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Abstract Most biologists are familiar with principal

component analysis as an ordination tool for questions

about within-group or between-group variation in systems

of quantitative traits, and with multivariate analysis of

variance as a tool for one useful description of the latter in

the context of the former. Less familiar is the mathematical

approach of relative eigenanalysis of which both of these

are special cases: computing linear combinations for which

two variance–covariance patterns have maximal ratios of

variance. After reviewing this common algebraic–geo-

metric core, we demonstrate the effectiveness of this

exploratory approach in studies of developmental canal-

ization and the identification of divergent and stabilizing

selection. We further outline a strategy for statistical

classification when group differences in variance dominate

over differences in group averages.

Keywords Classification � Covariance matrix �
Developmental canalization � Morphometrics �
Natural selection � Principal component analysis

Introduction

Most biologists are familiar with the multivariate ordina-

tion techniques that seek particularly interesting directions

(linear combinations) along which to sort a sample of

organisms in a high-dimensional data space. Principal

components analysis (PCA) finds the directions that have

greatest variance when the coefficients are scaled to have

unit sum of squares; canonical variate analysis (CVA) and

multivariate analysis of variance (MANOVA) find the

directions that have greatest between-group variance in

proportion to the pooled within-group variance of the same

linear combination. Even though these directions and the

corresponding scores are not presumed a priori to convey

any biological meaning, together they often enable a useful

exploration of patterns and differences.

These methods are mainly aimed at identifying differ-

ences among group averages, but differences in variance

among groups may be at least as important as differences

among their averages. Variance differences may indicate

genetic or environmental perturbations, breakdown of reg-

ulatory processes during development, or multiple kinds of

selection and other population processes (see, among others,

Tanner 1963; Lande 1979; Philipps and Arnold 1989; Gibson

and Wagner 2000; Debat and David 2001; Hallgrimsson

et al. 2002; Badyaev and Foresman 2004; Hallgrimsson and

Hall 2005; Mitteroecker 2009; Mitteroecker et al. 2012). In

evolutionary theory, genetic and phenotypic variation are the

key determinants of a population’s response to selection,

and, still in theory, this determination is often expressed well

in terms of variances and covariances (e.g., Lande 1979;

Falconer and Mackay 1996).

In contrast to the well-known statistical hypothesis tests

for homogeneity or proportionality of variance–covariance

matrices (e.g., Mardia et al. 1979; Manly and Rayner 1987;
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Martin et al. 2008), it is less common to encounter

explorations of differences in variance and covariance

across a multivariate data set—to be shown how two var-

iance–covariance matrices differ and to see these differ-

ences described in biologically interpretable ways.

How does one compare variances across groups for a

single variable? For quantities whose values have to be

positive, like measured weights or concentrations, one

conceptually accessible way to report comparisons is as

ratios: the average in group 2 is double the average in

group 1, or half. The construction of ratio scales for tem-

perature and for energy were two of the triumphs of

nineteenth-century physics, for instance. Variances are

positive numbers, and ratios of variances make intuitive

sense. For example, they do not depend on linear trans-

formations of the variables such as changes of the unit of

measurement.

Now extend the topic from single measurements to

multiple measurements. For p variables, we have p vari-

ances and p(p - 1)/2 covariances, usually arranged in a

symmetric p 9 p covariance matrix. The matrix analogue

to a division is multiplying one covariance matrix by the

inverse of the other covariance matrix. The resulting matrix

product specifies how to transform one covariance matrix

into the other. When representing this matrix as an ellipse

(in two dimensions) or an ellipsoid (in three or more

dimensions), the length of the axes of this ellipse equal the

ratio of variances of the two groups in that direction. This

matrix product hence is a useful way to report the differ-

ences between two variance–covariance structures, com-

prising the ratios of variances for the original variables

along with all their linear combinations.

Principal component analysis seeks the direction along

which one group has maximum variance for fixed sum of

squares of coefficients—the first eigenvector of the corre-

sponding covariance matrix. In a different exploratory

strategy, one might seek the direction along which the ratio

of variances between two groups is a maximum. This

direction is the first eigenvector of the matrix product

described above—the first relative eigenvector of the first

covariance matrix with respect to the second. As for PCA,

we can also find a direction with the minimum ratio of

variances and other directions with an intermediate ratio.

We refer to this exploratory style of analysis as relative

eigenanalysis or relative principal component analysis,

because it is an eigenvector decomposition of one covari-

ance matrix relative to another one. Biological inferences

can be based on the actual ratios of variances (relative

eigenvalues), the loadings of the vectors (relative eigen-

vectors), and on the individual scores along these vectors

(relative principal component scores).

But, in fact, ordinary PCA can be considered as a special

case of relative eigenanalysis: a relative eigenanalysis with

respect to a covariance matrix that is an exact multiple of

the identity matrix (the matrix with 1’s down the diagonal

and 0’s everywhere else). In other words, ordinary princi-

pal components are just relative eigenvectors with respect

to a hypothetical comparison population in which all of the

original variables have variance 1 and correlations 0

(which is of course no useful biological hypothesis).

The properties of relative eigenvalues and eigenvectors

for the comparison of two covariance matrices were

already described explicitly by Flury (1983, 1985), and

their roles in several likelihood ratio tests and other sta-

tistics are well documented (e.g., Anderson 1958; Mardia

et al. 1979; Manly and Rayner 1987; see also below).

However, relative eigenanalysis has rarely been used as an

exploratory tool in biometrics.

In this paper, we present the algebraic and geometric

properties of this technique in a contemporary biometric

context and outline its relation to various existing statistical

methods. We demonstrate how relative eigenanalysis can

be used as an effective exploratory technique to study

selective forces underlying geographic variation of taxa

and the emergence or canalization of phenotypic variance

during ontogeny. We further outline a strategy for statis-

tical classification when group differences in variance

dominate over differences in group averages. Even though

our examples are limited to phenotypic covariance matri-

ces, relative eigenanalysis can also be applied to genetic

covariance matrices.

Algebraic and Geometric Properties

Consider two groups of individuals A, B and for each

specimen a set of p quantitative measurements

x1; x2; . . .; xp, collectively denoted as a column vector

x. Assume, as morphometricians always assume, that every

linear combination a1x1 þ a2x2 þ . . .þ apxp ¼ a0x of the

measured variables can in principle be interpreted as a new

variable within the given scientific context. Then we can

compute the variance of the same linear combination in

both groups: Varða0xAÞ and Varða0xBÞ: For some linear

combinations, that is for some vectors a, group A might

have more variance than group B, suggesting perhaps that

the conditions in which the two groups differ may have

inflated the variance in one group relative to the other. For

other linear combinations, the two variances might be

approximately equal because these measured properties are

not affected by the assessed conditions, and for still other

linear combinations group A might have less variance than

group B. We seek a general exploratory multivariate

method that will allow us to uncover and speculate on all of

these possibilities at the same time for a given vector of

measures x whose covariance matrix is observed twice
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under substantially different conditions. For this purpose

we modify the familiar rationale of principal component

analysis, that of finding linear combinations with maximal,

minimal, or intermediate variance. In this case we seek

linear combinations that maximize or minimize ratios of

variances between two groups.

In the easiest version of the question, we have two

variables x1 and x2 each of variance 1 in each of two

groups. What linear combination has the highest ratio of

variances between the groups? It must be either x1 ? x2 or

x1 - x2 (a linear combination with weights either 1,1 or

1, -1) depending on which group has the higher correla-

tion between x1 and x2. The ratio of var(x1 ± x2) between

the groups is (1 ± r1)/(1 ± r2), where r is the correlation

coefficient between the two variables, no further algebra

required (Fig. 1a, b).

Consider another special case: two groups of individuals

for any number of variables, where the covariance matrix

of group B is equal to the identity matrix (that is, this group

has an isotropic distribution: every linear combination of

variables with coefficients whose squares sum to 1 has the

same variance). Figure 1c is a two-dimensional example of

such a case. What direction maximizes the variance in

group A relative to that of group B? Since the variance of

B is 1 in all directions, this problem reduces to finding the

direction that maximizes the variance in group A. But of

course this direction is just the first eigenvector of the

corresponding covariance matrix: the first principal com-

ponent in this group, the major axis of the corresponding

equal frequency ellipse. The actual maximal ratio of

variances is equal to the first eigenvalue, the squared

maximum diameter of the ellipse.

One way of arriving at the general case is by giving up the

constraint of isotropy in either group. That is, for two groups

with arbitrary covariance matrices (as in Fig. 2a), how to find a

linear combination that maximizes the ratio of variances

between the two groups? A ratio of variances is invariant

(unchanged) under all possible linear transformations (e.g.,

Huttegger and Mitteroecker 2011). Hence we are free to line-

arly transform the variables so that one equal frequency ellipse

becomes a circle (one distribution becomes isotropic). For these

transformed variables, the problem reduces to the simpler

problem above: the direction we seek is the first principal

component of the transformed second group (Fig. 2b).

Let RA be the p 9 p covariance matrix of group A and

RB that of group B, and assume both matrices are invert-

ible. To transform the variables so that group B has a cir-

cular distribution, multiply the variables x by the inverse

square root matrix R�1=2
B . The transformed covariance

matrix of group A is the matrix product R�1=2
B RAR�1=2

B . The

maximal ratio of variances is given by the first eigenvalue

of R�1=2
B RAR�1=2

B , and you get to the actual linear combi-

nation carrying this ratio by multiplying the transformed

variables x0R�1=2
B by the first eigenvector of this matrix.

The same scores, up to linear scaling, can also be

computed by multiplying the original variables x by the

first eigenvector of R�1
B RA. To show this, consider the

vector a that maximizes the ratio a0RAa=a0RBa and re-

express this as the maximization of a0RAa given a0RBa ¼ 1.

a b c

Fig. 1 Equal frequency ellipses representing the variance–covariance

structures of two groups A and B. In a both groups have unit variance

for both variables x1, x2. Group A has a correlation of 0.8 between the

two variables; group B, -0.5. The major axis of the equal frequency

ellipse of A is aligned with the minor axis of B. In this direction, A has

the largest variance relative to B. The coefficients of this vector,

which are (1,1), are the weights for the linear combination we seek,

and the resulting maximal ratio of variances is (1 ? 0.8)/(1 -

0.5) = 3.6. Notice that this quantity is equal to the ratio of the

squared maximum diameter of the ellipse of A to the minimum

squared diameter of B. In part b of this figure, the correlation for

group B is 0.5 instead of -0.5, and all variances are still 1. The major

and minor axes are the same for both groups and the direction we seek

is the common major axis of the two ellipses. The associated ratio of

variances is (1 ? 0.8)/(1 ? 0.5) = 1.2, which is equal to the ratio of

squared maximum diameters. In c group B has unit variance in every

direction (hence zero correlation) so that the direction of the ratio of

maximal variance is simply the maximum diameter or the first

principal component of A

338 Evol Biol (2014) 41:336–350
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Let b ¼ R1=2
B a. Then the maximum of a0RAa, subject to the

above constraint, can be written as

max
b

b0R�1=2
B RAR�1=2

B b for b0b ¼ a0RBa ¼ 1:

The solution to this classical ‘‘relative eigenvalue prob-

lem’’ is the first eigenvector c1 of R�1=2
B RAR�1=2

B ; and a ¼
R�1=2

B c1 is the scaled first eigenvector of R�1
B RA (see also

Mardia et al. 1979, A.9.2; Flury 1983; Mitteroecker and

Bookstein 2011).

Both approaches yield the same scores and also the same

eigenvalues. But the actual eigenvectors for the two matrix

products are different. Biological interpretations of the

vector loadings, or visualizations in a geometric morpho-

metric context, need to refer to the original variables; these

must be the eigenvectors of R�1
B RA (see also Mitteroecker

and Bookstein 2011).

The eigenvalues of either R�1
B RA or R�1=2

B RAR�1=2
B are

called the relative eigenvalues of RA with respect to RB.

We have seen that the first relative eigenvalue k1 is equal to

the maximal ratio of variances:

k1 ¼ max
a

Varða0xAÞ
Varða0xBÞ

¼ Varðe01xAÞ
Varðe01xBÞ

:

It is also equal to the last eigenvalue of R�1
A RB; the

minimum of a0RBa=a0RAa :

kp ¼min
a

Varða0xAÞ
Varða0xBÞ

¼
Varðe0pxAÞ
Varðe0pxBÞ

¼ max
a

Varða0xBÞ
Varða0xAÞ

� ��1

;

where e1 and ep are the first and last eigenvectors of

R�1
B RA.

Besides the eigenvector of largest eigenvalue, which is the

linear combination of greatest inflation of variance of RA

with respect to RB, and the eigenvector of smallest eigen-

value, which is the linear combination of the least variance

inflation or greatest variance deflation, there are p - 2 other

directions having ‘‘stationary variance ratios.’’ Variance

ratios in these directions behave like the diameter of an

ellipsoid in the direction of its intermediate axis, the axis that

is neither the longest nor the shortest. The derivative of the

ratio in every direction around this variable is zero, but the

second derivative is positive in some directions and negative

in others. So the sphere on this diameter falls inside the

ellipsoid in one plane, the plane that includes the long axis,

and falls outside the ellipsoid in another plane, the plane that

includes the short axis. Like the corresponding second, third,

… principal components in a principal component analysis,

these second, third, … relative eigenvectors have no bio-

logical meaning by themselves. But each one, taken in

combination with all those of higher order, specifies a plane

or hyperplane over which values of the corresponding linear

combinations a0x can be scattered for cases from both of the

groups under analysis. The patterns in these scatterplots are

often very interesting, and likewise the import of the pattern

vectors a that represent their relation to the covariance

geometry of their measurement space.

The relative eigenvectors of two arbitrary covariance

matrices usually are not orthogonal (at right angles)

because the product R�1
B RA is usually not a symmetric

matrix (Fig. 3a). Only after standardizing one covariance

matrix are the relative eigenvectors orthogonal (both

a b c

Fig. 2 a Equal frequency ellipses representing the variance–covari-

ance structures RA;RB of two groups A and B. b For the variables y1,

y2, which are linear combinations of the original variables x1, x2,

group B has a circular equal frequency ellipse. The red line is the

major axis of the resulting distribution of A. This is the direction

along which A has the greatest variance relative to B. The actual ratio

of variances is equal to the ratio of squared diameters of A and B in

this direction. c For the variables z1, z2, which are another pair of

linear combinations of x1, x2, the distribution of group A is circular,

and so the minor axis of the resulting group B is the direction along

which A has the greatest variance relative to B. The ratio of variances

is the same as in (b) (Color figure online)
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R�1=2
B RAR�1=2

B and R�1=2
A RBR�1=2

A are symmetric matrices;

Fig. 2b, c). Furthermore, whereas in ordinary PCA all

principal components are mutually uncorrelated as pooled

over all groups, the scores along the relative eigenvectors

are uncorrelated within each group: e0iRAej ¼ e0iRBej ¼ 0

for any i = j. This is illustrated by Fig. 3b, in which the

two covariance matrices are expressed on the basis of the

relative eigenvectors: both ellipses are separately aligned

along their axes (this is called the property of being con-

jugate directions).

Affine Invariance

The relative eigenvalues of two covariance matrices are

invariant to all linear transformations of the variables. This

is an important property of a statistical method whenever

the scales of the variables are incommensurate (Mitter-

oecker and Huttegger 2009; Huttegger and Mitteroecker

2011), which is often the case in conventional morpho-

metrics although rarely a concern in geometric morpho-

metrics. Variables may further be geometrically dependent

(e.g., due to common size correction, common superim-

position of landmarks, distance measurements with com-

mon start or end points) and subject to spatial

autocorrelation. Changes of interdependencies can be

approximated by a shear of the data space. Relative

eigenvalues are invariant to these linear transformations

and hence do not depend on any (usually unrealistic)

assumption of geometric and spatial independence among

the measured variables, which is an important part of any

guarantee that the relative eigenvectors should sustain a

biological interpretation.

Modern morphometrics and imaging techniques typi-

cally produce a very large number of closely spaced

measurements, allowing for the identification of small

spatial signals. Many of these measurements—those clo-

sely adjacent—are to a large part redundant, which is not

per se a problem but leads to a ‘‘weighting’’ of anatomical

structures by the number of variables covering the struc-

ture. Many statistics (such as distances and angles in the

data space, PCA and related techniques) hence are influ-

enced by the numerosity and spatial distribution of mea-

surements (see also Mitteroecker et al. 2012). Huttegger

and Mitteroecker (2011) demonstrated that changes in the

number of redundant measurements leads to an approxi-

mately linear transformation within the space of the first

few principal components. Relative eigenvalues based on a

small number of principal components thus are also largely

invariant to changes in the redundancy of measurements.

Other Statistical Contexts for Relative Eigenvalues

The relative eigenvalues and corresponding eigenvectors of

two covariance matrices appear in several multivariate

statistical contexts, but they are rarely used in the explor-

atory style outlined in this paper. Perhaps the reader may

know them from the context of CVA, the generalization of

linear discriminant analysis via relative eigenanalysis of

the between-group covariance matrix B with respect to the

within-group covariance matrix W. The usual canonical

variates are the eigenvectors of W�1B. Often, both the

loadings of the eigenvectors and the scores along them are

plotted and interpreted. Whereas relative eigenanalysis is

applied to investigate differences in covariance matrices

a b

Fig. 3 a The two relative eigenvectors of the two groups A and B,

which are the eigenvectors of R�1
B RA, are shown as solid red line and

dashed black line. These eigenvectors are not orthogonal. The scores

along these vectors have the maximal and minimal ratio of variances,

respectively. The maximal ratio is equal to the ratio of squared

distances between the filled dots and the open dots, which are the

projections of the two ellipses on the first relative eigenvector. b Equal

frequency ellipses of the relative principal components (scores along

the relative eigenvectors) for the two groups A, B. These scores are

uncorrelated within each group (Color figure online)
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between groups, CVA assumes homogeneous covariances

across all groups. Likewise, squared Mahalanobis distance,

the squared distance between two individuals or between

two group means relative to some variance–covariance

structure, can be regarded as a simple form of relative

eigenanalysis in which the squared Mahalanobis distance is

the first relative eigenvalue of B and W.

Wilks’ Lambda, a commonly used multivariate test sta-

tistic, is
Q
ð1þ kiÞ�1

where the k’s are the relative eigen-

values of two covariance matrices S1 and S2: In some

likelihood ratio test contexts, for instance, multivariate

analysis of variance, S1 is the error variance and S2 the

variance explained by the model. The same list of all the

relative eigenvalues is central to likelihood ratio tests of

proportionality of covariance matrices (e.g., Mardia et al.

1979; Manly and Rayner 1987; Martin et al. 2008), includ-

ing proportionality to the identity. For instance, under the

hypothesis of proportional covariance matrices S2 ¼ kS1,

the maximum-likelihood estimate of the scaling factor is

k ¼ trðS�1
1 S2Þ=p; ð1Þ

which is the average of the relative eigenvalues (Mardia

et al. 1979).

One standard quantification of the overall amount of

variation in a multivariate data set is the ‘‘generalized

variance’’, usually computed as the determinant of the

corresponding sample covariance matrix (the product of its

ordinary eigenvalues). Correspondingly, the ratio of the

generalized variances of two groups is equal to the product

of their relative eigenvalues ki:

detðS1Þ=detðS2Þ ¼
Y

ki:

This ratio is unchanged under linear change of basis,

whereas the ordinary single-group generalized variance is

not.

Mitteroecker and Bookstein (2009) suggested a metric

distance function for full rank covariance matrices given by

the two-norm of the log-transformed relative eigenvalues

ki:

dcovðS1; S2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp

i¼1

ðlog kiÞ2
s

: ð2Þ

This function is symmetric, i.e., dcovðS1; S2Þ ¼ dcovðS2; S1Þ;
because (log ki)

2 = (log 1/ki)
2. It is actually the appro-

priate affine-invariant geodesic distance on this space of

covariance matrices when treated as a Riemannian mani-

fold (Förstner and Moonen 1999; Smith 2005).

Tyler et al. (2009) used relative eigenanalysis under the

term ‘‘Invariant Coordinate Selection’’ (ICS) to compare

two scatter matrices for the same group of individuals in

order to identify deviations from an elliptical symmetric

distribution. They claim that eigenanalysis of the usual

variance–covariance matrix relative to a more robust

scatter matrix (e.g., based on ranks), or relative to a scatter

matrix based on higher moments, often leads to a useful

ordination for identifying outliers, clusters of individuals,

and other deviations from multivariate normality.

In evolutionary quantitative genetics, the heritability h2

of a trait is the ratio of (additive) genetic variance to total

phenotypic variance of this trait. In theory, heritability

determines the trait’s response to selection. A multivariate

generalization of heritability is the matrix product GP�1,

where G is the additive genetic variance–covariance matrix

and P the phenotypic variance–covariance matrix (e.g.,

Roff 2000; Klingenberg et al. 2010). The first eigenvector

of this matrix product corresponds to the linear combina-

tion with maximum heritability (namely, the first relative

eigenvalue). For example, Houle and Fierst (2013) used

sets of relative eigenvectors to construct subspaces having

different heritabilities.

To this point we have set a relative eigenanalysis in the

context of comparing two covariance structures on the same

measurement vector. The multivariate version of Felsen-

stein’s (1985, 1988) popular method of ‘‘phylogenetic con-

trasts’’ can be considered as another kind of relative

eigenanalysis, in which only one of the matrices is an

observed covariance, whereas the other consists of an

explicit list of vectors that should be considered as orthog-

onal and of equal variance. In this setting each of the linear

combinations of interest is some specific contrast of one

clade against an individual specimen or against the com-

plementary clade. The contrasts are listed carefully so as to

involve independent combinations of increments on the

presumed phylogenetic model, and then each one is nor-

malized to the same unit of effective time on a powerful

Brownian hypothesis of pure genetic drift. Note that the

contrasts do not include any actual biometric data; they

encode only the given phylogeny (including its clock if

available). Once these contrast vectors have been set up, the

investigator computes the corresponding linear combina-

tions of the actual specimen-by-specimen data, and takes the

principal components of these linear combinations. Those

PC’s are the same as the relative eigenvectors one would get

from the measurement vectors in the basis for which the

phylogenetically derived contrasts are in fact orthonormal.

In other words, the PCs of the contrasts are the same as the

relative eigenvectors from a two-matrix analysis whose

second matrix comes from the phylogeny, not the measure-

ment data, but does not ever need to be explicitly displayed.

Applications

This section illustrates applications of relative eigenanal-

ysis to evolutionary and developmental biology by three

Evol Biol (2014) 41:336–350 341
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examples. One concerns emergence and canalization of

phenotypic variance during development, the second out-

lines an approach for identifying divergent and stabilizing

selection, and the third shows how relative eigenanalysis

clarifies an important context of classification.

Neurocranial Growth in Rats

Our first example investigates postnatal changes of the

phenotypic variance–covariance pattern in the rat neuro-

cranium. The analysis is based on eight landmarks digitized

by Melvin Moss from a longitudinal roentgenographic

study by Henning Vilmann of 21 genetically homogeneous

male laboratory rats (Fig. 4a). The data, collected at eight

ages (7, 14, 21, 30, 40, 60, 90, and 150 days), were pub-

lished in full as Appendix A.4.5 of Bookstein (1991). In

Mitteroecker and Bookstein (2009) we studied the eight

age-specific covariance matrices of the Procrustes shape

coordinates of these landmarks by an ordination analysis

using the summed squared log relative eigenvalues as a

metric (Eq. 2 above). We showed that the covariance

matrix is continually changing during the investigated time

period and that the ‘‘ontogenetic trajectory’’ of the

covariance matrix alters its direction between the ages of

about 21 and 40 days (Fig. 4b). In fact, the direction of the

trajectory (the pattern of covariance changes) almost per-

fectly reverses between the range of 7–21 days and the

range of 40–90 days of age. To show how the covariance

matrices actually differ, we carry out two relative eigena-

nalyses: covariance at 21 days versus covariance at 7 days,

and covariance at 90 days vs. covariance at 40 days. Both

analyses use the first five principal components of all the

Procrustes shape coordinates pooled.

Figure 4c gives the eigenvalues for the 21- versus 7-day

analysis. It is useful to plot them on a logarithmic scale

because we want an eigenvalue k to be just as far away

from 1 (indicating equal variance) as the eigenvalue 1/k.

(Note that also the metric used in the ordination analysis is

based on the sum of squares of these log relative eigen-

values.) Figure 4c shows that, except for the first dimen-

sion, all relative eigenvalues are smaller than 1, indicating

that variance is decreasing in most directions of phenotype

space. For the 90- versus 40-day analysis, by contrast, the

first two relative eigenvalues are clearly larger than 1,

a b

c d

Fig. 4 a Midsagittal section of a rat cranium with eight neurocranial

landmarks. For more details see Bookstein (1991). b Scatter plot of

the first two principal coordinates (PCoord) of the eight age-specific

covariance matrices (Mitteroecker and Bookstein 2009). c Relative

eigenvalues for the 21-day covariances versus the 7-day covariances,

plotted on a logarithmic scale. d Relative eigenvalues for the 90-day

covariances versus the 40-day covariances

342 Evol Biol (2014) 41:336–350
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indicating an increase in variance, and only the last

eigenvalue indicates a strong reduction of variance for this

direction (Fig. 4d).

Because the analysis is based on Procrustes shape

coordinates, the relative eigenvectors can be visualized as

deformation grids (Bookstein 1991; see also Mitteroecker

and Bookstein 2011). Figure 5 shows the visualizations of

the first and the last relative eigenvectors for the two

analyses. From 7 to 21 days of age, variance in the relative

size of the foramen magnum and the parietal bone is

slightly increasing (first relative eigenvector), whereas

variance in the overall length of the neurocranium relative

to its height, associated with a reorientation of the foramen

magnum, is sharply decreasing (last relative eigenvector).

From 40 to 90 days of age, by contrast, the pattern is

reversed. Variance in relative length of the neurocranium

and in the angulation of the foramen magnum is increasing

(first relative eigenvector), while variance in relative size

of the foramen magnum and the parietal is decreasing (last

relative eigenvector). These findings confirm the observa-

tion of ontogenetic trajectories of the covariance matrix in

opposite directions (Fig. 4b).

Reduction of variance during development, usually

referred to as canalization or targeted growth, is a well-

known phenomenon in animal development, even though

the underlying mechanisms are still not well understood

(e.g., Tanner 1963; Gibson and Wagner 2000; Debat and

David 2001; Hallgrimsson et al. 2002, 2006). In rats and

mice, ontogenetic changes of covariance patterns, partic-

ularly reduction of certain variances during early postnatal

development, have been documented in several studies

(e.g., Atchley and Rutledge 1980; Nonaka and Nakata

1984; Zelditch et al. 1992, 2004, 2006). These authors

typically compared age-specific variances for single vari-

ables or single principal components, or they summed the

variances over all variables. Relative eigenanalysis is a

more effective tool for this purpose, allowing a more

complex and finer-grained comparison of variance–

covariance patterns.

Stabilizing Versus Divergent Selection of Human

Craniofacial Shape

Our second example uses relative eigenanalysis as an

exploratory tool to study differences in craniofacial shape

among human ethnicities. There is a long-standing tradition

in quantitative genetics of inferring past selective regimes

from heritable phenotypic (co)variance within and between

populations or species. Under a list of idealized assump-

tions, the amount of evolutionary divergence in a set of

phenotypic traits due only to genetic drift is proportional to

the amount of additive genetic variance for these traits

within the ancestral population (e.g., Lande 1979; Felsen-

stein 1988; Falconer and Mackay 1996). For multiple traits,

many empirical studies thus interpreted deviations from

proportionality of the between-population covariance

matrix B and the average within-population genetic

covariance matrix G (estimating the ancestral covariance

matrix) as results of past divergent or stabilizing selection.

Because genetic covariance matrices are difficult to esti-

mate, many authors have used the average phenotypic

within-population covariance matrix P instead of G (see,

e.g., Cheverud 1988; Roff 1995; Koots and Gibson 1996).

Most empirical studies of this kind were limited to

statistical tests of the proportionality of B and G. But in

any comprehensive list of measurements of a complex

anatomical structure, such as the vertebrate skull, it is

likely that some traits or combination of traits are under

divergent selection while, simultaneously, other traits are

under stabilizing selection, and some are more or less

Fig. 5 Visualization of the two relative eigenanalyses in Fig. 4 as deformation grids. The shape pattern depicted by each relative eigenvector is

visualized by deformations of the mean shape along the positive and the negative direction of the corresponding vector
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selectively neutral. Hence, we apply relative eigenanalysis

to identify linear combinations of traits with the largest (or

smallest) excess of between-group variance over within-

group variance. If there was any divergent or stabilizing

selection, these are the directions that must have borne it,

and in any interpretation these traits are candidates for

functional models. (In other words, we are using relative

eigenanalysis to generate hypotheses about possible

selection regimes, not to test anything.)

We illustrate this exploratory approach using W.

W. Howells’ celebrated data set of 1996, comprising 57

classical craniometric measurements on a total of 2504

skulls from 28 different human populations. Based on

sample size, homogeneity of the data, and reproducibility

of the measurements, we selected 23 populations and 10

measurements representing the height and width of the

major cranial elements (Fig. 6). The sample size of these

populations ranges from 69 to 111, giving a total sample

size of 2238. For our present purpose, we removed the

effects of sexual dimorphism for each population by sub-

tracting the sex-specific mean from the corresponding

individuals. We computed the 23 population covariance

matrices, the between-population covariance matrix B (i.e.,

the covariance matrix of the population means) and the

pooled phenotypic within-population covariance matrix P

(a weighted average of the population covariance

matrices). We scaled B to P using the average relative

eigenvalue as a scaling factor (see formula 1 above).

A maximum likelihood test (Mardia et al. 1979; Martin

et al. 2008) informs us that the two matrices P and B

deviate significantly from proportionality (p \ 0.01). We

wish to ask further how much and in which way they differ.

To this end we computed an ordination of the 23 popula-

tion covariance matrices together with the matrices P and

B. (Note that both the maximum likelihood test and the

metric for covariance matrices used in this ordination are

based on relative eigenvalues.) In this ordination (Fig. 7),

the population covariance matrices constitute a relatively

homogeneous cluster around their weighted average P,

whereas B falls far outside of this cluster: P and B differ

beyond any doubt. So we proceed with a relative eigen-

analysis to explore the pattern in which B differs from P.

Figure 8a presents the relative eigenvalues and Table 1

shows the loadings of the first and the last relative eigen-

vectors. The first relative eigenvector has negative loadings

for the measurements of upper facial breadth, positive

loadings for measurements of upper facial height, and a

positive loading for neurocranial breadth (biauricular

breadth). Measurements of the upper jaw have loadings

close to zero (Fig. 8b). Specimens with high scores for this

component thus have a narrow and tall upper face and a

wide neurocranium. The last relative eigenvector has

negative loadings for all measurements of facial breadth

except for nasal breadth, which is highly positively loaded,

and positive loadings for measurements of facial height,

again to the exception of nasal height, which is negatively

loaded (Fig. 8c). This component thus represents the size

of the nasal cavity relative to overall facial size.

These results suggest that if there has been divergent

selection for craniofacial shape it pertained to facial height

relative to neurocranial breadth. By contrast, the relative

size of the nasal cavity is the feature with minimal

between-population variance relative to the within-popu-

lation variance and thus might be likeliest to have been

under stabilizing selection if any trait was. Overall pro-

portions of the upper face relative to the neurocranium vary

considerably among human populations, but no direct

functional relevance is known; note, too, that the size of the

jaw does not load on this relative eigenvector. Nasal size,

by contrast, is closely associated with the size of the air-

ways and hence of apparent physiological relevance; sta-

bilizing selection for this trait in modern humans seems to

be likely.

Classification of Prenatal Alcohol Exposure Based

on Infant Brain Shape

Classification—the assignment of individuals to one of two

or more groups based on a set of measurements—is a

Fig. 6 Ten cranial measurements from Howells’ (1996) data set,

representing the height and width of the orbits (OBH, OBB), the nasal

aperture (NLH, NLB), and the upper jaw (NPH, MAB), as well as

interorbital breadth (DKB), bimaxillary breadth (ZMB), and height

and width of the braincase (basion-bregma height BBH, biauricular

breadth AUB)
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classic statistical domain for which the groups’ variance–

covariance structures are of central importance. The like-

lihood ratio for assigning an individual to one group or the

other depends on the averages and the variances in both

groups. In the unusual situation that the groups have equal

variance–covariance matrices, the ratio of likelihoods can

be computed from a single linear dimension because the

structure separating the two classification regions (the

‘‘separatrix’’ along which the likelihoods are identical) is

linear (a line in two dimensions, a plane or hyperplane in

more dimensions); hence this approach is referred to as

linear discrimination. For heterogenous covariance matri-

ces, the separatrix is a conic section or quadric surface, and

the maximum likelihood classification is based on a qua-

dratic function (quadratic classification; see, e.g., Rao

1948; Mitteroecker and Bookstein 2011). When, for every

variable, group A has more variance than group B, the

separatrix is an ellipse or ellipsoid, assigning group label

A to points that fall outside the curve and group label B to

those that fall inside. In other circumstances we can dissect

the morphospace into two subspaces, one in which group

A has more variance than group B in all directions, and the

other in which group B has more variance than group

A. These subspaces are spanned by the relative eigenvec-

tors with relative eigenvalues larger than 1 and smaller than

Fig. 7 Principal coordinate

ordination of the 23 population

covariance matrices together

with the pooled within-

population covariance matrix P
and the between-group

covariance matrix B

Fig. 8 a Relative eigenvalues of the matrices B and P plotted on a

logarithmic scale. b Visualization of the loadings of the first relative

eigenvector. Positive loadings are shown in blue and negative ones in

red. Loadings close to zero are gray. c Visualization of the last

relative eigenvector

Table 1 Loadings of the ten measurements on the first and the last

relative eigenvector (rel evec). They are visualized in Fig. 8b, c

Abbreviation Definition First Rel

Evec

Last Rel

Evec

BBH Basion-bregma height 0.043 0.015

AUB Biauricular breadth 0.485 0.104

NPH Nasion-prosthion height 0.083 0.363

NLH Nasal height 0.350 -0.522

OBH Orbit height, left 0.150 0.241

OBB Orbit breadth, left -0.413 -0.130

NLB Nasal breadth -0.419 0.535

MAB Palate breadth, external -0.069 -0.241

DKB Interorbital breadth -0.501 -0.339

ZMB Bimaxillary breadth 0.092 -0.221
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1, respectively. Except when 1 or more relative eigenvalues

are exactly 1, a quadratic maximum likelihood classification

can be derived from the two subspaces, in each of which,

separately, the separatrix is an ellipse or ellipsoid. Whereas

biological interpretation of linear discriminant functions

usually is difficult (Mitteroecker and Bookstein 2011), dis-

tances in the two subspaces may sometimes reflect actual

biological properties or processes, especially if the two

groups are known to differ in their extent of canalization.

We illustrate this approach by a reanalysis of the data

used in Bookstein et al. (2007), 44 configurations of four

landmarks representing the midline corpus callosum shape

of human infants aged four months or less (Fig. 9a).

Twenty-three of these infants were exposed in utero to high

levels of alcohol, and 21 infants were unexposed.

The landmark-by-landmark displays suggest numerous

group differences in variances and covariances but only a

moderate group mean shape difference (Fig. 9b). The

Procrustes shape space here is of four dimensions; hence

there are four conventional principal components. The

heteroscedasticity is concentrated along PC 1 (Fig. 10a). A

quadratic discriminant analysis based on all 4 PCs classi-

fies infants to the appropriate exposure group with log

likelihood ratios (LLR) from -1.78 to 6.83. The average

log-odds in the ‘‘correct’’ direction is 1.45, corresponding

to 81 % odds of a correct classification. We see that the 12

most extreme scores on PC1 all arise in the exposed group

of children, leading to the startlingly effective classifier

unearthed intuitively for the original publication. Note that

in contrast to linear discrimination, in a quadratic dis-

crimination the likelihood ratios comparing the actual

strengths by which an observation can support one specific

classification or the other may differ between the two

groups in regard to mean or range. In the example here,

many of the exposed individuals can be classified as

‘exposed’ with greater certainty than most of the unex-

posed individuals can be classified as ‘unexposed.’ This

difference is not intrinsic to the quadratic method, but is a

function of the actual data distributions involved.

The PC plot in Fig. 10a also shows contours of equal

log-likelihood for the hypothesis of exposure versus that

for nonexposure. The likelihood ratios of analyses like this

one are invariant against changes of basis for the descriptor

space, and so a shear to the basis of relative eigenvectors

for the two covariance structures per se, exposed divided

by unexposed, will not change the LLR for any infant here.

It will, however, alter the axes in Fig. 10a to the more

effective set shown in Fig. 10b. The four relative eigen-

values are 1.565, 1.389, 0.894, and 0.734, highlighting the

two dimensions showing substantially greater variance for

the exposed children than for the unexposed. In that plane,

the discriminant function should look like a set of con-

centric rings out of a center within the unexposed group

(the ellipses are almost circular because the first two rela-

tive eigenvalues are nearly the same). And that is exactly

what we see in Fig. 10b, with a mean odds ratio of 3.08,

larger than we had for the more nearly linear discriminator

within the first two ordinary PCs. In other words, by paying

more attention to the differences in covariance structure,

we arrive at a better, simpler predictor that may yield a

more useful biological reification of the classification rule

than standard classification approaches do.

a b

Fig. 9 a An average of multiple unwarped freezeframes of a

transfontanelle ultrasound video of the midsagittal plane, along with

the four landmarks used for analysis. Points 1 and 2 are reliable Type

2 landmarks, the ‘‘corner’’ of genu and the tip of splenium.

Landmarks 3 and 4 are semilandmarks, the point of the upper arch

margin just over the middle of the segment connecting genu and

splenium, and the point on the upper margin where the medial axis

segment running up the middle of the splenium, if extrapolated,

would hit this margin. b Scatterplots of the Procrustes shape

coordinates landmark by landmark. Open circles are unexposed

individuals, filled circles exposed individuals
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The classification of these baby brain features as unex-

posed or exposed is, to a first approximation, not a linear

score at all, but instead a thresholding of their distance

from a standard form. This interpretation conforms to the

traditional understanding of the effect of prenatal alcohol

exposure on the developing brain as a dysregulation that

produces hypervariation in most shape measurements at the

same time (Bookstein et al. 2002). This is a distinctly

different interpretation from ‘‘a mean shift of the angle at

splenium’’ (the description of the discrimination in the

original publication).

Discussion

Whether in systematics, evolutionary biology, or anywhere

else in organismal biology, the empirical study of high-

dimensional phenotypic variance–covariance patterns is

made more challenging by the application of inappropriate

statistical tools. In particular, attempts to summarize

covariance matrices or differences between covariance

matrices by one or a few single quantities are difficult to

interpret biologically, unless they have been explicitly

derived from some formal biological theory that is argued

as credible on other grounds (see, e.g., Hansen and Houle

2008). This paper advocates the use of relative eigenanal-

ysis to decompose the differences between two covariance

matrices into a series of linear combinations with extremal

ratios of variance between the groups. The phenotypic

patterns described by the relative eigenvectors and relative

eigenvalues (those variance ratios) may afford a possibility

of strong biological inferences. The convenient geometric

properties of this relatively simple and intentionally ‘‘the-

ory-free’’ technique allows for an effective exploratory

study of high-dimensional variance–covariance patterns.

Relative eigenanalysis was already described at length

by Flury (1983, 1985), but not in any specific biometric

context (the data example, in fact, dealt with Swiss paper

money). Flury noted that despite frequent applications of

significance tests for homogeneity of covariance matrices

to test for the assumptions underlying parametric multi-

variate methods such as MANOVA, ‘‘methods for com-

paring two or more covariance matrices have been given

little attention in applied statistical analysis’’ (1983:98).

Little has changed in this regard over the past 30 years

(even though the importance of parametric tests requiring

homogeneous covariance matrices has reduced since we

can compute exact significance levels by randomization

tests). Our paper is an attempt to provide a new description

of relative eigenanalysis in contemporary biological and

morphometric contexts that emphasizes its exploratory use

when theory is absent or quite distant from actual data. We

demonstrated, for instance, how this tool can be used to

study the developmental patterning of phenotypic variance

within a population and also the evolutionary patterning of

variance between populations. Thereby we showed that the

variance of different shape features can have very different

developmental or evolutionary dynamics, which might be

hidden when pooling variance of all variables or when

analyzing other linear combinations such as ordinary

a b

Fig. 10 a Scatterplot of the first two principal components (PCs)

together with contours of equal log-likelihood for the hypothesis of

exposure versus that for nonexposure. The title line sets out the

average log likelihood ratio in the direction of the correct hypothesis,

and then the exponentiation of that log-likelihood, which approxi-

mates the odds of a correct classification in a new specimen.

b Scatterplot of the first two relative eigenanalysis scores (relative

principal components, RPCs) together with contours of equal log-

likelihood for the hypothesis of exposure versus that for nonexposure.

Open circles are unexposed individuals, filled circles exposed

individuals
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principal components. Such findings do not report experi-

mental results, but certainly can suggest them.

Principal component analyses change, often radically,

under linear transformations of the variables; indeed, that is

one of its better-known drawbacks for a biological inter-

pretation. They can be considered as eigenanalyses of a

covariance matrix relative to the identity matrix, which is

in general without biological meaning and which in any

event does not transform with the data. Relative eigen-

analysis is a principal component analysis of one group

relative to another group, and the resulting ratios of vari-

ance (the relative eigenvalues) are unchanged under linear

transformation of the variables, including changes of linear

dependence. The relative eigenanalysis also appropriately

localizes the consequences of variational change in a single

factor, e.g., size allometry, to one single component. In

ordinary PCA, by contrast, this change would likely be

distributed over multiple components.

Relative eigenanalysis supports an interpretation of the

differences between two covariance matrices in terms of

increased or decreased variance for certain principal linear

combinations that may or may not correspond to real bio-

logical factors. But in many biological data sets, differ-

ences between covariance matrices can also result from the

rotation of the direction of a factor rather than from

increase or decrease of its variance. For example, ontoge-

netic or static allometry, which typically is the dominant

factor of shape or form variation within a group, may differ

in direction between two groups, thereby leading to dif-

ferent covariance structures. In these situations the most

useful interpretation is that of an altered average pattern of

growth, not of increased or decreased individual variance

for certain traits. It is thus advisable to model dominant

factors of form or shape variation, such as growth and

allometry, directly on their own, narrated in different terms

from ‘‘differences in variance.’’ Relative eigenanalysis

should then be applied to the residual data after these

factors have been removed from the data set.

In order to compute a relative eigenanalysis, at least one

covariance matrix must be invertible. But in modern

morphometrics, covariance matrices typically are non-

invertible, as usually the count of shape variables exceeds

the count of cases. Here the number of variables needs to

be reduced by methods such as principal component ana-

lysis or partial least squares analysis prior to a relative

eigenanalysis.

As a general rule we do not recommend statistical test

procedures of any kind in connection with exploratory data

analyses like these. It is particularly inappropriate to use

such tests when groups have already been identified in

advance. If groups differ in mean shape, then surely they

ought to be expected to differ in variance as well; the usual

‘‘null hypothesis’’ of no difference is particularly obtuse

when applied in domains such as organismal biology. If

thresholds there must be, the Appendix explains how to

investigate whether two relative eigenvalues are different

enough to warrant separate interpretation, or, put another

way, whether the samples at hand are large enough for the

explanatory work they are being asked to support.
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Appendix

Corresponding to the maneuvers here is a null model that is

often helpful in deciding whether a relative eigenanalysis

reveals anything worth thinking about. We’re not testing

the ratio, only asking that it be at least as large as the value

expected on the absence of any signal. The approach par-

allels the analogous decision regarding eigenvectors arising

from successive eigenvalues of one single matrix (Coque-

relle et al. 2011; Bookstein 2014). That approach, in turn,

is a modification of the stepdown test for sphericity that is

already in the advanced textbooks (cf. Morrison 1976,

pp. 336–337). As this argument has not apparently been

published before, we sketch it here for any interested

reader. Our notation is borrowed from Anderson (1963),

where several of the corresponding asymptotic likelihood

ratio tests were published.

Suppose we are observing a covariance matrix on a

sample of size N for a list of p variables that are all actually

independent Gaussians of mean 0 and variance 1. Let the

matrix U be
ffiffiffiffi
N
p

times the deviation of the empirically

observed covariance matrix from the correct answer, which

is the identity matrix of rank p. As samples grow large, U

becomes Gaussian with mean zero for every element and

variance 2 along its diagonal, 1 elsewhere.

That theorem corresponds to a U that was generated to

describe some multivariate Gaussian distribution’s ordin-

ary eigenvalues. The relative eigenvalues, which we have

been depicting here as the eigenvalues of T�1=2ST�1=2, are

also the eigenvalues of ST�1. For large samples, the dis-

tribution of the deviation of T�1 from the identity is the

same as the distribution of the deviation of T. The effect of

this additional factor of T�1 on what was already the

deviation of the sample described by S is to alter U by

another term, additive in this metric, of exactly the same

distribution. Their sum, scaled by
ffiffiffiffi
N
p

, thus is in the limit a

set of Gaussians with terms of mean zero and variances 4

down the diagonal, 2 elsewhere.
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At equation 3.9, pages 132–133 of this same paper,

Anderson shows, by expressing the eigenvalues themselves

in terms of the elements of U, that for the ordinary ei-

genproblem the log likelihood ratio for the null hypothesis

of sphericity for any q consecutive eigenvalues (not nec-

essarily the full set of all p corresponding to the p original

variables) is the quantity log a/g, where a is the arithmetic

mean of the eigenvalues and g is their geometric mean.

Using the theorem about U for ordinary eigenvalues, he

shows that in the limit of large samples this log likelihood

ratio is distributed approximately as 1/Nq times a v2 on

(q - 1)(q ? 2)/2 degrees of freedom, where q is the

number of eigenvalues being compared (in our applica-

tions, usually, q = 2). It follows, then, that in the relative

eigenanalysis application the same quantity log a/g is dis-

tributed as 2/Nq times the same v2 (Fig. 11).
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