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Abstract Reflectance spectrophotometry is used to

quantify animal coloration and compare it across indi-

viduals, populations or species. While principles of colour

perception, pigment-based colour production, and some

structural-based colour production, all conform to re-

flectance differences on a ratio scale, reflectance is usually

measured on a linear scale. Processing reflectance spectra

on a linear scale distorts colour information (e.g. averaging

linear spectra overestimates mean brightness), and com-

puting receiver-independent colour metrics using linear

reflectance can bias results (e.g. it underestimates differ-

ences in saturation and brightness among dark colours).

Working with reflectance spectra on a ratio scale obviates

those issues and improves several aspects of colour ana-

lysis, from better visualization of reflectance spectra and

control of measurement error, to better colour metrics.

Keywords Animal communication � Colour perception �
Colour production � Reflectance spectrophotometry �
Sensory ecology � Sexual selection

Introduction

Reflectance spectrophotometry is used to compare colour

across individuals, populations or species, often in cross-

species comparative studies that assess differences among

animals with widely different colours. Reflectance spectra

are usually computed as the percentage of reflected light at

different wavelengths, by reference to a white standard

(Andersson and Prager 2006). Methods to extract infor-

mation from these spectra fall in two categories: receiver-

independent methods that quantify properties of the spectra

directly, and methods that use visual models (i.e. functions

of visual sensitivity at different wavelengths) to quantify

colour (reviewed in Montgomerie 2006; for a recent

overview and implementation of these methods, see Maia

et al. 2013). Each approach has advantages and limitations:

receiver-independent methods provide more objective de-

scriptions of colour properties, while visual models provide

a better approximation to how animals perceive colour

differences.

Here we note that measuring reflectance on a linear

scale (percentage or proportion of reflectance relative to

white) is artificial from the perspectives of colour percep-

tion, pigment-based production of colour, and some

structural-based colour mechanisms as well. We then ex-

plain that working with reflectance on a linear scale (e.g.

averaging reflectance spectra using arithmetic means, or

computing differences in reflectance by subtraction) can

bias analyses. These problems are more severe when using

receiver-independent colour metrics, but also apply when

processing reflectance data (e.g. averaging multiple re-

flectance measurements) for later use with visual models,

and working with logarithmic reflectance (i.e. reflectance

on a ratio scale) avoids them.

Reflectance Ratios in Colour Perception

and in Colour Production

A fundamental property of biological sensory and cogni-

tive systems is that discrimination thresholds augment

proportionally to the intensity of stimuli (Weber’s law)
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such that, over a large dynamic range, psychological sen-

sation scales with the logarithm of stimulus intensity

(Fechner’s law; Dehaene 2003; Goldstein 2010; Akre and

Johnsen 2014). Therefore, animals discriminate better

among stimuli of low than of high intensity within their

sensory range. In the case of light intensity (perceived as

colour brightness), many species were shown to dis-

criminate brightness approximately on a ratio scale of light

intensity (e.g. Griebel and Schmid 1999; Scholtyssek et al.

2008; Lind et al. 2013), though deviations to this pattern

exist (e.g. when changing from photopic to scotopic vision,

or in fishes with double retinas; Anthony 1981; Nicol

1989). Accordingly, most visual models log-transform

quantum catches (i.e. the amount of light stimulation in

photoreceptor cells) in order to compute the strength of the

sensory signal (e.g. equations 3 and 4 in Vorobyev et al.

1998; equation 10 in Endler and Mielke 2005).

From the perspective of pigment-based colour produc-

tion, ratio scales of reflectance are also more meaningful.

Tissue that absorbs little light is either translucent or bright

achromatic (i.e. reflecting evenly across wavelengths).

Most pigments, on the contrary, absorb light efficiently.

Pigments that absorb evenly across the visible wavelengths

will darken tissues achromatically, and pigments that ab-

sorb preferentially certain wavelengths will give a com-

plimentary colour hue to the tissue by subtractive colour

mixing (Billmeyer and Saltzman 1981). For example,

carotenoid pigments absorb mostly at medium wave-

lengths, causing reflectance plateaus at the long (yellow to

red) and short wavelengths (ultraviolet to blue) that we

perceive as the red and yellow colours of many animals;

conversely, in plants, chlorophylls absorb mostly long and

short wavelengths, causing a peak of reflectance at medium

wavelengths (green). All else being equal, increasing the

concentration of a pigment by equal amounts should result

in progressively smaller changes in linearly-measured re-

flectance, because pigments absorb light efficiently and the

asymptotic, saturated reflectance (i.e. the reflectance of the

pure pigment) is approached rapidly. As a commonplace

example, we perceive that the first spoon of coffee darkens

a cup of milk more than the second spoon, and so forth

(despite the bias of visual systems to distinguish dark

colours better than bright ones; Goldstein 2010). As a more

accurate example, reflectance at wavelengths where

chlorophyll absorbs the most decays exponentially as

chlorophyll concentration increases (i.e. chlorophyll con-

centration is negatively proportional to the logarithm of

reflectance; e.g. Sims and Gamon 2002), and the best

colorimetric proxies for chlorophyll content are thus based

on reflectance ratios (Chappelle et al. 1992; Datt 1999;

Sims and Gamon 2002).

As a consequence of reflectance decaying exponentially

with pigment concentration, log-transformation is also

advisable on measurement-theoretical grounds. As linear-

ly-measured reflectance tends to an asymptote with in-

creasing pigment concentrations, variances in

measurements will likely decrease: for a given change in

pigment concentration, changes in linearly-measured re-

flectance will be smaller lower in the reflectance scale.

Similarly, it is common that in other attributes of animals

(e.g. size, Gingerich 2000) variance scales with value,

approaching geometric normality of variation, and in those

cases measurements should be log-transformed to a ratio

scale in order to normalize variance (Houle et al. 2011).

Working with a ratio scale also has the advantage that

ratios are unitless, and therefore the numeric values of

colour comparisons are not affected by, for example, dif-

ferences in calibration of white across studies.

Much of animal coloration is based on pigmentation, but

there are also various mechanisms of structural colour

production (Kinoshita and Yoshioka 2005; Kinoshita

2008). Because structural colour often involves complex

combinations of reflection, refraction and/or absorption, it

is not always straightforward which reflectance scale better

depicts quantitative changes in the underlying production

mechanism. Therefore, we make no sweeping claim that a

ratio scale is always advantageous to quantify structural

colours. But often reflectance ratios should depict differ-

ences in the underlying colour mechanisms better than

linear reflectance, because increasing elaboration of the

colour-producing structure will eventually converge to-

wards an asymptote of reflectance. For example, all else

being equal, linear increases in the reflectance of multi-

layer structures imply an exponential increase in the

number of layers (i.e. the number of layers is proportional

to the logarithm of reflectance; e.g. Figure 4 in Kinoshita

and Yoshioka 2005, and pages 22–23 in Kinoshita 2008).

Reflectance Ratios Reduce Analysis Bias

Reflectance spectra (plots of reflectance vs. wavelength)

provide a detailed description of colour. Three properties of

colour are indicated by the height and shape of these

spectra: brightness is indicated by the height of spectra

(brighter colours reflect more), saturation by differences in

reflectance across wavelengths, and hue by where (i.e. at

which wavelengths) those differences in reflectance are

located. Receiver-independent colour metrics quantify

these three aspects of the height and shape of reflectance

spectra (Montgomerie 2006), and can be used to compare

spectra that do not differ strongly in shape. The following

example shows how this rationale is biased when working

with reflectance on a linear scale and, on the contrary, how

it holds true when working on a ratio scale.

Figure 1a shows a simple reflectance spectrum increas-

ing linearly from 1 to 50 % across the bird-visible
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wavelengths, and two additional spectra transposed upwards

by adding a constant amount of reflectance each time. The

three spectra have the same shape and are equidistant from

each other on a linear scale, which erroneously suggests

identical hue and saturation, and similar differences in

brightness. Figure 1b shows approximately how the hue,

saturation and brightness of these spectra would be per-

ceived by us and, using an avian sensory model, quantifies

the chromatic and achromatic contrasts between adjacent

spectra (see ‘‘Appendix 1’’ for methods): the three colours

are perceived as different both chromatically and achro-

matically, and differences between the brighter spectra are

smaller than between the darker spectra. Figure 1c shows

the same three spectra plotted on a ratio scale, where it is

clear that the three colours are different (the shapes of the

upper spectra are shallower), and that the differences in

brightness are unequal. If the original reflectance spectrum

(the one increasing from 1 to 50 %) is instead transposed on

a ratio scale—i.e. each time multiplying reflectance by a

constant (Fig. 2a) or, equivalently, adding a constant to log-

transformed reflectance (Fig. 2c)—, then the three colours

are identical except for brightness (Fig. 2b). Again, spectra

on a ratio scale give a good indication of differences and

similarities between colours (the three spectra have the same

shape and are equally distant; Fig. 2c), while on a linear

scale (Fig. 2a) the different shapes and uneven distances

between spectra would wrongly suggest otherwise.

Thus, reflectance spectra on a linear scale give a biased

depiction of colour, while spectra on a ratio scale are true

to colour similarities and differences. Among other biases,
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Fig. 1 Reflectance colour spectra differing by a constant linear

difference in reflectance, plotted (a) on a linear or (c) on a ratio scale

of reflectance. b Illustration of how hue and brightness of these three

colours would be approximately perceived by humans, and the extent

of chromatic and achromatic contrasts between adjacent colours, in

units of just noticeable differences. See ‘‘Appendix 1’’ for methods
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Fig. 2 Reflectance colour spectra differing by a constant ratio of

reflectance, plotted (a) on a linear or (c) on a ratio scale of reflectance.
b Illustration of how hue and brightness would be approximately

perceived by humans, and chromatic and achromatic contrasts

between adjacent colours in units of just noticeable differences. See

‘‘Appendix 1’’ for methods
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the above example shows that reflectance on a linear scale

overestimates differences among bright colours, which can

affect empirical results. As a real-life example, consider

Taysom et al.’s (2010) data on sexual dichromatism in

pigment-based red to yellow colours of Australasian par-

rots. Figure 3a plots sexual dichromatism (for simplicity

computed as achromatic contrast between the sexes, using

an avian visual model) against brightness of the different

species (see ‘‘Appendix 2’’ for methods). Sexual dichro-

matism shows only a weak trend for brighter species to be

less dichromatic (Fig. 3a; r = -0.19, P = 0.36, N = 27

species). A similar result is obtained computing brightness

differences with a receiver-independent metric (mean re-

flectance) on a ratio scale (Fig. 3b; r = -0.06, P = 0.75).

On the contrary, the same receiver-independent metric on a

linear scale would yield an artefactual trend for brighter

species to be more dichromatic (Fig. 3c; r = 0.27,

P = 0.18), because reflectance on a linear scale overesti-

mates differences among bright colours.

Recommendations

Because of the above, working with reflectance on a linear

scale can introduce errors at different stages of colour ana-

lysis.We next give recommendations to address problems of

(a) graphic misrepresentation of colour, from the perspec-

tives of colour perception and production, (b) assessing

measurement inaccuracy, (c) distorting colour information

during processing, and (d) bias in colour metrics.

a. Graphic misrepresentation of colour

As illustrated with the examples in Figs. 1 and 2, re-

flectance spectra on a linear scale misrepresent colour be-

cause identical spectral shapes at different heights of

reflectance have different chromatic properties. A better

visual representation of colour is provided by reflectance

spectra on a ratio scale, which is consistent with the

mechanisms of perception, and production of pigment- and

some structural-based colours, and in which case the shape

of spectra indicates chromatic properties of colour inde-

pendently of achromatic brightness. The base for the

logarithmic transformation used to convert percent re-

flectance to a ratio scale is arbitrary.

b. Dealing with measurement inaccuracy

Spectral measurements have a degree of inaccuracy, and

light contamination or other problems may also occur.

Therefore, common procedures for quality control are to

look for outliers across measurement of the same colour

patch, or to monitor reflectance in real-time and save a

spectrum only after its shape stabilizes across consecutive

readings. This helps to avoid measurements with noticeable

contamination or transient irregularities in reflectance.

Most colour metrics based on visual models are affected by

ratios rather than absolute changes in reflectance (e.g.

Vorobyev et al. 1998; Endler and Mielke 2005), but

monitoring spectra on a linear scale makes it difficult to

assess those relative changes near 0 % reflectance (e.g.

doubling reflectance from 0.5 to 1 % is difficult to monitor

compared to an equivalent doubling from 5 to 10 %, for

example). Monitoring spectra on a ratio scale would render

those relative differences perceptible, and allow better

quality control of measurements.
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Fig. 3 Differences in brightness between male and female red-to-

yellow colours of Australasian parrots, computed as a achromatic

colour contrast, b absolute differences in reflectance on a ratio scale,

and c absolute differences in reflectance on a linear scale, plotted

against the mean colour brightness of the different species. Note how

reflectance differences on a linear scale change substantially the

apparent relation between sexual dichromatism and mean brightness.

Data from Taysom et al. (2010); see ‘‘Appendix 2’’ for methods
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Small inaccuracies measuring reflectance have negligi-

ble effects on colour metrics when reflectance is high, but

when reflectance is near 0 % they translate into large errors

in relative reflectance. Therefore, limits to instrument ac-

curacy compromise the usefulness of very low reflectance

measurements. Because of instrument inaccuracy, spectra

of very dark colours may have small peaks of negative

reflectance, and it is common that researchers or software

flatten these negative values to 0 % (e.g. the procspec

function in the R package pavo; Maia et al. 2013). Flat-

tening low reflectance values changes the shape of spectra,

but this may be justifiable as a compromise to avoid

measurement error in the low reflectance range. Flattening

low reflectance values also seem preferable to shifting

spectra, for example by addition of a constant, because this

would change chromatic properties even in spectra that do

not have regions of low reflectance (see Fig. 1 and the

following section). We recommend that low reflectance

values be flattened higher than 0 % (at least to 1 % re-

flectance or, equivalently, 0 log-reflectance), to make ex-

plicit the compromise with avoiding spurious colour

estimates in the low-reflectance range: although flattening

regions of low reflectance in very dark colours can strongly

change reflectance ratios within spectra, and thus diminish

the inferred saturation of colour, this seems preferable to

obtaining some very high, spurious saturations that can

come about due to slight instrument inaccuracy in this very

low reflectance range.

c. Processing reflectance spectra

Reflectance spectra are typically processed before col-

our analysis. A common procedure is to average spectra

from different points on a colour patch, rather than taking a

single measurement, in order to account for colour

heterogeneity. When using linear reflectance this distorts

colour information because, as explained before, chro-

matically identical colour spectra change multiplicatively

rather than additively. Therefore, using arithmetic means

with linear reflectance overestimates mean colour bright-

ness and changes the other chromatic properties of colour.

The correct way to average reflectance spectra is to use

geometric means with linear reflectance or, equivalently,

regular arithmetic means with logarithmic reflectance.

Strictly speaking, smaller-scale averaging of reflectance,

such as that involved in curve smoothing or in the auto-

matic integration of consecutive readings done by spec-

trophotometry software, should also use logarithmic

reflectance. But since this smaller-scale processing deals

with spectra at a single measurement point, rather than

measurements at distinct points on the animal, this level of

detail is probably of little relevance.

Other processing that is sometimes done to reflectance

spectra includes adding a constant or rescaling in order to

standardize a property of colour. This type of manipulation

is generally unnecessary for computing colour metrics, and

is perhaps unadvisable because it can introduce unintended

changes in the properties of colour. For example, when

working with spectra of linear reflectance, adding a con-

stant to standardize brightness will also change the chro-

matic saturation of colour (Fig. 1).

d. Colour metrics

Most implementations of visual modelling work on a

ratio scale by log-transforming light quantum catches

(Vorobyev et al. 1998; Endler and Mielke 2005), or com-

puting ratios of quantum catches rather than differences

(Evans et al. 2010), and colour metrics produced by those

models already address the non-linear sensation of light

intensity. But, inconsistently with the rationale of these

visual models, measuring and processing (e.g. averaging)

spectra do not typically address the non-linear nature of

light reflectance, thus causing the shortcomings explained

in points (b) and (c), above. Therefore, we advise pro-

cessing reflectance data on a ratio scale prior to running

visual models. Visual models are then run as usual (i.e. do

not input log-transformed spectra into models designed to

accept linear reflectance, but rather back-transform to lin-

ear before input into those models).

Some implementations of visual modelling do not log-

transform quantum catches, arguing that it homogenises

variation in colour saturation and that, although light in-

tensity stimulates photoreceptor cells on a ratio scale ac-

cording to Fechner law, higher-level neural processing may

revert this in order to enhance colour discrimination (Stod-

dard and Prum 2008). We acknowledge that log-transfor-

mation reduces variance in inferred colour saturation, as

illustrated by the data in Fig. 4. We also agree that higher-

level neural processing may adjust colour discrimination to

fit the ecological and social needs of animals. But re-

flectance ratios are generally more informative regarding the

physical and biological world, because they have stronger

links to colour production mechanisms (see above); it is thus

likely that higher-level adjustment of colour discrimination

remains close to a ratio scale, rather than reverting to linear.

This is in accordance with the behavioural discrimination of

light intensity on a ratio scale found in most animals (e.g.

Griebel and Schmid 1999; Scholtyssek et al. 2008; Lind

et al. 2013). Since visual models that log-transform or

abstain from log-transforming quantum catches do not

always estimate colour saturation congruently with each

other (Fig. 4), the decision over whether or not to apply

Fechner law may occasionally affect conclusions.
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As for receiver-independent metrics, when computed us-

ing a linear scale of reflectance they are prone to the biases

explained earlier: misjudging differences in brightness, and

chromatic metrics being confounded by the overall level of

brightness. Using logarithmic reflectance corrects those bi-

ases (Figs. 1, 2). Some receiver-independent metrics are not

affected by the reflectance scale used (hue metrics that

identify wavelengths of peak reflectance), but most metrics

will differ from a linear to a ratio scale (e.g. all brightness and

saturation metrics, hue metrics that identify reflectance

slopes or mid-reflectance; see Montgomerie 2006, for a list

and explanation of receiver-independent metrics). Most re-

ceiver-independent metrics are applicable to spectra of

logarithmic reflectance with no changes in formulae. The

exceptions are metrics that join information from spectrum

height and shape, rather than obtaining information on height

(for brightness) and shape (for hue and saturation) separately.

For example, the proportion of reflected light on selected

wavelengths relative to the entire visible range is often used

as a metric of colour saturation. Such proportions cannot be

calculated using logarithmic reflectance, which is a ratio

scale itself and as such does not have a lower boundary (for

use with logarithmic reflectance, these metrics should be

modified to: mean reflectance on selected wavelengths minus

mean reflectance on the entire visible range).

In conclusion, we hope to have raised awareness that

linear reflectance is inconsistent with principles of colour

production and perception, which are better approximated

by a ratio scale. As a consequence, quantifying reflectance

on a ratio scale improves the workflow of colour analysis:

from better quality control of reflectance measurements, to

better colour metrics.
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Appendix 1

Chromatic and achromatic contrasts (CC and AC, respec-

tively) between pairs of adjacent spectra in Figs. 1 and 2

were calculated, in units of just noticeable differences,

using the visual model of Vorobyev et al. (1998; see also

Siddiqi et al. 2004) as implemented in the R package pavo

(v0.5-1, functions vismodel and coldist; Maia et al.

2013). CC is computed using quantum catches from single-

cones, and AC using quantum catches from double-cones.

Visual model settings were as follow: average UV avian

sensitivity, regular daylight illumination, von Kries cor-

rection, absolute quantum catches according to Fechner

law, and the remaining options set to default (contrasts are

identical whether modelling with or without von Kries

correction, applying Fechner law or not).

To illustrate how we would approximately perceive hue

and saturation of the spectra in Figs. 1 and 2, we used the

function spec2rgb in pavo. The resulting coordinates in

RGB (red–green–blue) colour space were converted to

coordinates in the HSL (hue–saturation–lightness) colour

space, and the lightness coordinates set to an identical,

arbitrary value to illustrate chromatic differences while

holding brightness constant.

To illustrate how we would approximately perceive

colour brightness of the spectra in Figs. 1 and 2, we

measured emitted light of a greyscale, from black to white
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Fig. 4 Scatterplot of colour saturation, r (quantified as the distance to

the achromatic centre of an avian colour space; Endler and Mielke

2005; Stoddard and Prum 2008), for ca. 9000 measurements of

plumage colours across 135 species of estrildid finches, using visual

models that do or do not apply Fechner law (i.e. log-transforming

quantum catches of photoreceptor cells). Histograms show the

variances in each metric, and the scatterplot shows the non-linear

relation between the two metrics. See ‘‘Appendix 3’’ for methods
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at intervals of 5 % lightness, on a computer monitor with

an Ocean Optics USB4000 spectrophotometer, calibrating

emission spectra with black and white measurements on

the same monitor. We then chose the tone of grey whose

mean log light emission across the human-visible wave-

lengths (ca. 400–700 nm) best matched those of each

spectrum in Figs. 1 and 2.

Appendix 2

We used the data of Taysom et al. (2010) on pigment-based

red to yellow colour of Australasian parrots, but here flat-

tened reflectance values lower than 1 % in the original

spectra to 1 %, and used geometric rather than arithmetic

means to average across the spectra of each individual and

then across the different individuals of each species and sex

(see the section ‘Recommendations’ in the main text). We

calculated the achromatic contrast between the mean

spectrum of males and females for each species, using the

visual models of Vorobyev et al. (1998) as implemented in

pavo (Maia et al. 2013) with the same settings as de-

scribed before. For comparison with these achromatic

contrasts, we computed absolute values of the difference

between the sexes in receiver-independent metrics of

brightness: mean reflectance on a linear (% reflectance) or

on a ratio (log10 % reflectance) scale of reflectance, across

the bird-visible frequency range (ca. 300–700 nm). Mean

brightness for each species (horizontal axes in Fig. 3) was

computed as the mean of male and female log10 % re-

flectance across their visible frequency range.

Appendix 3

We used 8911 reflectance spectrophotometry measure-

ments of plumage colours, made on museum skins of 135

species of finches in the family Estrildidae. For most spe-

cies male and female specimens were measured, usually

three specimens per species/sex, and multiple measure-

ments of colour were made that include all the main body

parts. This dataset will be described in detail elsewhere.

Here we applied visual models to estimate colour

saturation of these spectra as the distance to the achromatic

centre of an avian tetrahedral colour space (Endler and

Mielke 2005; Stoddard and Prum 2008). Reflectance values

lower than 1 %were flattened to 1 %, and spectra were then

analysed using the avian visual model of Vorobyev et al.

(1998) as implemented inpavo (functionsvismodel and

tcs; Maia et al. 2013). Visual model settings were as fol-

low: average UV avian sensitivity, regular daylight illu-

mination, von Kries correction, relative quantum catches

according to Fechner law (i.e. log-transforming quantum

catches, for the x-axis of Fig. 4) or relative quantum

catches without Fechner law (i.e. not log-transforming,

for the y-axis of Fig. 4), and the remaining options set to

default.
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