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Introduction

Species interactions are central to understanding ecological 
and evolutionary dynamics, yet are among the most chal-
lenging attributes to quantify and relate to other aspects of 
biodiversity (Strauss and Irwin 2004; Pascual and Dunne 
2006; Bersier and Kehrli 2008; Gómez et  al. 2010). Dar-
win (1859) envisaged the complex network of interacting 
organisms as an “entangled bank” shaped by deterministic 
“laws” that drive the associations among species. We have 
now come to recognize that these “laws” likely reflect dif-
ferent ecological and evolutionary processes (Strauss and 
Irwin 2004). Some of the well-recognized factors shaping 
the architecture of ecological networks are environmental 
gradients (Danielson 1991; Tylianakis et al. 2007), species 
abundance (Krishna et al. 2008; Vázquez et al. 2009; Verdú 
and Valiente-Banuet 2011; Ibanez 2012), sequential evolu-
tion (Jermy 1976), cocladogenesis or cospeciation (Page 
and Charleston 1998; Page 2003; Thompson 2014), coevo-
lution (Thompson 1994; Gross and Blasius 2008; Guima-
rães et al. 2011) and species functional traits (Cohen 1977; 
Rezende et  al. 2007; Rossberg et  al. 2010; Ibanez 2012; 
Vizentin-Bugoni et al. 2014), defined here as any measur-
able organismal eto-ecological characteristic or phenotype 
associated with a biotic interaction or an ecosystem func-
tion of interest (Schmitz et al. 2015). Nonetheless, knowl-
edge of the independent role of these factors on species 

Abstract Understanding how evolutionary and ecologi-
cal processes shape species interaction networks remains 
as one of the main challenges in eco-evolutionary studies. 
Here, we present an integrative analytical framework to 
partition the effects of phylogenies and functional traits on 
the structure of ecological networks. The method combines 
fuzzy set theory and matrix correlation, implemented under 
a Monte Carlo framework. We designed a simulation study 
in order to estimate the accuracy of the methods proposed 
here, measuring Type I Error rates. The simulation study 
shows that the method is accurate, i.e., incorrectly reject-
ing a true null hypothesis in ~5% of the cases and falling 
within the confidence interval. We illustrate our framework 
using data from a seed dispersal network from southern 
Brazil. Our analyses suggest that birds must have specific 
traits in order to consume their plant resources, and that 
phylogenetic resemblance has no explanatory power for 

Electronic supplementary material The online version of this 
article (doi:10.1007/s11692-017-9409-8) contains supplementary 
material, which is available to authorized users.

 * Vinicius A. G. Bastazini 
 bastazini.vinicius@gmail.com

1 Graduate Program in Ecology, Universidade Federal 
do Rio Grande do Sul, Av. Bento Gonçalves 9500, 
91501-970 Porto Alegre, RS, Brazil

2 Departamento de Biodiversidade e Ecologia, Pontifícia 
Universidade Católica do Rio Grande do Sul, Av. Ipiranga, 
6681, Porto Alegre, RS, Brazil

3 Department of Ecology, Instituto de Biociências, 
Universidade de São Paulo, Rua do Matão, Travessa 14, 
05508-900 São Paulo, SP, Brazil

4 Department of Ecology, Universidade Federal do Rio Grande 
do Sul, Porto Alegre, RS, Brazil

http://orcid.org/0000-0001-5270-0621
http://crossmark.crossref.org/dialog/?doi=10.1007/s11692-017-9409-8&domain=pdf
http://dx.doi.org/10.1007/s11692-017-9409-8


313Evol Biol (2017) 44:312–324 

1 3

interactions at the community level is still poorly appreci-
ated (Mitter et  al. 1991; Lewinsohn et  al. 2005; Novotny 
and Basset 2005), especially when it comes to measuring 
the importance of functional traits. As closely related spe-
cies are likely to retain their ancestral traits, discriminating 
the effects of species traits and long-term evolutionary his-
tory is troublesome (Felsenstein 1985; Losos 2008).

Over the past recent decades, ecologists have started 
to incorporate phylogenetic-based methods into ecologi-
cal research, which gave rise to a novel and prolific field 
of inquiry, the so-called Ecophylogenetics (Webb 2000; 
Webb et  al. 2002; Mouquet et  al. 2012). These methods 
have allowed ecologists to overcome some of the difficul-
ties inherent to the study of evolutionary phenomena, and 
have been very useful in studies trying to understand how 
historical and evolutionary contingencies affect patterns 
at different ecological scales (Mouquet et  al. 2012). With 
the ready availability of extensive phylogenies, community 
ecologists have started to integrate ecological and evolu-
tionary processes in order to describe patterns of ecological 
community assembly and species diversity (Webb 2000; 
Webb et al. 2002; Johnson and Stinchcombe 2007; Caven-
der-Bares et al. 2009; Pillar and Duarte 2010).

Despite the advances that phylogenetic data have 
brought to our understanding of patterns of community 
structure, the same has not been achieved for the ecologi-
cal knowledge on interacting species yet. In this respect, 
approaches that relate phylogenetic data to species interac-
tions have been used in order to verify the degree of phy-
logenetic clustering or over dispersion in the specificity of 
plant-herbivore interactions, especially in tropical forests 
(e.g., Novotny and Basset 2005; Weiblen et al. 2006). Such 
an approach has also been used to study coevolution within 
small clades (e.g., Pedron et  al. 2012), to investigate the 
importance of traits and phylogenies within a single trophic 
level (e.g., Novotny and Basset 2005; Weiblen et al. 2006) 
and to evaluate the effect of phylogenetic structure on coex-
tinction cascades within networks (Rezende et  al. 2007). 
However, the only ecological information incorporated in 
these models is the relationship between abundance and 
each taxa, and important ecological factors such as habi-
tat structure and species traits are usually omitted (but see, 
for instance, Pearse and Hipp 2009; Vázquez et  al. 2009; 
Rafferty and Ives 2013). The interplay between phyloge-
netic history and the degree of phylogenetic conservatism 
in species traits are likely to affect some of the patterns 
found in empirical ecological networks (Fig. 1).

Insofar, few integrative methods have been proposed 
and evaluated in detail. For instance, Legendre et al. (2002) 
and Hommola et  al. (2009) developed permutation meth-
ods to measure coevolution and cospeciation between hosts 
and their parasites. Cruz et al. (2012) developed a method 
to test the influence of phylogenies in the arrangement of 

bipartite networks (i.e., a network which has two sets of 
species, such as plants and pollinators, with edges between 
and not within sets). These methods use only phylogenetic 
data, and recent analyses have demonstrated that some of 
them are likely to result in high rates of Type I Error, i.e., 
incorrectly rejecting a true null hypothesis (Hadfield et al. 
2014). Model based approaches, such as generalized lin-
ear mixed models or phylogenetic regressions (Ives and 
Godfray 2006; Hadfield et al. 2014) have also been devel-
oped in order to describe phylogenetic patterns in bipar-
tite networks, and have recently been extended to include 
trait data (Rafferty and Ives 2013). However, these model-
based approaches rely on distribution assumptions, which 
may be unrealistic and complicated to parameterize. Ran-
domization tests offer a simpler solution and are much less 
restricted by assumptions, as they rely on distribution free 
statistics and on algorithms that use systematic or random 
data permutations to generate alternative outcomes for the 
chosen test statistic under a true null hypothesis (Pillar 
2013).

Here, we develop a statistical framework that inte-
grates phylogenetic and trait data from bipartite networks, 
although the method can be extended to unipartite net-
works (networks that have only one set of species, such as a 
co-occurrence network), based on fuzzy set theory (Zadeh 
1965) and randomization tests. Our approach enables the 
detection of: (1) phylogenetic signal in traits accounting for 
species interactions; (2) correlation among traits account-
ing for species interactions, removing the effect of phylog-
enies; and (3) correlation between phylogenies, which is 
a necessary but not sufficient condition to be considered 
a sign of cospeciation or cocladogenesis. We provide a 
simulation study that shows that our methodology pro-
vides adequate rates of Type I Error. We also showcase our 
framework with an analysis of a mutualistic network from 
southern Brazil.

Input Data

Our framework requires data organized into, at least, five 
matrices (Fig.  2a): (i) A matrix containing the observed 
pairwise species interactions (matrix NAB; containing either 
binary or frequency data). For simplicity we will assume 
that this matrix contains two different trophic levels, with 
prey (A) and predators (B), but it can accommodate any 
kind of antagonist or mutualistic interaction, and it can also 
contain data from unipartite networks. The phylogenetic 
pairwise resemblances between species: matrix AA for 
the lower trophic level and AB for the higher trophic level 
(ii–iii). Species trait data: matrices BA (traits × species) for 
the lower trophic level and BB for the higher trophic level 
(iv–v), with traits of any type. An additional binary matrix 
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(F), containing species pairwise co-occurrence (either tem-
poral or spatial), coded as 0 (the pair of species do not co-
occur) or 1 (the pair of species co-occur), can also be used 
(Fig. 2c). Matrix F is not required for the analysis, but may 
provide additional information and control for situations 
where phenological or spatial decoupling, for instance, is 
common.

Scaling Up of Traits and Phylogenies 
to the Network Level

Trait data in matrices BA and BB, and phylogenetic data in 
matrices AA and AB (Fig. 2a) are scaled up to the network 
level using similar methods previously described in Pillar 

and Orlóci (1991), Pillar et al. (2009) and Pillar and Duarte 
(2010), which are extended and explained here in detail. 
The first step is to transform trait matrices (BA and BB), 
into a symmetric similarity matrix (Matrices SA and SB; 
Fig.  2b), using an appropriate measure. For this, we have 
used Gower’s general similarity coefficient in the range 
0–1, which is defined as:

where sijh is the partial similarity for trait h in the range 
0–1 between any species i and j of the same trophic level, 
and p is the number of traits. This partial similarity can 
be applied to different types of traits (binary, qualitative, 

(1)Gij =

∑p

j=1
wijhsijh

∑p

j=1
wijh

Fig. 1  Patterns of ecologi-
cal interactions arising from 
the interplay between spe-
cies functional traits and their 
evolutionary history. Black 
squares denote realized spe-
cies interactions. a Species 
interactions are a result of 
labile species traits that are not 
phylogenetic conserved; b traits 
accounting for species interac-
tion are phylogenetic conserved; 
c interactions are mediated by 
shared phylogenetic history, 
independent of species traits; 
d functional traits are partially 
phylogenetic conserved

Interaction mediated by traits

A B

C D

Species in trophic level A

Species in trophic level B

Trait-mediated
interactions

Interaction mediated by phylogeny
No trait conservatism Trait conservatism

Interaction mediated by phylogeny
No trait conservatism

Interaction mediated by traits and phylogeny
Some trait conservatism
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semiquantitative, quantitative and mixed variables) each 
one according to its own mathematical type (Podani 2000; 
Legendre and Legendre 2012). wijh is the Kronecker’s delta, 
describing the presence of information: wijh = 0 when 
the information about trait h is missing for species i and/
or j; wijh = 1 when information is present for both species 
(Podani 2000; Legendre and Legendre 2012). wijh may also 
be used as weights (between 0 and 1), instead of being used 
as Kronecker’s delta (Legendre and Legendre 2012).

Based on their functional similarity, every species i 
among s species in each trophic level specifies a fuzzy set 
to which every species j (j = 1 to s species, including spe-
cies i) in the same trophic level belongs to with a certain 
degree of belonging (uij), taking values in a unit interval. 
The degrees of belonging of each species are the elements 
comprised in the new matrices UA or UB (Fig. 2b) and are 
standardized to unit column total by

where sij is the pairwise similarity in the range 0–1, in our 
definition, Gower’s similarity.

Using matrix multiplication, YA = UANAB and 
YB = NABU’B, we can estimate the probability of a spe-
cies in one trophic level interacting with a species in the 
other trophic level, weighted by their trait similarities 
(Fig. 2b). Using the same procedure, matrices of phyloge-
netic similarities AA and AB are transformed into fuzzy set 
matrices (QA and QB; Fig. 2b), and then scaled up to the 
network level, generating matrices PB and PA, correspond-
ing to the probability of species interactions weighted by 
species phylogenetic resemblance in each trophic level 
(Fig.  2b). Matrices YA, YB, PA and PB contain the prob-
ability of interaction between species that are originally 
described in matrix NAB. However, the probability value for 
the same interaction will differ between matrices, since in 
each matrix the values are constrained by a different subset 
of traits (matrices YA and YB) and phylogenetic distances 
(matrices PA and PB).

Dealing with Co‑Occurrence

Ecologists usually assemble networks that result from sam-
pling schemes that encompass different spatial (Winemiller 
1990; Dáttilo et al. 2013) and temporal scales (Winemiller 
1990; Díaz-Castelazo et  al. 2010; Johansson et  al. 2015). 

(2)uij =
sij

∑s

k=1
skj

Nonetheless, in the resulting network some interactions 
may never happen because a pair of species may not co-
occur either in time (e.g., phenological differences) or space 
(e.g., species inhabit different habitat patches), despite their 
phylogenetic- or trait-similarity. To illustrate the point, 
imagine two predator species that have similar probabilities 
of interaction with a specific prey, either because they are 
functionally or phylogenetically similar, but one of them 
may not consume the same resource species because they 
never occur at the same place and time (e.g., spatial and 
phenological decoupling), either by chance or by biologi-
cal reasons. Matrix F may be used to take this into account 
or to reveal spatial and temporal patterns. Using Hadamard 
element-wise multiplier, we can multiply matrices YA, YB, 
PA and PB by matrix F (Fig. 2c). This multiplication will 
result in four new matrices (Fig. 2c), which contain interac-
tion probabilities, either weighted by trait- or phylogenetic 
resemblance, but corrected by either spatial or temporal 
mismatch between species from different trophic levels.

Matrix Correlations and Null Model

The probabilistic matrices defined before can be used in a 
series of matrix correlation tests in order to detect (i) the 
phylogenetic component of interactions, (ii) phylogenetic 
signal in traits in both trophic levels and (iii) the functional 
component of interactions (Fig. 2d). The statistical signifi-
cance of each matrix correlation is evaluated by permuta-
tion against a null model, which is explained in details 
bellow. Using Mantel matrix correlation, the correlation 
ρ(PAPB) reveals patterns of the phylogenetic component 
of interactions which might be an evidence of cospecia-
tion or, more generally, cocladogenesis (Fig. 2d), in which 
two or more interacting lineages undergo matched branch-
ing events during their phylogenetic history (Thompson 
2014). Phylogenetic signal in traits are evaluated through 
the matrix correlations ρ(YAPA) and ρ(YBPB) (Fig.  2d). 
When the matrix correlation ρ(YAYB) is high, we may infer 
that the observed interactions are largely due to functional 
traits of species in both trophic levels, e.g. plant and ani-
mal species. However, as we pointed out earlier, traits may 
present a significant degree of phylogenetic autocorrelation 
(Felsenstein 1985; Losos 2008), which makes necessary 
to consider the influence of phylogeny into this trait-based 
analysis in order to appreciate the independent effect of 
traits on species interaction. At first, we used higher-order 
partial matrix correlation to remove the effect of phylog-
enies and estimate the independent effect of traits, but this 
approach resulted in tests that were inaccurate in terms of 
Type I Error rates (see “Simulation Study to Assess Type 
I Error Rates” section for more details). Thus, to assess 
the independent trait component of interactions, we used 

Fig. 2  An overall scheme of our analytical framework. a Input data; 
b scaling-up of phylogeny and trait-based data to the network level; c 
fuzzy-weighted interaction matrices are multiplied, using Hadamard 
element-wise multiplier, by a (temporal or spatial) co-ocurrence 
matrix; d eco-evolutionary patterns revealed by matrix correlations

◂
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a slightly different approach removing the phylogenetic 
component of interactions by computing linear regressions 
using the vector that contains species pairwise phylogenetic 
similarities as the predictor variable and the vector contain-
ing species pairwise functional similarities as response var-
iable (Fig. 3). These vectors are obtained from the original 
phylogenetic similarity matrices and by calculating simi-
larity matrices from the original trait matrices from each 
trophic level (Fig. 3). The residuals of these regressions are 
then used in the scaling up process, resulting in two new 
matrices, UresA and UresB (Fig. 3). By matrix multiplication, 

we obtain new trait-weighted interaction matrices remov-
ing the effect of phylogenies: RA = UresANAB and RB = 
NABU’resB. The matrix correlation ρ(RARB) will express 
the correlation between these trait-weighted interaction 
matrices independent of the effect of phylogenies (Fig. 3).

The statistical significance of each zero-order matrix 
correlation, based on distance matrices, is then evaluated by 
permutation against a null model in which the interaction 
matrix is independent from the interacting species traits or 
phylogeny. This is achieved by random permutation among 
the column vectors in one of the fuzzy weighted matrices 

Fig. 3  Method used to assess 
the functional component of 
interactions removing the effect 
of phylogeny. a Scaling up 
of traits to the network level, 
removing the phylogenetic 
signal, based on linear models 
(LM). b Matrix correlation 
model used to test the effect of 
traits in species interactions

Scaling-up removing phylogenetic
signal from trait matrices

Matrix correlation
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(UA, UB, QA or QB and related matrices; Figs. 2b, 3a). The 
column vectors in these matrices represent the fuzzy sets 
defined by each and every species, which are kept intact 
when permuted, generating a new random matrix. This ran-
dom rearrangement is repeated many times and new values 
of matrix correlations are computed and compared to the 
observed value; P values for the test will be the proportion 
of matrix correlations statistics (ρ) larger than or equal to 
the observed ρ in a large number of random permutations 
(P[ρnull ≥ ρ observed]).

Computer Software

The methods described here have been implemented in 
the R (R Core Team 2012) package SYNCSA (Debastiani 
and Pillar 2012) and the code is available in the Online 
Resource 1.

Simulation Study to Assess Type I Error Rates

We evaluated the accuracy of the test by investigating the 
rates of Type I Error (the incorrect rejection of a true null 
hypothesis) using large sets of simulated data (50,000 
iterations in each test). Simulations were implemented as 
to represent realistic biological scenarios, with interaction 
networks varying in size, number of functional traits and 
the number of interactions, and with species traits evolv-
ing according to distinct evolutionary models. However, as 
we were interested in the accuracy of the test, a pure sto-
chastic process was used to determine species interactions. 
Simulations were implemented in several steps, which are 
described in detail below:

a. We first produced simulated phylogenetic trees of dif-
ferent sizes, from 5 to 20 species for each trophic level, 
which gave us networks (see step d) that varied in size, 
from 10 to 40 species. The size of the networks used in 
our simulations is consistent with the size of sampled 
ecological networks, which are usually small, compris-
ing, on average, 23 species as suggested by Jonsson 
(2014);

b. We simulated the evolution of a small number of con-
tinuous characters (1–8 traits) along with their phylo-
genetic trees, under an Ornstein–Uhlenbeck model, 
which simulates different levels of constraints, such 
as stabilizing selection towards an optimum trait value 
for all species in each phylogenetic lineage (Hansen 
1997; Blomberg et  al. 2003). The choice of the num-
ber of traits is also congruent with evidence that sug-
gests that very few traits are necessary to account for 
species interaction (Cohen 1977; Allesina et al. 2008; 

Eklöf et  al. 2013). The Ornstein–Uhlenbeck model is 
governed by one special parameter (α), which directs 
the strength of the stabilizing selection towards an opti-
mum trait value; larger values of α indicate that trait 
values will be closer to the optimum value, thus show-
ing less phylogenetic signal (Blomberg et  al. 2003; 
Harmon et  al. 2010). We simulated different sets of 
parameter values, in order to determine the strength of 
character evolution towards the optimum trait value. 
The range of parameter choices used in the simula-
tions allowed trait evolution to either follow a Brown-
ian process (α → 0), as if evolution of traits followed 
a random walk through evolutionary time, or to follow 
a strong stabilizing selection towards an optimum trait 
value (α → 1).

c. As we were interested in estimating Type I Error rates, 
we simulated qualitative interaction matrices based on 
a random process, using a binomial distribution, where 
each cell of each simulated network has a probabil-
ity of success, i.e., that a pair of species from differ-
ent trophic levels interact, equal to 0.5. Therefore, the 
resulting network is determined solely by chance, with-
out any regard to traits or phylogenies.

d. We then tested three sets of matrix correlations, in 
order to assess the following eco-evolutionary pat-
terns (see Figs.  2d, 3b): (1) phylogenetic component, 
i.e., the association between phylogenies; and the 
functional component of interactions (2) removing the 
effect of phylogeny and (3) without removing it. The 
significance level to reject the null hypothesis was set 
a priori at α = 0.05. Each test was deemed accurate 
if Type I Error was within 99.9% confidence limits 
(0.05 ± 0.0032 for 50,000 simulated datasets). The R 
code for the simulation study is available in the Online 
Resource 2.

The results of our simulation study show that our 
framework is accurate, with Type I Error within 99.9% 
confidence limits for P = 0.05 (Table  1). All tests behave 
adequately in terms of Type I Error, rejecting a true null 
hypothesis in ~5% of the simulated datasets, independent 

Table 1  Simulation results for Type I Error of the matrix correla-
tion tests proposed in this paper, based on 50,000 simulated data 
sets. Tests were considered accurate in terms of Type I Error if the 
rejection rates fell within the 99.9% confidence limits (0.05 ± 0.0032)

Proportion of tests

Phylogenetic component 0.0495
Functional component removing phylogenetic 

signal
0.0496

Functional component without removing phylo-
genetic signal

0.0496
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of network size, number of traits and the strength of stabi-
lizing selection. The results for each subset of parameters 
can be seen in the Online Resource 3. In a first simula-
tion study, we tried to estimate the functional component 
of interactions by removing the phylogenetic signal using 
simple first order matrix correlations (akin to partial Man-
tel test) using the phylogenetic and trait matrices after they 
have been scaled up to the network level (matrices YA, 
YB, PA and PB in Fig. 2). However, the results of this first 
simulation study showed these higher order matrix correla-
tions were inaccurate, with very low rates of Type I Error, 
in which true null hypotheses were rejected in 0.3% of the 
simulated datasets. In order to circumvent this problem, we 
used the procedure described above (see section “Matrix 
Correlations and Null Model” and Fig. 3) by scaling up the 
residual matrices from phylogenetic and trait matrices. This 
procedure proved to be accurate in terms of Type I Error 
(Table 1).

An Example from a Mutualistic Network

In order to illustrate our approach, we used data from a 
seed dispersal network from a grassland-forest mosaic 
from southern Brazil (30°25′S; 52°21′W). Birds were cap-
tured with mist-nets, which were placed in grasslands near 
to forest patches. Mist nets were set up monthly for eight 
consecutive days, between July 2007 and June 2008. Birds 
captured in mist nets were then placed into fabric bags for 
20 min, and their feces were collected from bags. The seeds 
found in fecal samples were identified to species, and with 
this information at hand it was possible to build an inter-
action matrix between birds and the plant they consumed, 
with the frequencies of interaction (i.e., the number of 
times a specific bird species consumed a specific plant spe-
cies). This interaction matrix consists of 128 interactions 
between 22 plant species, and 12 bird species (see Fig. 4).

We measured five plant traits (dispersule diameter, max-
imum plant height, aril presence, diaspore shape and color) 
and four bird traits (body length, beak length, beak height 
and the hand-wing index; for further details, see Online 
Resource 4). Using the APG III megatree (R20100701.
new; Angiosperm Phylogeny Group 2009), we constructed 
a base family-level phylogeny. Due to the lack of within-
family resolution, species and genera were represented as 
soft polytomies within genera and families, respectively. 
Branch lengths were added to the phylogeny using the 
BLADJ algorithm (Webb et  al. 2008), which constrains 
the age of nodes included in the sample according to the 
dated molecular phylogeny of Wikström et al. (2001). For 
birds, we used the phylogenetic trees available at birdtree.
org (Jetz et al. 2012). We then built a strict consensus tree 
using Mesquite 2.75 (Maddison and Maddison 2007). As 

for plant species, bird taxa were also represented as soft 
polytomies. Branch lengths of terminal taxa were arbitrary 
lengthened in the consensus tree using the function “ultra-
metricize” in Mesquite. Phylogenetic distances between all 
pairs of species were then calculated using the PHYDIST 
procedure of Phylocom (Webb et  al. 2008). The data are 
available at the Interaction Web Database (https://www.
nceas.ucsb.edu/interactionweb/).

We employed our framework to scale phylogenetic and 
trait data to the network level. As sampling lasted nearly 
1 year, we used Hadamard multiplier to multiply all four 
probabilistic matrices by the F matrix, which is an inci-
dence matrix, where 1 s mean that at least once, during the 
sampling period, a bird species occurred in the study site 
when a specific plant species was fructifying, and 0 s mean 
otherwise. We then tested four matrix correlation models, 
using Euclidean distance as a resemblance measure: phy-
logenetic signal in traits in each trophic level; correlation 
among traits accounting for species interactions, removing 
the effect of phylogenies and; the correlation between phy-
logenies, in order to detect patterns of cocladogenesis.

The results are shown in Table  2. Among the four 
tested models, the only significant correlation was the one 
between bird and plant traits, showing that birds must have 
specific traits in order to consume their plant resources, and 
that phylogenetic resemblance has no explanatory power 
for the evolution of species traits and species interactions 
in this seed-dispersal network. As the benefits of plant-ani-
mal disperser interactions are mutual, ecologists and evolu-
tionary biologists have long pondered whether this sort of 
mutualistic interaction is constrained by strong evolution-
ary forces (Snow 1971; Morton 1978; Howe 1993; Mul-
ler-Landau and Hardesty 2005). Theoretical models and 
empirical data suggest that plant-seed disperser interactions 
are a system of low specialization (Herrera 1995; Muller-
Landau and Hardesty 2005), in which a species from one 
trophic level can interact with many species of the other 
level. Moreover, it has been suggested that frugivory is a 
foraging mode that does not require special adaptation in 
traits involved in the interaction (Jordano 2000). Our results 
seem to corroborate the idea that plant-seed disperser net-
works exhibit low specialization, in terms of interacting 
species, and are not governed by strong evolutionary con-
straints. Alternatively, the lack of correlation between phy-
logenies may indicate selection imposed by mutualistic 
interactions strongly affecting trait evolution, as expected in 
mutualisms among free-living species and based on trait-
matching (Thompson 2006; Guimarães et al. 2011). In fact, 
our results also demonstrate that some level of trait comple-
mentarity is relevant for determining interaction patterns, 
despite the high plasticity of the foraging spectrum of birds. 
Although one might expect trait evolution to be influenced 
by the phylogenetic relationship among species, it is now 

https://www.nceas.ucsb.edu/interactionweb/
https://www.nceas.ucsb.edu/interactionweb/
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widely recognized that traits vary tremendously in their 
phylogenetic pattern (Blomberg et  al. 2003), and recent 
evidence suggest that this relationship should be expected 
only under some very specific conditions that are seldom 

expected to hold in mutualisms among free-living species 
(Thompson 1994). For example, Nuismer and Harmon 
(2015) have demonstrated that mutualistic networks, such 
as our example, should exhibit less phylogenetic signal in 
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rates of interactions than competitive ones, and that if inter-
actions within a network depend on a mechanism of pheno-
type differences, phylogenetic information has little predic-
tive power for trait evolution and interaction rates.

Discussion and Final Remarks

Understanding how species interact and how the topol-
ogy of ecological networks influences the dynamics of 
populations and communities is at the core of ecological 
inquiry and has been challenging ecologists for over a cen-
tury now (Camerano 1880; Paine 1980; Polis and Strong 
1996; Schleuning et  al. 2015). Despite the long tradition, 
the study of complex ecological networks has dramatically 
increased in the past two decades (Miranda et  al. 2013). 
Nonetheless, most empirical studies still focus on the 
description of network properties, such as size (i.e., spe-
cies richness within the network), connectivity and degree 
distribution (Miranda et al. 2013). Only recently, there has 
been a growing interest of moving beyond the description 
of topological patterns and the integration of other types of 
data, such as phylogenetic and trait data, to reveal patterns 
of species interactions (e.g., Rezende et al. 2007; Rafferty 
and Ives 2013; Hadfield et al. 2014; Vizentin-Bugoni et al. 
2014). Here, we developed a statistical framework based 
on fuzzy set theory and Monte Carlo statistics capable of 
identifying eco-evolutionary patterns that might suit some 
of this interest. More specifically, our method is intended 
to answer the following ecological questions: Is there phy-
logenetic signal in traits accounting for species interaction? 
Are species interactions driven by trait resemblance? Are 
species interactions driven by phylogenetic resemblance 
(i.e., is there evidence of cocladogenesis?)? At this point, 
however, it is important to note that interpreting cophylo-
genetic analyses can be extremely difficult and finding cor-
related phylogenies does not necessarily indicate a history 
of coevolution or cospeciation (Banks and Paterson 2005; 
Thompson 2005). Accordingly, coevolution does not imply 
in cospeciation, cocladogenesis, or in correlated phyloge-
nies (Thompson 1994, 2005). For instance, in host-parasite 

networks, gradual host-switching by parasite species, fol-
lowed by speciation events may lead to “false” congru-
ent phylogenies (Banks and Paterson 2005). Thus, results 
should be interpreted with caution. However, our cophy-
logenetic analysis can help ecologists to understand net-
work patterns and bring important information to applied 
matters, such as choosing target species to conservation or 
restoration plans, as it allows us to identify pair of species 
with higher chance of interacting, and the role of phyloge-
netic- and/or trait-resemblance, even if different processes 
may lead to the same apparent pattern.

Our method is less restricted by statistical assumptions 
than model-based approaches, it is relatively easy to apply 
and can be used with both qualitative and quantitative spe-
cies interaction matrices. Other advantage of the method is 
that it is suitable for a range of data types, allowing inves-
tigators to use qualitative (expanded as dummy variables) 
and/or quantitative traits. Also it does not require the avail-
ability of dated phylogenetic trees, as the method is based 
on resemblance matrices. In situations where phylogenetic 
trees are not available, distances can be computed from raw 
data such as sequences in databases. Moreover, our method 
could be easily expanded to include other kind of ecologi-
cal information, such as environmental variables. By using 
higher order matrix correlations, one could access the 
effects of phylogeny, traits and the underlying environmen-
tal gradient on the architecture of networks.

Hadfield et  al. (2014) evaluated the accuracy of the 
cophylogenetic permutation tests proposed by Legendre 
et  al. (2002), Homola et  al. (2009) and the model-based 
approach proposed by Ives and Godfray (2006). Their 
results show that in the presence of phylogenetic signal, and 
when evolutionary interactions effects are present, these 
three methods give severely inflated Type I Error rates 
when trying to estimate the correlation between phyloge-
nies in a bipartite network. Contrary to these methods and 
despite its resemblance with the Mantel and partial Mantel 
approach (Smouse et al. 1986; Legendre and Fortin 2010; 
Debastiani and Duarte 2016), which has been criticized by 
its low power, and under some circumstances, inflated Type 
I Error rates (Lapointe and Legendre 1995; Harmon and 
Glor 2010; Legendre and Fortin 2010; but see Debastiani 
and Duarte 2016), our statistical framework gave accurate 
rejection rates, rejecting a true null hypothesis in ~5% of 
the simulated datasets, even in the presence of strong phy-
logenetic signal, as shown in our simulation study.

We additionally point out another possible applica-
tion of the framework developed here. The method could 
be used to construct an interaction probability matrix for 
unobserved realizations, and predict possible interactions. 
Using the scaling up process we presented here, one could 
predict the interaction probability of species that are known 
to occur in the study site, but were not observed interacting 

Table 2  Summary statistics for four models for the seed dispersal 
network from southern Brazil

*Results deemed significant at α = 0.05

ρ P value

Phylogenetic component 0.06 0.84
Functional component, removing phyloge-

netic signal
0.49 <0.001*

Phylogenetic signal in plant species 0.28 0.99
Phylogenetic signal in bird species 0.25 0.94
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with other species. These species could be included in 
the interaction matrix, with zero values across their rows 
or columns. Then, one could estimate the probability of 
interaction with each and every species in the other trophic 
level, based on species trait- of phylogenetic- resemblance. 
Although this possibility has yet to be tested, it is a poten-
tial feature of the method, which can account for sampling 
problems or be used in other applied matters, when one 
has to estimate the probability of interactions that were not 
observed directly in the field.

To conclude we stress that the statistical method we 
developed here and its extension can de used to tackle a 
wide range of eco-evolutionary questions. We hope that 
further developments broaden the range of possible appli-
cations and our understanding of underlying mechanisms 
driving patterns in ecological networks.
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