2011, under an open access license: http://journ als.plos.org/ploso ne/s/
licen ses-and-copyr ight): PCAs of a sample of ten random triangles 
(raw data) superimposed either using Bookstein baseline method (a1 
with landmarks 1–2 as a baseline) or Procrustes (b1). Biplots (a2, b2) 

show the scatterplot of the specimens (filled circles) and the loadings 
(dotted lines) employed to weight the matrix of shape coordinates 
(X1, Y1, etc.). As an example, shape variation at the positive extreme 
of PC1 is visualized (with a four times magnification) using either 
displacement vectors (a3, b3) or TPS grids (a4, b4)

http://journals.plos.org/plosone/s/licenses-and-copyright
http://journals.plos.org/plosone/s/licenses-and-copyright
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configurations were either treated as conventional ‘fixed’ 
landmarks or slid in TPSRelw (Rohlf 2015). Sliding was 
achieved by minimizing either Procrustes shape distances 
(PRD) or bending energy (BEN) (Bookstein 1997) with 
five iterations. Sliding semilandmarks during the super-
imposition is often suggested as a way to mathematically 
improve the correspondence of these points across spec-
imens in a sample. When data were analysed using the 
separate blocks approach, in which a configuration is sub-
divided and each subset of landmarks (i.e., the arbitrary 
module) undergoes another superimposition, slid sem-
ilandmarks were treated like normal landmarks, without 
sliding them again within modules. This was done to keep 
the analysis simple, but also because it is often said (e.g., 
Mitteroecker and Bookstein 2008) that, after sliding, these 
points can be treated as conventional landmarks.

Configurations and modules are shown in Fig. 2. The 
information on the number of landmarks and semiland-
marks, N, the method used for sliding semilandmarks (if 
present), the tangent space approximation and the range 
of shape variation is provided in Table 1. To put the mag-
nitude of shape variation in each dataset on a crude scale 
for comparisons, the mean pairwise PRD was divided 
by the largest possible PRD in a Procrustes shape space, 
which is half π. In TPSTri (Rohlf 2015), a software built 
to examine the properties of shape spaces, and able to 
simulate small, medium or large shape variation in Pro-
crustes data using random triangles, variance is considered 
small, medium and large, when the mean PRD is respec-
tively about 1%, 6% and 11% of π/2. Although arbitrary, 
this same convention was used here to approximately rank 
the variance in the simulated data of Table 1. This means 
that, for instance, the hexagon dataset had a large variance 
(ca. 10% of π/2), whereas the mandibles corresponded to 
small (ca. 2–3% of π/2) or medium (ca. 5% of π/2) vari-
ation depending on the dataset. For the nine landmarks 
mandible configurations, this type of comparison can be 
made more meaningful by comparing variation in simu-
lated data with that from previous studies of real samples 
(Cardini 2003; Nagorsen and Cardini 2009). This sug-
gests that the two simulated datasets are comparable to 
either within species variation in North American adult 
marmots (mean PRD ≈ 1–2% of π/2) or interspecific dif-
ferences in Marmota (mean PRD ≈ 4% of π/2). Thus, of 
the two simulated datasets, the one with smaller variance 
was referred to as ‘microevolutionary’ and the other one 
as ‘macroevolutionary’.

Types of Tests

The following tests of integration/modularity, based on a 
priori modules, were performed:

(1) Test of integration between modules using the RV 
coefficient (Klingenberg 2009, 2013a), which can be 
seen as an extension of the Pearson correlation (r) to 
estimate the overall association between two blocks of 
multivariate variables. RV, like r, varies between zero 
(no integration) and one (complete integration).

(2) Partial least square (PLS) test for integration using the 
main vector (PLS1) accounting for most covariance 
between modules (Rohlf and Corti 2000; Bookstein 
et al. 2003; Klingenberg 2013a).

(3) PLS test for integration using the correlation r between 
PLS1 scores of the two modules. This is the same 
statistical framework as (2), but uses a different test 
statistics (which is related to, and generally in good 
agreement with, the test for the covariance). For this 
test, besides computing r, the percentage of total shape 
variance accounted for by PLS1 within each block was 
calculated. This is simply, within each module, the ratio 
between the variance of PLS1 scores and the sum of the 
variances of the shape coordinates of the landmarks in 
that module. These percentages are not often shown in 
PLS analyses, but they provide a useful information, 
complimentary to the percentage of covariance (test 2) 
and r (test 3). Indeed, one might have a vector suggest-
ing very strong covariance and correlation, even if it 
accounts for a tiny proportion of total variance within 
modules.

(4) Adams’ CR test of modularity (2016), which is a ratio 
of between to within modules covariances and can 
range between zero and more than one. This test has 
been proposed to provide direct evidence for modular-
ity and overcome some of the problems with the RV 
coefficients (e.g., the strong effect of sample size on 
its estimate—Adams 2016; but see also Smilde et al. 
2009; Fruciano et al. 2013). Thus, if CR is significantly 
smaller than 1, one can conclude that there is support 
for modules, as the covariance within each module is 
stronger than that between them.

All tests were performed using both the within a configu-
ration and between separate blocks approaches. The only 
exception was the CR test, which is only available using the 
within a configuration method. 10,000 permutations were 
used in each analysis to assess the significance of the test 
statistics. The implementations of the permutation tests are 
generally different depending on which approach is used 
(details can be found in the references provided above, as 
well as in the help files of the programs used for the analy-
ses—see below). Briefly, in the between separate blocks 
approach, tests simply reshuffles the order of the specimens 
in one block at each permutation. In the within a configura-
tion approach, each permutation works by randomly match-
ing modules (tests 1–2–3) or randomly assigning landmarks 
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to one or the other module without changing the number 
of landmarks within each of them (test 4). However, in all 
tests of integration (1–2–3) using the within a configuration 
approach, data are Procrustes re-superimposed at each round 
of permutation. The re-superimposition is necessary to ‘re-
align’ the randomly matched modules and should take into 
account the additional covariance introduced by a common 
Procrustes superimposition (Klingenberg 2009).

Analyses were performed in MorphoJ (Klingenberg 
2011) and R (R Core Team 2017) using geomorph (Adams 
et al. 2017) and Morpho (Schlager 2017). Some tests could 
only be performed in one or the other program (RV and 
test of significance for PLS1 covariance in MorphoJ; CR 
in geomorph); all other analyses, however, were done in all 
three programs and produced almost always totally con-
gruent results. There were two minor exceptions of PLS1 
correlations being identical in all three programs, but non-
significant in MorphoJ and significant in both geomorph and 
Morpho; in these two cases, the congruent results of the two 
R programs were reported.

Integration and/or Modularity in Data 
Generated Using ‘Isotropic Noise’: Any 
Significance?

Results are shown in Table 2. The tests of integration are 
summarized in Fig. 3. RV ranged from almost zero (0.005 
in the six landmarks polygon, using the separate blocks 
approach) to ca. 0.2, and was consistently larger in the anal-
yses using the within a configuration approach (from 50% 
to more than 30 times larger). Significance was found in 
12 out of 20 tests, with 10 tests being highly significant. In 
all instances, except two, significant RVs were found using 
the within a configuration approach. The two exceptions of 
highly significant RV using separate blocks analyses were 
the circles and mandibles datasets with semilandmarks slid 
using the minimum BEN criterion.

The PLS analysis was in good agreement with the RV 
tests. I describe first the results for the correlation of PLS1 
scores, because they were almost perfectly congruent with 
those using RV: r ranged from ca. 0.1 to 0.8, with r from 20% 
larger to up to eight times bigger in analyses using the within 
a configuration approach; overall, 12 of the 20 tests were 
significant (11 of them highly significant), and these were, as 
with RV, all those using the within a configuration approach 
plus the separate blocks analyses of the two minimum BEN 
slid configurations.

The tests for the covariance accounted for by PLS1 were 
also mostly in good agreement with both RV and r tests, as 
significant analyses involved precisely the same datasets as 
in those analyses, except the two mandible samples (‘micro-’ 
and ‘macroevolutionary’, with no semilandmarks). For these 
two datasets, none of the tests, regardless of the approach, 
reached significance. Both the percentages of covariance, 
as well as those of variance accounted for by PLS1, were 
generally smaller using the within a configuration approach, 
with the main few exceptions being some of the slid sem-
ilandmarks analyses.

Overall, the vast majority of the tests for integration 
suggested a strong covariation between modules but only 
when using the within a configuration approach. Using the 
between separate blocks approach, despite PLS1 vectors 
accounting for generally more covariance and variance, none 
of the tests supported integrated modules, except the two 
minimum BEN slid semilandmark datasets.

Interestingly, when datasets were tested for modularity 
using CR and the within a configuration approach, all CRs 
were smaller than one (range 0.4–0.9), and most of them 
(with the exception of the two smallest configurations, the 
hexagon and six landmarks polygon) were significantly 
smaller than expected by randomly assigning landmarks to 
partitions. Thus, because CR < 1 indicates more covariance 
within modules compared to between modules, these results 
supported modularity in eight of the ten analyses. As the CR 
test is not available using the separate blocks approach, the 
two approaches could not be compared and this is why the 
total number of tests was just 10.

Point‑Estimates Versus Simulations

All results reported in the previous section represent point-
estimates from single analyses using several different test 
statistics and two general approaches (within a configuration 
or separate blocks) on ten different sets of data (considering, 
for the sake of brevity, the slid datasets as different types of 
data). The vast majority of these ten sets of data, when ana-
lysed using the within a configuration approach, produced 
congruent results indicating a serious issue with type I errors 
(i.e., obtaining a false positive by rejecting the null hypoth-
esis when this is in fact the truth). It seems unlikely that so 

Fig. 2  Examples of simulated datasets used in this study: left, raw 
data with dotted lines showing the separation into two arbitrary mod-
ules; center, common superimposition used for the within a configu-
ration analyses of integration/modularity; right, separate superimposi-
tions of the two modules used in the separate blocks analyses. From 
top to bottom: a hexagons; b six landmarks polygons; c marmot 
mandibles nine landmarks configuration (only the macroevolutionary 
dataset is shown); d circles with two landmarks (opposite extremes 
of the diameter) and 48 semilandmarks; e marmot mandibles with 10 
landmarks and 23 semilandmarks. For data with semilandmarks, only 
configurations with semilandmarks slid with the minimum PRD cri-
terion are shown for brevity; the minimum PRD superimposed plot 
also allows to clearly spot the semilandmarks, which are the sets of 
points approximately aligned on lines perpendicular to the outline of 
the study structures

◂
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many instances of false positives from different analyses and 
datasets could be found by chance but one might wonder 
what would happen if the experiments using random noise 
were repeated many times on the same data. Although this 
goes beyond the stated aim of this study (i.e., raising an 
issue based on preliminary evidence), thanks to an R script 
made available by an anonymous reviewer, type I error rates 
were briefly explored in all datasets without sliding sem-
ilandmarks. This was done by running 100 times PLS tests 
for the first pair of vectors using both approaches, as well 
as CR tests using the within a configuration approach. In 
all datasets, the amount of random isotropic noise added to 
the data in each run of the simulations was approximately 
the same as in the point-estimate analyses (as assessed by 
the mean and maximum pairwise Procrustes distance in a 
sample). The number of specimens in the simulated samples 
was equal to 100 except for the circles and mandibles with 
unslid semilandmarks, where it was increased to 500 to take 
into account the much larger number of variables of these 
two sets of data. Table 3 reports the resulting estimates of 
type I error rates, which are the proportion of times signifi-
cance was found. These should not exceed 0.05, the nominal 
threshold usually adopted for type I errors. Congruently with 
the point-estimates of the previous section, the rate of false 
positives ranged from 0.01 to 0.09 for PLS1 analysed with 
separate blocks. In contrast, using the within a configura-
tion approach, both PLS1 and CR showed a much higher 

rate of type I errors, ranging from 0.27 (ca. five times the 
nominal value) to 1.00 (i.e., 100% false positives). Thus, also 
this small set of simple simulations strongly supported the 
outcome of the point-estimates study: the separate blocks 
approach seems appropriate in terms of type I error rates, 
whereas the within a configuration analyses largely inflates 
the occurrence of false positives.

Interpretations of Main Patterns

Before discussing the main results, it is important to stress 
that the datasets and types of tests used in this paper were 
not aimed at thoroughly assessing the statistical properties 
of the methods. They are examples, analysed with common 
methods and used to explore whether there is a problem. 
If indeed they suggest a potential issue, that will require 
extensive studies to assess its importance and generality 
using simulations and a large number of different scenarios 
(e.g., landmark number and density, modules with large dif-
ferences in number of landmarks, three or more modules, 
different proportions of landmarks and semilandmarks, a 
variety of sample sizes, different amounts of ‘real’ covari-
ance etc.).

It is also useful to emphasize that P values were not cor-
rected for multiple testing and, more importantly, that they 
are used in this context mainly as a numerical aid to better 

Table 1  Simulated datasets of landmarks/semilandmarks with different configurations and number of points (L), sample sizes (N) and amounts 
of isotropic noise

For the two configurations with semilandmarks, summary statistics are shown without any sliding and after sliding the semilandmarks using two 
different criteria (minimum PRD and minimum BEN). The tangent space approximation was assessed in TPSSmall (Rohlf 2015) by comput-
ing the slope and correlation in a regression through the origin of pairwise PRDs in the curved Procrustes shape space onto the corresponding 
Euclidean distances in the flat tangent space used for statistical analyses. The minimum, maximum and mean pairwise PRDs are shown together 
with the ratio of the mean PRD relative to π/2 (i.e., the largest possible PRD); using this ratio expressed as a percentage, and the conventions 
of TPSTri (Rohlf 2015) as an approximate guideline, variance was considered small (light grey background), medium (dark grey background) 
or large (black background) when respectively ≤ 3%, > 3% but << 10%, and around 10% or more. The percentages of total shape variation 
explained by the first two PCs of the total configuration, as well as their ratios, are also shown; as the original raw data only contained isotropic 
noise, PCs should show no pattern and therefore explain approximately the same amount of variance
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appreciate possible misleading results from analyses con-
ducted in some of most widely used programs for Procru-
stean geometric morphometrics. In general, P values should 
be used and interpreted with caution, and it has been sug-
gested that in morphometrics (Bookstein 2017), as in other 
fields, significance testing should not be an aim in itself. 
Also, as an important cautionary note in interpreting sig-
nificant tests in this study, readers should bear in mind that 
simulated samples were large in relation to the number of 
variables, thus increasing power. Having large samples is 
desirable but it might have overemphasized the importance 
of small covariances introduced by the superimposition: in 
true biological data, where real covariance is expected and 
might be much larger than that due to the superimposition, 
the problem of spurious results might be less concerning. 
However, even in that case, the superimposition (including, 
where appropriate, the sliding of semilandmarks) will alter 
the variance–covariance structure of the data, and the extent 
to which this might affect results will be probably hard to 
assess. Also, in terms of power and sample size, as recently 
stressed by Bookstein (2017), one should bear in mind that 

an unfavourable ratio between the number of specimens and 
the number of variables can lead to inaccurate findings. For 
instance, if the type I error rate simulations using the two 
configurations with more points (mandibles and circles with, 
respectively, 33 and 50 points, and thus ca. 60 to almost 100 
shape variables) were run using N = 100 (instead of 500, as 
in Table 3), the proportion of false positives using the within 
a configuration approach would decrease to 0.07–0.11 in all 
tests except the mandible CR (that would be large − 0.53—
but, nevertheless, almost half than found using N = 500). 
Thus, even when using the within a configuration approach, 
with an inadequate sample size compared to the large num-
ber of variables, some simulations might have mislead-
ingly suggested no problem (or a minor one). In fact, this 
applies also to the three datasets (pupfish, hummingbirds and 
scallops, all of them available as examples in geomorph—
Adams et al. 2017) used by the reviewer in her/his original 
simulations: using an unwisely small sample size (N = 100), 
in relation to data dimensionality (from almost 50 to more 
than 130 shape variables in those three configurations), type 
I errors seem appropriate; however, by changing a single 

Table 2  Analyses of integration (1, 2, 3) and modularity (4) using 
different approaches (SEPARATE blocks and WITHIN a configu-
ration) and methods: RV (1); PLS, testing both the percentage of 
between module covariance accounted for by PLS1 (2) and the corre-

lation (r) between PLS1 scores in the two modules (3), with the cor-
responding percentages of within-module total shape variance shown 
in the next two columns; Adams’ (2016) CR ratio (4—only available 
for the within a configuration approach)

Significant tests are emphasized using a light grey background and highly significant ones (with 0.005 threshold for high significance) using a 
black background. Results that contradict the expectation that the within a configuration approach might tend to suggest spurious covariance, 
whereas the between separate blocks method should not do it, are emphasized with bold underlined P values (e.g., mandibles with no semiland-
marks showing non-significant covariance ‘despite’ a within a configuration analysis, and minimum BEN semilandmark data showing significant 
integration even using separate blocks)
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parameter in the R script, that is using N = 500, type I error 
rates become hugely inflated, ranging from 0.33 (humming-
birds) to 0.71–0.96 (scallops and pupfish, respectively).

The general pattern suggested by the analyses of exam-
ple datasets generated using isotropic noise, as well as the 
corresponding small set of simulations for estimating type 
I error rates, is clear: using raw data that do not contain any 
covariance, within or between a priori arbitrary modules, 
some of the most common methods used for the analysis of 
integration and modularity of Procrustes shape coordinates 

can lead to spurious conclusions. As expected, this is par-
ticularly evident for the within a configuration approach. 
With this approach, the covariance found between arbitrary 
modules from an isotropic noise model of variation is simply 
a by-product of the Procrustes superimposition. This artifac-
tual between modules covariance, that can lead to the false 
appearance of integration, is generally ‘removed’ using the 
separate blocks analysis, in which each module undergoes 
a separate superimposition. However, separate Procrustes 
superimpositions will still increase covariance within each 

Fig. 3  Spider plots showing for all datasets: a RV coefficients, b cor-
relations r between PLS1 scores of the two modules, c percentages of 
shape covariance explained by PLS1 and d percentages of total shape 
variance explained by PLS1 for the first module (that of the second 
module is not shown, as the pattern of differences between the two 
approaches is almost identical). Green lines are used to connect val-

ues obtained with the separate blocks approach and red ones for the 
within a configuration approach, and asterisks indicate significant 
tests in (a–c) using one or the other approach depending on the col-
our; lines ending with grey circles emphasize datasets with semiland-
marks. (Color figure online)
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module, whereas they might potentially remove any real 
covariation between modules related to size and recipro-
cal orientation, therefore underestimating integration and 
potentially overestimating modularity. Thus, in tests of inte-
gration, the separate blocks approach may have appropriate 
rates of type I errors (no more false positives than expected 
by chance because of sampling error), but yet lead to large 
type II error rates (i.e., too many false negatives suggesting 
no integration when in fact it is there). As anticipated, this is 
an aspect not examined in this paper, but certainly important 
in future studies on the effects of the superimposition in tests 
of modularity and integration.

The superimposition may also explain why, using the 
within a configuration approach, one can find contradictory 
evidence of both integration and modularity. This is because 
the covariance introduced by a common superimposition is 
‘spread’ across the whole configuration but is also likely to 
be stronger between contiguous landmarks (i.e., within a 
‘module’). This is more easily appreciated using an example. 
One could replicate the analyses using the within a configu-
ration approach on non-sensical ‘modules’ made by select-
ing every other landmark/semilandmark in one module, 
and the remaining points in the other. If this was done, for 
instance using the nine landmarks mandibular macroevo-
lutionary dataset or the unslid circles, the tests for integra-
tion (1–2–3) would remain highly significant in both cases 
(P < 0.005), but CR would become larger than one (1.1–1.2) 
and no longer significant. This is because, in these ‘every-
other-point modules’, the ‘contiguity effect’ of the super-
imposition is destroyed (thus reducing the apparent within 
module covariance), whereas the large scale covariation 

across all landmarks is still there to create spurious findings 
of integration.

Another apparently puzzling result is that, in the PLS 
analyses, the separate blocks approach tends to explain 
more covariance, and within module variance, but the cor-
responding PLS1 vectors are almost always non-significant. 
In fact, however, the observation of higher covariance and 
variance of PLS1 using the separate blocks approach is most 
pronounced in the configurations with fewer points (i.e., all 
those without semilandmarks). This is because the separate 
superimpositions of the two modules lead to a loss of more 
degrees of freedom than a single common superimposition, 
as in each GPA size, translational (along the X and Y axes, 
in 2D) and rotational variation are removed. Thus, the real 
number of informative dimensions is smaller with sepa-
rate blocks, and that might somewhat inflate the amount of 
covariance and variance accounted for by the main direction 
of covariation between modules, something that becomes 
especially evident with less landmarks and, therefore, less 
shape variables to start with.

Much more interesting is that even the separate blocks 
approach can produce spurious evidence for integration in 
special cases: these, in the examples used in this study, were 
the datasets where semilandmarks were slid using the mini-
mum bending energy criterion. This step in the superimposi-
tion introduces a degree of covariation across the points such 
that its effect, at least when the number of semilandmarks 
is large compared to that of ‘fixed’ landmarks, is felt even if 
modules are later resuperimposed on their own. To control 
for this, one might try to re-slide the semilandmarks in the 
separate blocks, a step that was not included in this study.

In general, morphometricians should be particularly care-
ful not to treat slid semilandmarks as ‘conventional land-
marks’, as not only they lack the precise anatomical corre-
spondence of ‘fixed’ landmarks (Klingenberg 2008; Oxnard 
and O’Higgins 2009; Cardini 2013; Cardini and Loy 2013), 
but they are also affected by the mathematical treatment 
used to increase their geometric correspondence. That slid-
ing can introduce patterns that were not in the original data 
can be seen also using a simple PCA. Figure 4 shows, using 
the mandibles with semilandmarks as an example, scatter-
plots of the first two PCs and bar plots for the percentages 
of variance accounted for by each vector. With isotropic 
noise, scatterplots should show circular variation around 
the mean and PCs explain approximately the same amount 
of variance. Indeed, this is reasonably true for the Procrustes 
shape coordinates without sliding and using the minimum 
PRD sliding method (Fig. 4a, b), which reduces some of 
the random variation in the semilandmarks by sliding them 
along an estimated tangent (approximated at each point by a 
chord between its adjacent points), so that it becomes mostly 
orthogonal to the tangent and does not tend to dominate 
any PC axis. In contrast, using the minimum BEN criterion, 

Table 3  Type I error rate (i.e., proportion of true null hypotheses 
incorrectly rejected) for PLS1 and CR tests estimated in 100 simula-
tions using N = 100 for all datasets except the circle and the mandible 
with unslid semilandmarks, whose N = 500

Rates equal to or larger than 0.1 are emphasized with a black back-
ground
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PC2 (2.3%)

PC2 (3.4%)

PC2 (7.3%)

PCs

PCs

PCs

PC1
(2.4%)

PC1
(3.5%)

no sliding

minPRD sliding

minBEN sliding

(a)

(b)

(c)

% var.

% var.

% var.

PC1
(13.6%)

2.4

0

3.5

0

13.6

0

1 62

1 41

1 40

Fig. 4  PCAs of mandibles with semilandmarks: the scatterplots of the 
first two PCs are shown on the left, and bar plots for proportions of 
variance accounted for by each PCs are shown on the right; a Pro-

crustes superimposed data with no sliding; b semilandmarks slid 
using minimum PRD; c semilandmarks slid using minimum BEN
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which retains some of that tangential variation and thus cre-
ates a pattern of ‘quasi-oval’ scatter around the mean posi-
tion of each semilandmark, PC1 becomes elongated and 
accounts for twice more variance than PC2 and 4–5 times 
more than PC1 without sliding or sliding using the minimum 
PRD method.

Although in relation to a different issue, that of an unfa-
vourable ratio between the number of variables and sample 
size, a similar problem of disparity in variance accounted 
for by PCs of random normally distributed data has been 
recently brought to the attention of the morphometric com-
munity by Bookstein (2017). It seems that sliding using 
the minimum BEN criterion could aggravate this problem, 
and worryingly that is likely to happen in cases where one 
already has many variables and relatively small samples, 
as it is not unusual in analyses of outlines or surfaces using 
semilandmarks. For instance, in a very recent investigation 
of mosaic evolution in the avian cranium, Felice and Gos-
wami (2018) analysed ca. 350 species of birds employing 
about 30 landmarks and almost 300 semilandmarks, a large 
number of points that should lead to “not simply a statisti-
cal artifact, but rather… [to a] better representation of mor-
phology and the relationships among different aspects of 
shape” (p. 2, SI Appendix). That more data are obtained 
this way is certainly true, but one can also wonder to what 
extent patterns of covariance, as well as the comparison of 
models with different modules, and the estimates of within-
module total variance, might have been influenced by the 
common superimposition, including the minimum bending 
energy sliding of ca. ten times more points than the number 
of ‘fixed’ landmarks. This does not mean that findings in that 
study must be flawed (and in fact the authors assessed the 
stability of results with random subsamples of landmark and 
semilandmark datasets), but it urges to be cautious before 
concluding that more is inevitably better than less.

Conclusions

In this preliminary investigation, I have explored whether 
the commonly used superimposition procedures neces-
sary to extract shape variables from Cartesian coordinates 
of landmarks might introduce artifactual patterns of vari-
ance–covariance that can lead to spurious results. This has 
been investigated in the context of analyses of integration 
and modularity, but it may concern other types of studies in 
which subsets of landmarks from a common superimposition 
are analysed and compared. The problem is not dissimilar to 
that of (over-)interpreting displacement vectors in the visu-
alization of shape differences (as exemplified in Viscosi and 
Cardini 2011).

Bearing in mind its exploratory nature, the limited num-
ber of tests examined and a main focus on type I errors, and 

therefore the need of further in depth research considering a 
large variety of scenarios as well as type II errors, three main 
messages can be taken from this study, that might hope-
fully stimulate future investigations, as well as recommend 
a degree of caution in applications of Procrustes methods:

1. The superimposition can introduce an amount of covari-
ance (Rohlf and Slice 1990; Mitteroecker and Bookstein 
2007; Klingenberg 2009; Adams 2016) that can lead to 
spurious results in testing integration and modularity. 
This can be especially problematic using the within a 
configuration approach and may happen even if the test 
recomputes the superimposition at each randomization 
(Klingenberg 2009), as shown by finding significance 
from data containing only random isotropic noise. This 
does not mean that users must necessarily prefer the sep-
arate blocks over the within a configuration approach: 
they may have different aims and issues (Baab 2013; 
Klingenberg 2009, 2013a, b), but, especially if one finds 
that they lead to different conclusions on the same data, 
a morphometrician should be extremely cautious in 
interpreting results. Indeed, even if separate blocks may 
be less affected by the risk of spurious results at least 
in the tests of integration (and this may not be true for 
the tests of modularity!), as pointed out by Adams in 
MORPHMET, this approach excludes potentially impor-
tant information (i.e., relative size and position of the 
modules) that, as suggested by a reviewer, might lead to 
“higher type II error than a single GPA, as portions of 
covariation between modules will not be properly pre-
served under separate GPA approaches”.

2. The ‘contiguity effect’ induced by a common superim-
position might explain ambiguous results suggesting 
both integration and modularity. This is definitely an 
issue that requires more study to be better understood, 
and might partly depend also on different permutation 
schemes employed to test different hypotheses. It is also 
not impossible that this effect, as well as the more gen-
eral ones on variance–covariance patterns discussed in 
the previous point, may have been overemphasized in 
large simulated datasets purely made of isotropic varia-
tion. Yet, one cannot be sure, and indeed the impact of 
these issues may vary from case to case and generaliza-
tions might be difficult to make. For instance, one might 
assume that if significant modularity is found despite 
using the within a configuration approach, he/she might 
be confident in that result, as the common superimposi-
tion should tend to spuriously increase integration. In 
fact, this may not be this simple (as shown also by some 
of the simulated analyses showing evidence of both 
modularity and integration): for instance, if the num-
ber of points within a module is much larger than that 
marking the boundary of two contiguous modules, the 
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superimposition (plus the possible sliding of semilan-
dmarks) could increase intra-modular covariance even 
more strongly than inter-modules, thus spuriously inflat-
ing the evidence for modularity.

3. Even after, and probably especially after, sliding them, 
semilandmarks cannot be “used in… geometric mor-
phometrics as if they were homologous point locations” 
(Mitteroecker and Bookstein 2008, p. 946). From a 
theoretical point of view, answering the question of the 
biological correspondence of semilandmarks is far from 
trivial (Klingenberg 2008; MacLeod 2008; Oxnard and 
O’Higgins 2009). In practice, it seems that sliding might 
contribute to increase covariance and in this respect 

the minimum BEN criterion could sometimes be more 
problematic. Clearly, this does not mean that one should 
never use semilandmarks or inevitably prefer minimum 
PRD to minimum BEN for sliding. However, it does sug-
gest that there is no guarantee that more points necessar-
ily lead to increased accuracy and, if and when semilan-
dmarks are really crucial, one should also acknowledge 
their limitations and potential issues (including those 
related to the large number of variables they generate in 
relation to sample size—Bookstein 2017).

As a concluding paragraph, it is worth mentioning that 
Bookstein (2015) has recently proposed a new interesting 

Fig. 5  Bookstein (2015) ‘inte-
gration–disintegration’ approach 
on simulated mandibles with 
semilandmarks: regression line 
(solid) of partial warps variance 
versus bending energy (log-
transformed), with the dotted 
line showing the expectation for 
self similarity (slope = − 1); a 
Procrustes superimposed data 
with no sliding; b semilan-
dmarks slid using minimum 
PRD; c semilandmarks slid 
using minimum BEN
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approach to explore integration and modularity, that breaks 
this methodological dichotomy by bringing both types of 
analyses together in a single continuum. As in other explora-
tory methods (Goswami and Polly 2010), his method neither 
employs a test or requires a priori modules. Instead, it looks 
for relationships between the variance of partial warps and 
bending energy. Put it informally, partial warps provide a 
way of extracting from landmark coordinates shape variables 
that capture variation at different spatial scale (Bookstein 
1991; Rohlf 1998), from changes occurring almost uni-
formly over the whole landmark configuration (thus, requir-
ing the least BEN) to those highly localized (therefore, need-
ing large BEN). The method has some promising aspects 
since, among other things, by using only partial warps, it 
should not be affected by the choice of superimposition. 
This is because the purely uniform variation (e.g., dilation, 
stretching or shearing occurring in exactly the same way 
over the entire landmark configuration) is omitted, although 
by, doing so, it also excludes a potentially interesting aspect 
of integration. Nevertheless, Bookstein (2015) suggested to 
plot, after logarithmic transformations, the variance of par-
tial warps onto their corresponding BEN. Then, the slope 
of a regression line approximating the data will be approxi-
mately zero for isotropic noise, − 1 for self-similarity across 
all spatial scales, between zero and − 1 for ‘disintegrated’ 
change (i.e., no integration and thus potential modularity), 
and more negative than − 1 for global integration. Thus, as 
an example, I applied this approach to the mandible data-
set with semilandmarks (results—not shown—were similar 
using circles, but less interesting in the other datasets, that 
have too few landmarks for producing interpretable pat-
terns). The method performed (Fig. 5) as expected for unslid 
data and data with semilandmarks slid using the minimum 
PRD criterion. In both cases, the slope was almost zero, as 
it should for isotropic data. This means that contrary to other 
within a configuration methods, such as RV, PLS and CR, 
Bookstein’s ‘integration–disintegration’ technique did not 
misleadingly suggest integration or modularity in random 
landmarks with isotropic variance. However, when applied 
after sliding with the minimum BEN criterion, the slope was 
approximately − 0.4, which indicates ‘disintegration’ but, as 
for the finding of a significant CR, and probably for the same 
reason (‘contiguity effect’), the result is misleading and thus 
shows again that sliding does not ‘fix’ semilandmarks and 
that these points are indeed ‘special’.
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