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Abstract The mechanisms translating genetic to pheno-

typic variation determine the distribution of heritable phe-

notypic variance available to selection. Pleiotropy is an

aspect of this structure that limits independent variation of

characters. Modularization of pleiotropy has been suggested

to promote evolvability by restricting genetic covariance

among unrelated characters and reducing constraints due to

correlated response. However, modularity may also reduce

total genetic variation of characters. We study the properties

of genotype-phenotype maps that maximize average condi-

tional evolvability, measured as the amount of unconstrained

genetic variation in random directions of phenotypic space.

In general, maximal evolvability occurs by maximizing

genetic variance and minimizing genetic covariance. This

does not necessarily require modularity, only patterns of

pleiotropy that cancel on average. The detailed structure of

the most evolvable genotype-phenotype maps depends on the

distribution of molecular variance. When molecular variance

is determined by mutation-selection equilibrium either

highly pleiotropic or highly modular genotype-phenotype

maps can be optimal, depending on the mutation rate and the

relative strengths of stabilizing selection on the characters.

Keywords Pleiotropy � Constraint � Correlated response �
Genetic architecture � Conditional evolvability

Introduction

Evolvability is the ability to respond to a selective challenge

by a genetically-based phenotypic change. The ability of a

character to evolve depends on its amount of heritable phe-

notypic variance, and on its genetic covariance with other

characters, as summarized in the genetic variance matrix,

G (Lande 1979). Underlying molecular genetic variation is

mapped onto phenotypic variation by a complex of processes

commonly referred to as the genotype-phenotype (GP) map.

In particular, genetic covariances are (mainly) caused by

pleiotropy in the genotype-phenotype map (Lande 1980).

Such covariance may constrain the ability of characters to

respond to selection if their covarying counterparts are

exposed to conflicting selection regimes.

Because evolution requires a degree of quasi indepen-

dence among characters (Lewontin 1978), pleiotropy is a

potential cause of evolutionary constraints. The rationale is

that the more traits are affected by a mutation, the harder it

becomes to adapt, because a random mutation is less likely

advantageous if it affects many traits simultaneously

(Fisher 1958; but see Kimura 1983; Waxman and Welch

2005). This has led to suggestions that the genotype-phe-

notype maps that optimize evolvability are those where

pleiotropy is restricted to sets of traits with related function

or development for which the orchestrated responses are

advantageous (Olson and Miller 1958; Berg 1960; Riedl

1978; Cheverud 1984, 1996; Wagner 1996; Wagner and

Altenberg 1996). The advantage of modular genotype-

phenotype maps is twofold. First, if pleiotropic effects of

most genes are restricted to few traits, the risk of delete-

rious effects of a mutation is reduced (modularity). Second,

if the traits affected by a gene are developmentally or

functionally related, a mutation may preserve functionality

of this integrated module during evolutionary change
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(integration). Based on the premise that selection can

mould the genotype-phenotype map to increase evolvabil-

ity, this idea prompted studies to assess the modularity of

genetic effects and patterns of variation (reviewed in

Wagner et al. 2007; Mitteroecker 2009). It is still contro-

versial, however, whether genotype-phenotype maps can

be regarded as adaptations for evolvability (see, e.g.,

Hansen 2006; Jones et al. 2007; Lynch 2007a, b, c; Draghi

and Wagner 2008; Pavlicev et al. 2008, 2011a; Hansen

2011, for a variety of opinions). Regardless of the question

of its evolution, it is not obvious that a modular genotype-

phenotype map maximizes evolvability. In contrast to the

intuitive advantages mentioned above, Hansen (2003)

pointed out that modularity in the form of reduced pleiot-

ropy might also hamper evolvability by reducing the

potential for genetic variance per trait (see also Chevin

et al. 2010). Below a certain level of pleiotropy, the vari-

ational independence gained does not compensate for the

genetic variability lost due to smaller genetic basis. Hansen

(2003) explored this effect in various genotype-phenotype

maps and suggested that modular maps may not generally

maximize trait evolvability. Instead, the evolvability gen-

erated by a genotype-phenotype map may depend on sev-

eral factors, such as the sign of genetic effects, the strength

of stabilizing selection at the mutation-selection equilib-

rium, and the distance from the fitness optimum. He sug-

gested that full, but maximally variable, pleiotropy may

optimize evolvability. Here, we explore this idea in more

detail.

Pleiotropy generates genetic correlations only if the

shared effects on traits are biased towards the same effects,

e.g., if single loci systematically generate either positive or

negative covariances that therefore do not cancel out across

loci. Thus, while nonzero genetic correlation is usually a

sign of pleiotropy, the lack of genetic correlation does not

require a lack of pleiotropy. Multiple ways to generate

similar correlation structures have been discussed before

(e.g., Cheverud 1984; Wagner 1989; Charlesworth 1990;

Houle 1991; Gromko 1995; Hallgrimsson et al. 2009;

Mitteroecker 2009; Roseman et al. 2009). In this paper, we

use Wagner’s (1989) B-matrix model in a two-trait system

to systematically describe which patterns of pleiotropy

maximize conditional evolvability in the sense of Hansen

and Houle (2008). We explore several different assump-

tions about the maintenance of genetic variation on

underlying loci. Our results confirm that the absence of

pleiotropy is not the only way of maintaining high evolv-

ability, but if there are no constraints on the type of plei-

otropy that can occur, evolvability is generally maximized

by maps that tend to generate zero genetic correlation

either through modularity, or through patterns of pleiotropy

that cancel out. The detailed results depend, however, on

the mechanisms shaping genetic variance.

Model

Modeling the Genotype-Phenotype Map

We represent the GP map by the B-matrix model of

Wagner (1989), which maps ‘‘molecular’’ genetic variation

in a vector of n underlying genes, y, linearly into a vector

of N phenotypic traits, z, as z = By:

z1

:

zN

0
B@

1
CA ¼

b11 . . . b1n

: :
bN1 . . . bNn

0
@

1
A

y1

:

yn

0
B@

1
CA:

We will henceforth use the expressions B matrix and

genotype-phenotype map interchangeably. The evolvability

is measured on the genetic covariance matrix, G. We express

the G matrix in terms of the B matrix elements applying the

relationship G = BVBT, where V is a matrix of underlying

gene-specific variances. We can think of V as representing

molecular genetic variance on some unspecified scale. We

then use measures of evolvability developed for the genetic

covariance matrix G by Hansen and Houle (2008), and

Hansen et al. (2003a). We assume linkage equilibrium, which

implies that the V matrix is diagonal, and therefore that all trait

covariance is due to pleiotropy. Three alternative assumptions

about the structure of the V matrix are explored. In the first, we

assume that all loci have the same level of molecular variance.

In the second and third, we assume that the molecular variance

is kept in balance between mutation and stabilizing selection

on the traits according to the house-of-cards approximation,

which is valid for rare mutations with large effects (Turelli

1984) or the Gaussian approximation, which is valid for

frequent mutations of individually small effects (Lande 1980).

We are aware of the existence of more general models of

mutation-selection balance (Welch and Waxman 2002;

Hermisson and Wagner 2004), but the two ‘‘extreme’’ cases

will serve to illustrate the qualitative range of potential effects

of pleiotropy on evolvability. In both models, stabilizing

selection occurs according to the fitness function:

W z1; z2ð Þ ¼ k exp � 1

2
s1z2

1 þ s2z2
2

� �� �
;

where k is a constant, and si is the strength of selection along

the phenotypic axis of the character i. Thus, we assume no

correlated selection on the two characters. In principle,

correlated selection is accounted for in our framework by a

transformation of the major axes of correlated selection to

the character axes (Wagner 1989). Hence, the assumption of

no correlated selection is equivalent to defining characters as

the independent directions of selection. Note that s1 = s2

corresponds to uniform stabilizing selection in all directions

in morphospace. The marginal fitness of the yj values at each

locus is then
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W yj

� �
¼ k exp � 1

2
y2

j s1b2
1j þ s2b2

2j

� �� �
:

Based on this, Wagner (1989) showed that the

equilibrium single-locus variances under the house-of-

cards approximation are:

Vyj
� 4uj

s1b2
1j þ s2b2

2j

; ð1Þ

where uj is the mutation rate at the locus j. These

equilibrium variances at single loci are the entries of the

n 9 n diagonal matrix V. The equilibrium single-locus

variance under the Gaussian approximation is:

Vyj
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

mj

s1b2
1j þ s2b2

2j

s
; ð2Þ

where r2
mj ¼ ujc2

j is the ‘‘molecular’’ mutational variance

arising at locus j in the population per generation, uj is the

locus-specific mutation rate and c2
j is the variance in effects

of the new mutations at locus j on the underlying molecular

scale. We will assume in the following that the mutational

variance is uniform across loci and equal to r2
m. See also

Lande (1980) and Turelli (1985) for basic results on

mutation-selection balance in pleiotropic systems.

Measures of Evolvability

The evolvability of a trait is influenced by the amount of

genetic variation and its entanglement with other traits.

Several evolvability measures can be defined depending on

different assumptions about selection and constraint due to

correlated response. For derivation and details see Hansen

and Houle (2008). Here we briefly list the measures rele-

vant for this study.

The unconditional evolvability predicts the response to

unit selection (i.e., a mean-scaled selection gradient of

length one along the specific dimension in space (Hansen

et al. 2003b)) and equals the amount of additive genetic

variance in that direction:

e bð Þ ¼ bT Gb;

where b is a selection gradient normalized to unit length.

When addressing autonomization of traits, we assume

that correlated response of other traits has negative effects

on fitness. The conditional evolvability is defined as the

response to selection along specific direction when this is

in equilibrium with stabilizing selection in all orthogonal

directions:

c bð Þ ¼ bT G�1b
� ��1

;

where b is a selection gradient normalized to unit length.

This is independent of the strength of constraining

selection, since constraining traits under weaker selection

are simply pulled further from their optimum and at equi-

librium they will exert the same constraining force as a trait

under stronger selection (Hansen 2003).

The above are measures of evolvability in specific

directions of morphospace, which could be along the trait

axes or in any direction of correlational selection. These

equations show that evolvabilities will typically be differ-

ent in different directions. To obtain general measures of

the evolvability inherent in a genetic system we therefore

need to average over several possible directions. We do

this in two different ways.

One is to take the average across the two character axes.

This assumes that directional selection tends to act on the

two characters separately and at different times. Hence, we

take the average of the evolvability along the selection

vectors b1 ¼
1

0

 !
and b2 ¼

0

1

 !
. We will use an

asterisk to denote this average (character) evolvability.

The other way is to average evolvability across all

possible directions in morphospace. This assumes that

selection is equally likely on all combinations of the two

traits. We will use a cross bar to denote this average across

all directions.

Hansen and Houle (2008) showed that these averages are

�e� ¼ G11 þ G22

2
; ð3Þ

�e ¼ k1 þ k2

2
¼ �e�; ð4Þ

�c� ¼ 1

2

Det G½ �
G11

þ Det G½ �
G22

	 

; ð5Þ

�c ¼
ffiffiffiffiffiffiffiffiffi
k1k2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det G½ �

p
; ð6Þ

where Gii is the genetic variance of trait i, Gik is the genetic

covariance between traits i and k, and ki are the eigen-

values of the genetic covariance matrix, G.

The purpose of this work is to find the structures of the B

matrix with highest evolvability. To this end, we can write the

average evolvabilities as functions of the B-matrix elements

�e� ¼ �e ¼ 1

2
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� �
; ð7Þ
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p
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where the sums are over all loci affecting the characters.

These expressions are summarized for the particular

assumptions about the underlying variance in Table 1.

Modeling Pleiotropy

In order to build realistic B matrices, we need to make an

assumption about the relationship between the degree of

pleiotropy and the magnitude of the effect per character.

We use two models of pleiotropy: the character model and

the trait model. The character model (also called Euclidian

superimposition model in Wagner et al. 2008) assumes that

the phenotypic measurements represent biologically

meaningful directions in phenotypic space that we call

characters (Wagner 2001). This implies that the genetic

underpinning of the character is independent of the effects

of its genes on other characters. The effect size of a gene

per given character is thus modeled as constant, regardless

of the number of other characters affected by the same gene

(Fig. 1a). As a consequence, the total effect of a gene that

affects multiple characters increases with the number of

characters affected (see Salathe et al. 2006; Wagner et al.

2008; Wang et al. 2010; Wagner and Zhang 2011 for

empirical support).

The alternative trait model (also named invariant total

effect model in Wagner et al. 2008) assumes that phe-

notypic measurements, traits, are arbitrary directions in

phenotypic space with no biological identity. We model

this by assuming a constant vector length of effects,

regardless of how many traits are affected. As a conse-

quence, the genetic effect per trait decreases when the

number of traits affected by a gene increases (Fig. 1b).

Naively, this model predicts a reduction in evolvability

per trait with increasing complexity, if pleiotropy is taken

as a proxy for complexity (Orr 2000; Welch and Waxman

2003).

The two models delimit a continuum, as characters are

hard to determine in practice and often do not coincide

with measurements. Clearly, an arbitrary number of

measurements can be taken on any part of the organism,

which necessarily describe the same lower-dimensional

structure. The total effect of an underlying gene in such

redundantly assessed structure is limited, as some mea-

surements are highly correlated and share the same

genetic basis.

Results

The main results are summarized in Tables 2 and 3. We

focus on conditional evolvabilities, as we are mainly

interested in the constraining effects of conflicting T
a
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selection. Results on unconditional evolvabilities are pre-

sented briefly at the end.

Equal Molecular Variances at the Loci

All evolvabilities increase as the effects at the loci increase

and there is no formal maximum in the absence of limits on

the gene effects. Rather the maximal evolvability is

determined by the maximum variance set in the model.

Fixing the molecular variances in Eqs. (8) and (9) to unity

we get the following expressions for the average condi-

tional evolvabilities:

�c� ¼ 1

2

Xn

j¼1

b2
1j þ b2

2j

� �
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Pn
j¼1 b1jb2j

� �2

Pn
j¼1 b2

1j

Pn
j¼1 b2
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0
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As is apparent above (see also Table 1), both types of

conditional evolvability are maximized by increasing the

variance of both characters and decreasing their

covariance. In the character model this is achieved by

full pleiotropy with hidden effects, in which all loci

contribute to both characters, with no net covariance. The

proof is given in Appendix 1. It follows that the most

evolvable B matrix lacks modular effects under the

character model. A such genotype-phenotype map is

depicted in Fig. 2 for a system with two loci. In the trait

model the sum of the effects on the two traits is constant, so

maximization of average conditional evolvability requires

only minimizing the contribution to covariance. This is

minimized when the effects of pairs or groups of loci

cancel out, and includes modular as well as hidden-

pleiotropic genotype-phenotype maps. Multiple B matrices,

with widely varying patterns of pleiotropy, exist that fulfill

these general conditions (Fig. 2b). The corresponding

G matrix has equal eigenvalues. The proof is given in

Appendix 1.

We conclude that given equal variances across under-

lying loci, the reduction of pleiotropy is not an essential

feature of genotype-phenotype maps that maximize

evolvability, as measured by the amount of independent

variance available to selection per character. In the case of

the character model, modular genotype-phenotype maps

even result in lower evolvability than the fully pleiotropic

maps. All the corresponding G matrices that maximize

evolvability are diagonal with equal variances per trait.

Mutation-Selection Balance: House-of-Cards

Approximation of Equilibrium Variance

Average conditional evolvabilities are derived by substi-

tuting the equilibrium locus variance under the House-of-

cards approximation (Eq. 1 into Eqs. 8, 9):

Fig. 1 Schematic representation of the two models of pleiotropy for

two phenotypic characters. A locus is represented by a column vector

in the B matrix and a vector in two-dimensional morphospace. a In

the character model, the total effect of the locus is the length of the

vector, while the effect of the pleiotropic locus per phenotypic

character is independent of the degree of pleiotropy. Whether

character 1, character 2, or both are affected, the effect per character

is constant. b In the trait model the total effect of the locus is constant,

as reflected in the constant vector length. The effect per trait depends

on the degree of pleiotropy (i.e., the angle h of the effect vector)
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Fig. 2 The examples of vector

arrangements characteristic of

the GP maps with maximal

average conditional

evolvability, given equal

variances at loci. Each vector

represents an effect of the locus

on the two-dimensional

phenotype. The arrangement of

vectors determines the

distribution of variance among

characters. The corresponding

B matrices are shown in which

each vector appears as a

column. a In the character

model, the most evolvable GP

maps are characterized by

vectors that affect both traits,

generating variance along both

trait axes, while covariance

cancels out due to opposite

effects. b In the trait model, the

family of most evolvable GP

maps is characterized by zero

covariance, which can be

reached by different

arrangements of vectors. The

first example shows pairs of

orthogonal vectors, arbitrarily

arranged relative to each other.

The middle example shows a

modular arrangement, which is

a special case of the first

arrangement, when pairs of

orthogonal vectors come to be

arranged on top of one another.

The last example shows equally

spaced vectors (Appendix 2)
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As the reduction of covariance between traits is crucial to

increase conditional evolvability, we consider in the fol-

lowing two extreme B matrices that lead to zero covariance:

(1) fully hidden-pleiotropic B matrix, in which all loci are

pleiotropic and the synergistic and antagonistic effects can-

cel each other out, and (2) fully-balanced modular matrices,

in which all loci affect only a single trait and the effects per

trait are equal among traits. In these cases the trait-based

average conditional evolvabilities become:

�c�mod ¼
nu s1 þ s2ð Þ

s1s2

;

�c�h ¼
4nu

s1 þ s2

;

�c�mod [ �c�h; for all s1 6¼ s2;

where ‘‘mod’’ stands for balanced modular case, and ‘‘h’’

stands for fully hidden pleiotropic, and n is the number of

loci.

The conditional evolvabilities averaged over all direc-

tions are:

�cmod ¼
2nuffiffiffiffiffiffiffiffi
s1s2
p ;

�ch ¼
4nu

s1 þ s2

:

�cmod [ �ch; for all s1 6¼ s2:

Note that for a given total selection strength s1 ? s2, the

product s1s2 in nominator is highest when s1 = s2 and

decreases with increasingly asymmetric selection, leading

to increased conditional evolvability.

When the stabilizing selection on both characters is

equally strong (s1 = s2), the modular and hidden pleio-

tropic genotype-phenotype maps result in an equal G

matrix with the conditional evolvabilities: �c�max ¼ �cmax ¼
2nu=s. In all other cases, both trait-based and averaged

conditional evolvabilities are higher in modular maps.

Interestingly, the trait and character models of pleiot-

ropy contribute equally to the two characters in this case.

The proof is presented in Appendix 3, section 1. The two

models can therefore be treated jointly. Furthermore, the

contribution of a pleiotropic locus to the variance of a

particular character is always smaller than the contribution

of a locus that is modular for that trait. To see this, consider

a modular locus with the B matrix column bj ¼
�1

0

	 

: Its

contribution to the character variance is 4u=s1, while a

pleiotropic locus with bj ¼
� cos h

� sin h

 !
contributes the

variance G11j ¼ 4u cos2 h
s1 cos2 hþs2 sin2 h

:

In summary, under house-of-cards conditions (see

discussion), modular and fully hidden pleiotropic geno-

type-phenotype maps are equally evolvable only when

stabilizing selection is equally strong in all directions. In

this case, all B matrices that generate zero net genetic

covariance and equal genetic variances of both characters

(whether modular, hidden pleiotropic or any balanced

combination of the two) generate maximal average condi-

tional evolvability for the given amount of variance and

strength of selection. The higher number of loci that affect

each trait compensates for the fact that the pleiotropic loci

contribute less variance per trait. Under any unequal

strength of stabilizing selection on the two characters, the

modular genotype-phenotype map manifests higher aver-

age conditional evolvabilities.

Mutation-Selection Balance: Gaussian Approximation

of Equilibrium Variance

The average conditional evolvabilities are derived by

substituting the equilibrium locus variance under the

Gaussian approximation (Eq. 2 into Eqs. 8, 9):
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We again focus on the fully modular, and the fully

hidden pleiotropic genotype-phenotype map. For these

maps the conditional evolvabilities averaged over traits are:

�c�mod ¼
nrm

ffiffiffiffi
s1
p þ ffiffiffiffi

s2
p� �

4
ffiffiffiffiffiffiffiffi
s1s2
p ;

�c�h ¼
nrmffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1 þ s2

p ;

�c�mod\�c�h , s1 � s2ð Þ2\4s1s2;

�c�mod [ �c�h , s1 � s2ð Þ2 [ 4s1s2:

The hidden-pleiotropic genotype-phenotype map is thus

more evolvable, except when the strengths of stabilizing

selection on the two traits differ strongly. At equal

strengths of stabilizing selection shaping the underlying

variance of both traits, the average conditional evolvability

of the two maps is: �c�mod ¼ nrm

2
ffiffi
s
p ; and �c�h ¼ nrmffiffiffi

2s
p :

The conditional evolvabilities of modular and hidden-

pleiotropic maps averaged across all directions in mor-

phospace are

�cmod ¼
nrm

2
ffiffiffiffiffiffiffiffi
s1s2

4
p ;

�ch ¼
nrmffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1 þ s2

p ;

�cmod\�ch , s1 � s2ð Þ2\12s1s2;

�cmod [ �ch , s1 � s2ð Þ2 [ 12s1s2:

Again, the genotype-phenotype map with hidden

pleiotropy is the more evolvable, except if stabilizing

selection is very weak on one of the traits. At equal

strengths of stabilizing selection on the traits at

equilibrium, �cmod ¼ nrm

2
ffiffi
s
p ; and �ch ¼ nrmffiffiffi

2s
p :

Figure 3a shows the parts of the parameter space (s1, s2) for

which either the modular or the pleiotropic genotype-pheno-

type map has the higher average conditional evolvability.

As under house-of-cards approximation, it can be shown

that the two pleiotropic models (trait and character) are

indistinguishable with respect to the genetic variation

contributed per trait (proof in Appendix 3, section 2).

Furthermore, also under the Gaussian approximation the

Table 2 Comparison between evolvabilities in fully-balanced modular and hidden-pleiotropic GP maps for different assumptions about the

variance distribution at underlying loci

Optimized criterion Uniform variances at loci Variances at mutation-selection balance

Trait model Character model Gaussian approximation House-of-cards approximation

Average evolvability of characters, �e� = average unconditional evolvability, e = conditional evolvability averaged across characters, �c�

Balanced modularity Vyn
2

Vyn
2

n
ffiffi
u
p

c
ffiffiffi
s1
p þ ffiffiffis2

pð Þ
4
ffiffiffiffiffiffi
s1s2
p

nu s1þs2ð Þ
s1s2

Hidden pleiotropy Vyn
2

Vyn n
ffiffi
u
p

cffiffiffiffiffiffiffiffiffi
s1þs2

p 4nu
s1þs2

Average conditional evolvability, c

Balanced modularity Vyn
2

Vyn
2

n
ffiffi
u
p

c
2
ffiffiffiffiffiffi
s1s2

4
p 2nuffiffiffiffiffiffi

s1s2
p

Hidden pleiotropy Vyn
2

Vyn n
ffiffi
u
p

cffiffiffiffiffiffiffiffiffi
s1þs2

p 4nu
s1þs2

Evolvabilities are presented for n loci

Table 3 The summary of the conditions under which the modular or the hidden pleiotropic GP maps yield higher evolvability

Equal variances Variances at mutation-selection balance

Trait model Character model Gaussian approximation House-of-cards approximation

�e� �e�mod ¼ �e�h �e�mod\�e�h �e�mod [ �e�h , s1 � s2ð Þ2 [ 4s1s2

�e�mod\�e�h , s1 � s2ð Þ2\4s1s2

�e�mod [ �e�h , s1 6¼ s2

�e�mod ¼ �e�h , s1 ¼ s2

�e �emod ¼ �eh �emod\�eh �emod [ �eh , s1 � s2ð Þ2 [ 4s1s2

�emod\�eh , s1 � s2ð Þ2\4s1s2

�emod [ �eh , s1 6¼ s2

�emod ¼ �eh , s1 ¼ s2

�c� �c�mod ¼ �c�h �c�mod\�c�h �c�mod [ �c�h , s1 � s2ð Þ2 [ 4s1s2

�c�mod\�c�h , s1 � s2ð Þ2\4s1s2

�c�mod [ �c�h , s1 6¼ s2

�c�mod ¼ �c�h , s1 ¼ s2

�c �cmod ¼ �ch �cmod\�ch �cmod [ �ch , s1 � s2ð Þ2 [ 12s1s2

�cmod\�ch , s1 � s2ð Þ2\12s1s2

�cmod [ �ch , s1 6¼ s2

�cmod ¼ �ch , s1 ¼ s2
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pleiotropic locus always contributes less variance to each

character than a modular locus: the trait variance generated

by a pleiotropic locus rm cos2 hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1 cos2 hþs2 sin2 h
p
	 


is always smaller

than that of the modular locus rmffiffiffi
s1
p
� �

.

It follows that under the conditions appropriate for the

Gaussian approximation, the fully hidden-pleiotropic

structure maximizes average conditional evolvability,

except when stabilizing selection on the traits at mutation-

selection equilibrium is highly asymmetrical. Even though

the contribution of a single locus to variance is lesser when

it affects another character, this does not outweigh the fact

that every locus contributes to the variance of the character

at full pleiotropy, while only part of the loci contribute

when genotype-phenotype map is modular.

Maximizing Unconditional Evolvability

Unconditional evolvability differs from conditional evolv-

ability in that the amount of covariance between traits is

irrelevant (see summary in Table 3). Maximizing average

unconditional evolvability only depends on maximizing

variance. Unconditional evolvability averaged across all

directions and across the two orthogonal characters yields

the same results (�e ¼ �e�).
When the molecular variance is uniform across loci, the

two pleiotropic models differ in their optimal arrangement

of genetic effects. Under the trait model, all genotype-

phenotype maps have equal total amount of variance, and

hence equal evolvability. Under the character model, the

average unconditional evolvability is maximized when all

loci contribute maximally to the variance of all traits, and

hence when all loci have maximally pleiotropic effects. If

variance is kept in mutation-selection equilibrium under

the house-of-cards conditions, the average unconditional

evolvability is always equal to or higher in modular maps

than in genotype-phenotype maps with hidden pleiotropy:

�e ¼ �e� ¼ 2u
Xn

J¼1

b2
1j þ b2

2j

s1b2
1j þ s2b2

2j

:

�emod ¼ nu
s1 þ s2

s1s2

;

�eh ¼
4nu

s1 þ s2

:

�emod [ �eh; for all s1 6¼ s2:

Fig. 3 Both plots show the

parameter space defined by the

strength of stabilizing selection

on both characters that

determine the variance

distribution at the mutation-

selection equilibrium. The small
plots show the bivariate

phenotypic distributions

corresponding to the

combination of strengths of

selection in particular parts of

the graph. The shaded regions
show the combinations of

parameter values (and hence the

distribution of variance), at

which genotype-phenotype

maps with hidden pleiotropy are

more highly evolvable than

those with modular pleiotropy

when the criterion is conditional

evolvability (a), or

unconditional evolvability (b)
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Only in the special case when stabilizing selection is

equally strong on both traits (s1 = s2) will the modular and

full hidden pleiotropic matrices have equal evolvabilities.

In this case, the average evolvability is �e = 2nu/s. As the

signs of pleiotropic effects are irrelevant, the above

pleiotropic matrices are representative for all pleiotropic

matrices.

Under the Gaussian conditions, however, the average

unconditional evolvability is maximized by hidden pleio-

tropic genotype-phenotype maps under most combinations

of stabilizing selection on the two characters (Fig. 3b).

�e ¼ �e� ¼ rm

2

Xn

j¼1

b2
1j þ b2

2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1b2

1j þ s2b2
2j

q :

�emod ¼ nrm

ffiffiffiffi
s1
p þ ffiffiffiffi

s2
p

4
ffiffiffiffiffiffiffiffi
s1s2
p ;

�eh ¼
nrmffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1 þ s2

p :

�emod\�eh , s1 � s2ð Þ2\4s1s2;

�emod [ �eh , s1 � s2ð Þ2 [ 4s1s2:

If the stabilizing selection on the two traits is

symmetrical, the hidden pleiotropic genotype-phenotype

map is always more evolvable than the modular genotype-

phenotype map (�emod ¼ nrm

2
ffiffi
s
p ; �eh ¼ nrmffiffiffi

2s
p ; �eh [ �emod). As the

presence of covariance is irrelevant when maximizing

average unconditional evolvability, the above therefore

holds for fully pleiotropic genotype-phenotype maps in

general.

Discussion

The purpose of this work was to find genotype-phenotype

maps that maximize the potential to respond to a selective

challenge under different assumptions about the underlying

molecular variance. In particular, we have shown that a low

degree of pleiotropy (i.e., modularity) is not a universal

characteristic of the genotype-phenotype maps that maxi-

mize evolvability. In fact, if there is no constraining

selection and all genes have equal variation, the highest

evolvability is achieved when all genes affect all charac-

ters, as this maximizes the amount of genetic variation

along any specific direction in morphospace. If there is

constraining selection, however, the picture is more com-

plex. The conditional evolvability measures ability to

respond in a specific direction when there is stabilizing

selection along other directions. This measure is optimized

by reducing genetic covariances as much as possible and

by increasing and evening out genetic variances as much as

possible. These demands may be in conflict, and the degree

to which this conflict can be resolved depends on what

constraints exist on the possible patterns of pleiotropy.

Hansen (2003) found that when only one type of positive

pleiotropy was possible, then the most evolvable maps

were the ones in which 16% of genetic variation was

pleiotropic. In the present paper we have looked at situa-

tions where all kinds of pleiotropy are possible. Then it is

clear that the most evolvable maps are to be found among

those that can generate a diagonal G-matrix in which all

genetic covariances are zero. Modular genotype-phenotype

maps can achieve this, but so can patterns of variable

pleiotropy that cancels out on average (hidden pleiotropy).

The detailed structure of the most evolvable genotype-

phenotype map depends on the initial distribution of vari-

ance at the underlying loci. When the variance at the

underlying loci is assumed to be uniform across loci, maps

with fully hidden pleiotropic effects, which generate no

genetic covariance while contributing fully to the variance

of all characters, yield equal or higher average conditional

evolvability than any modular genotype-phenotype map.

At mutation-selection equilibrium, the distribution of

variance is determined by the mutation rate and the

strengths of stabilizing selection on both characters. When

the equilibrium variance distribution is approximated by

the house-of cards approximation, any asymmetry in the

strength of stabilizing selection on the two characters

results in modular genotype-phenotype maps yielding

higher evolvability. When equilibrium variance can be

approximated by the Gaussian approximation, however,

then hidden pleiotropic genotype-phenotype maps yield

higher evolvability under most conditions; the exception

being when the strength of stabilizing selection on the two

characters is extremely unequal. The Gaussian and house-

of-cards approximations are valid under different condi-

tions (Burger 2000). The Gaussian approximation is based

on high mutation rates and small phenotypic effects of

mutations (Turelli 1984; Burger and Hofbauer 1994),

whereas the house-of-cards approximation is valid when

the mutation rates are lower and the phenotypic variance of

the new mutations is greater than the equilibrium variance

(Burger and Hofbauer 1994). Based on this, our results

imply that under high mutation rates, pleiotropic genotype-

phenotype maps yield higher evolvability across most

combinations of stabilizing selection, whereas with lower

mutation rates, modular genotype-phenotype maps yield

higher levels of evolvability (see Table 3 for summary).

This is an intuitively plausible result, as in the populations

where single mutations contribute relatively little variation,

the disadvantages of pleiotropic mutations are less impor-

tant and may be compensated additively by existing varia-

tion; whereas in a situation approximated by house-of-cards

model, large pleiotropic mutations overwhelming existing

variation may be more disadvantageous (Fig. 4).
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We investigated two sets of constraints on what patterns

of pleiotropy are possible. In the character model, we

assumed that the effect a gene can have on one trait is

unrelated to the effects it has on the other trait. This leads

to a situation in which the largest vector effects can occur

when both traits are equally affected (with equal or oppo-

site sign). This is a situation that could favor pleiotropy, as

more variation is possible in directions of morphospace

where both characters change. Indeed, when the underlying

molecular variances are uniform, we found the highest

evolvability for maps with equal and hidden pleiotropy. In

the trait model, we assumed that the length of the effect

vector had a constant maximum, so that no direction in

morphospace was favored. In this case, a range of fully

modular and fully hidden maps had equal effects on

evolvability when underlying molecular variances were

equal. Under the mutation-selection models, however, the

difference between the character and the trait models dis-

appeared, as less molecular variance was maintained when

the genes had larger effects. This result resembles the

Haldane-Muller principle, which states that the mutation

load is independent of the mutational effect size (Haldane

1937; Muller 1950; Burger 2000).

We may think of the character axes in our models as

representing functional combinations of traits (modules),

and allele substitutions with effects along these axes can be

interpreted as having functionally integrated effects on

these traits. Modularity in our model would then represent

Riedl’s (1978) idea that genotype-phenotype maps are

adaptively structured to generate variation along these

functionally integrated modules (Wagner and Laubichler

2004). Without going into the question of how such an

adaptation may arise, our results are relevant to this idea,

because they show that a pleiotropic modular organization

is not the only way to eliminate selective constraints across

modules and to maximize evolvability. Classical modu-

larity is indeed a highly evolvable solution in many situa-

tions, but it is not always the best solution. In particular,

under conditions of high mutation rates or equal variances

across loci, genotype-phenotype maps with hidden pleiot-

ropy are more evolvable.

If evolvability is the ability to respond to a selective

challenge, then we may expect that the evolvability will

depend on the type of selection. We considered two types

of selective challenge. When maximizing the conditional

evolvability along the two character axes, we effectively

assumed that selection would only seek to change one

character at the time with the other character under stabi-

lizing selection. Under this regime the fully hidden pleio-

tropic genotype-phenotype map is only equivalent to the

modular map when the molecular variances of all loci are

equal, which under mutation-selection balance occurs

when stabilizing selection and mutation rates are equally

strong on the two traits. With any asymmetry, a modular

map can generate higher evolvability. When we maximized

conditional evolvability as an average over any combina-

tion of character values, we effectively assumed that

directional selection is equally likely in any direction of

morphospace. In this case, complementary pleiotropic

maps can generate higher evolvability than the purely

modular maps under conditions where mutation rates are

high and stabilizing selection not strongly asymmetrical,

while modular maps are still best at lower mutation rates

and asymmetric stabilizing selection.

Our measures of evolvability are highly schematic in

that they are derived from single-generation rates of evo-

lution when adaptive and constraining selection are at

balance (Hansen et al. 2003a). Pleiotropy has consequences

that are not apparent in the multivariate single-generation

response to selection. One such consequence is on the

stability of genetic correlation over time. The ultimate

genetic covariance matrix, determining the response to

selection, is determined by the structure of genotype-phe-

notype map and by the allele frequencies. With a modular

genotype-phenotype map, changes in allele frequencies

cannot generate covariance except through linkage

Fig. 4 The models of

evolutionary change on a

conceptual continuum, with

regard to the assumptions about

the relative importance of

mutational and standing

variation. Correspondingly, the

negative effect of pleiotropy is

greater in models emphasizing

mutational variance than in

those emphasizing the standing

variation as the raw material for

selection
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disequilibrium, while non-zero covariances could easily

evolve from an initially hidden-pleiotropic structure.

Allele-frequency changes in presence of hidden pleiotropy

may therefore cause instability of the G-matrix in the long

term. On this basis, we hypothesize that modularity of the

pleiotropic effects has higher long-term advantage if gen-

erating genetic correlations by allele-frequency change is

highly deleterious, as for example in traits that are always

exposed to separate selection regimes. On the contrary,

pleiotropic genotype-phenotype maps may be advantageous

if there are frequent changes in the trait combinations pre-

ferred by selection. In short, a higher degree of pleiotropy

increases the possibilities to move in the phenotypic space,

but also introduces instability of genetic correlations over

time. The details of how allele frequencies and selection

regimes affect the long-term optimality of different geno-

type-phenotype maps require further study.

Baatz and Wagner (1997) demonstrated a further effect

of pleiotropy beyond its effect on genetic correlation. They

showed that pleiotropy might hamper the response to

selection even when it generates no net genetic correlation.

This is because selection on the mean of one character may

affect the variance of the second character, even when

having no effect on its mean. If the selection on one

character increases the variance of the second character

that is under stabilizing selection, this effect still imposes a

constraint to selection in spite of absence of genetic cor-

relation between their means. In the opposite case, when

selection on the character reduces the variance of the

character under stabilizing selection, the response to

selection is enhanced.

Another potential effect of pleiotropy that escapes the

model used here involves epistasis. The B matrix repre-

sents a linear genotype-phenotype map. Nevertheless,

epistasis is a common finding in empirical studies across

species (e.g., Wolf et al. 2000; Cheverud et al. 2001;

Bradshaw et al. 2005; Brem and Kruglyak 2005; Malmberg

et al. 2005; West et al. 2007; Le Rouzic et al. 2008;

Pavlicev et al. 2010). So far modeling the effects of epis-

tasis on evolvability has been restricted to the univariate

case (Hermisson et al. 2003; Carter et al. 2005; Hansen

et al. 2006; but see Hansen and Wagner 2001). When

epistasis affects pleiotropic genes, it can change variances

and covariances of traits in a variety of ways, depending on

exactly how gene substitutions modify the effects of each

other (Hansen and Wagner 2001; Cheverud et al. 2004;

Carter et al. 2005; Hansen 2006; Wolf et al. 2006; Pavlicev

et al. 2008, 2010, 2011a, b). Expanding the existing study

of effects of epistasis on evolvability to the multivariate

case will reveal to what extent epistasis may allow plei-

otropy to evolve in a manner that could increase evolv-

ability, or alternatively, decrease evolvability through

canalization.

Our results are derived for a two-dimensional pheno-

type. With higher-dimensional phenotypes one may spec-

ulate that constrains could arise from complete lack of

variation in some directions. Also, with large number of

traits, the instability due to allele-frequency change may

increase, as it is harder to simultaneously balance covari-

ances of multiple traits at full pleiotropy. Extrapolating the

approach used in this work and assuming an uniform dis-

tribution of molecular variance, we may expect that

reduction of variance per character in the modular geno-

type-phenotype maps (and character model), as compared

to the hidden pleiotropic maps, is stronger when the total

variance is divided among more than two phenotypic

characters. This could lead to an advantage of pleiotropy

over modularity. When the underlying distribution of var-

iance across loci is determined by mutation-selection

equilibrium the situation is more complex, a question that

will require more attention in the future.

By focusing on conditional evolvabilities averaged

across directions of morphospace, we implicitly assumed

that selection is equally likely in those directions. If

selection is more likely along certain axes in morphospace,

the situation can be formulated in terms of this study by

using the axes of selective importance as character axes,

and applying the conditional evolvability averaged across

these axes. Pleiotropy can then be defined with respect to

these axes.

Among experimental studies, support can be found for

very broad as well as very restricted and modular pleiot-

ropy. It is becoming clear that quantitative characters are

often affected by a very large number of genes, many of

which may remain undetected by the conventional studies,

as is also suggested by a high proportion of unexplained

genetic variance (Eichler et al. 2010; Yang et al. 2010).

Given the limited number of genes in the genome, a high

degree of polygeny means that most genes must affect

many characters, and hence that the genes underlying any

one character typically also have effects on many other

characters (e.g., Walsh and Blows 2009; Edwards and

Weinig 2011). This is further supported by the prevalence

of high genetic correlation that we find between most

characters (e.g., Kirkpatrick 2009). On the other hand, low

average degrees of pleiotropy (Gu 2007; Albert et al. 2008;

Wagner et al. 2008; Zou et al. 2008; Su et al. 2010), or

actual modularity of gene action (Mezey et al. 2000; Brem

et al. 2002; Ehrich et al. 2003; Cheverud et al. 2004;

Albertson et al. 2005; Juenger et al. 2005; Hlusko et al.

2011) are also common findings of empirical studies. We

note that a low average degree of pleiotropy is not neces-

sarily equivalent to modularity, as the phenotypic domains

might not coincide among genes, generating any degree of

covariance. Clearly, some empirical results may be arti-

facts of the methods. For example, the pleiotropy of loci
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segregating in an intercross of the selected lines used for

gene mapping may have been influenced by selection.

Also, pleiotropy may differ between the detectable loci and

those with small effects (Klingenberg et al. 2004). Fur-

thermore, the choice of measurements to assess pleiotropy

may further bias the results. In spite of the methodical

biases however, it is still an open question how these

contradicting results on the degree of pleiotropy can be

reconciled.

The structure and prevalence of most evolvable geno-

type-phenotype maps are interesting regardless of whether

this structure can be directly selected for. However, the

evolution of the genotype-phenotype maps is a central

issue and there is an ongoing debate on the effectiveness of

direct selection for evolvability (e.g., Hansen 2003; Proulx

and Phillips 2005; Hansen 2006; Lynch 2007a, b, c;

Wagner et al. 2007; Draghi and Wagner 2008; Fierst 2011;

Hansen 2011; Pavlicev et al. 2011a). Theoretical models

indicate the potential for selection on evolvability, but

some authors argue that direct selection for evolvability is

not feasible, or at least not necessary to explain organismal

or genomic structure (Lynch 2007a, b, c; Hansen 2011).

Experimental work directly addressing the evolution of the

genotype-phenotype map by selection can illuminate this

question, but has so far been rare (but see, e.g., Allen et al.

2008; Delph et al. 2011). Insight into this question can also

be gained by studying the structure and evolvability of

empirical genotype-phenotype maps, and by comparison to

the result of this study. Are the empirical genotype-phe-

notype maps maximally evolvable? Provided there are no

constraints on what patterns of pleiotropy are possible, we

have shown that all maximally evolvable genotype-phe-

notype maps generate diagonal G matrices. Empirical G

matrices are usually far from diagonal, and this may be

because the measurements chosen do not represent bio-

logical characters as discussed above, or because genotype-

phenotype maps are not evolutionary optimized for average

evolvability in the two senses we have investigated. A

strong genetic correlation means that genetic variation gets

concentrated along certain axes in morphospace, and we

can not rule out that the genotype-phenotype map has been

molded to generate high evolvability along directions

where evolutionary changes are more likely (Jones et al.

2007), or simply to minimize genetic load by reducing

variation in directions that are not likely to be adaptive.

Evolvability has frequently been addressed by estimat-

ing dimensionality of genetic covariance matrices, i.e., by

the number of independent dimensions that possess sig-

nificant amount of genetic variance (Mezey and Houle

2005; Hine and Blows 2006; McGuigan and Blows 2007;

Kirkpatrick 2009). The current study is distinct in that it

emphasizes the distribution of genetic variance across

dimensions and the underlying GP map producing the

distribution, rather than exploring its sole net presence or

absence in single dimensions. Whereas high-dimensional

G matrices can result from genotype-phenotype maps with

varying degrees of pleiotropy, low dimensionality reveals

lack of genetic variance in some of the phenotypic direc-

tions and therefore necessarily also lack of pleiotropy

involving these characters. Put into the context of dimen-

sionality, our results show that the most evolvable geno-

type-phenotype maps have full dimensionality of G. This is

not surprising when average evolvabilities across all

directions of morphospace are the criterion to be maxi-

mized. Optimizing a genotype-phenotype map for a par-

ticular direction of selection rather than the average across

all possibilities, would result in a low-dimensional G

matrix with most variation aligned in the direction of

selection, and in a correspondingly different genotype-

phenotype map.

The effect of pleiotropy on evolution has also been

addressed using approaches based on Fisher’s (1958)

geometric model (Kimura 1983; Orr and Coyne 1992;

Hartl and Taubes 1998; Waxman and Welch 2003, 2005;

Martin and Lenormand 2006). These studies differ from

the present study in that they predominantly focus on the

evolvability of a single trait (rather than including the

constraining trait) and furthermore, are based on different

assumptions about variation. The geometric approach

assumes that the rate of evolution depends on the new

arising mutational variation. In contrast, quantitative

genetic models such as the present model, assume that the

rate of evolution primarily depends on selection on existing

variation. Due to different assumptions, the conclusions of

the models are not directly comparable. Technically, both

situations can be seen as simplifications, representing

opposing extremes on a continuum combining arising and

extant variation. The fact that the two approaches fre-

quently arrive at different conclusions (e.g., compare

Wagner 1988; Orr 2000) is itself interesting, as it implies

that pleiotropy may have different effects in the two

situations.
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Appendix 1

Here we present the derivation of the GP maps maximizing

average conditional evolvability. The two models of plei-

otropy are dealt with separately. We also present the

maximization of the character conditional evolvability in

the character model.
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Character Model

Discrete Genetic Effects

In this part, we are concerned with discrete effects of

genes, i.e., bij 2 �1; 0; 1f g. Let the underlying genes have

either a positive, a negative, or no effect on the trait, and let

each trait be affected by at least one gene. We term mod-

ular loci (column vectors of B) as those affecting only one

trait (i.e., (1,0), (-1,0), (0,1) or (0, -1)), synergistic loci as

those affecting both traits in the same way ((1,1) or (-1,

-1)), and antagonistic loci as those affecting both traits in

opposite ways ((1, -1) or (-1,1)).

The squared average conditional evolvability �c2 for two

traits equals the sum of the products of determinants of all

minors of B (a consequence of Cauchy-Binet formula). We

will denote the 2 9 2 sub-matrices (minors) of B as Bi,

where i 2 2; . . .; n n� 1ð Þ=2f g and n is the number of

genes.

�c2 ¼Det BBT
� �

¼ Det B1½ �Det BT
1

� �
þ � � �

þ Det Bn n�1ð Þ=2

� �
Det Bn n�1ð Þ=2

� �

¼
Xn n�1ð Þ=2

i

Det Bi½ �ð Þ2:

Following the solution of Hadamard’s maximum

determinant problem, the maximum determinant of an m

x m matrix with all entries aij� 1j j equals mm=2, which is

two in the case of a 2 9 2 matrix. It can be furthermore

shown (Brenner and Cummings 1972; Ehlich 1964) that if

matrix elements are restricted to discrete values (-1, 0, 1),

there exist four distinct matrices with the maximum

determinant (=2). These are, written by row: {{-1, -1},

{1, -1}}, {{-1, 1}, {-1, -1}}, {{-1, 1}, {1, 1}}, {{1,

1}, {1, -1}}. As we are interested in maximum squared

values of the determinant, we also consider the minimum

determinant (-2). The sign of the determinant changes by

exchanging the rows or columns of a matrix, which results

in four more optimal matrices. Note that all of these

matrices combine one column vector with synergistic and

one column vector with antagonistic effects. Hence, the

problem of maximum conditional evolvability of a matrix

with more than two vectors reduces to the problem of

combining the column vectors of B such that they result in

most optimal combination of determinants of submatrices

Bi. We present the values of the determinants of all four

possible sub-matrices in Table 4.

The solution can be found by considering the general

equation for combining the four groups of loci (antago-

nistic, synergistic, two modular) in different proportions

and determining the proportions at which the average

conditional evolvability is the highest.

Let nM1, nM2, nA, nS be the counts of modular loci along

the trait 1, modular loci along the trait 2, antagonistic and

synergistic loci, respectively. Let xM1, xM2, xA, and xS be

their respective proportions in the total number of loci n:

xM1 ¼ nM1

n ; xM2 ¼ nM2

n ; xA ¼ nA

n ; xS ¼ nS

n ; so that xM1 þ
xM2þ xA þ xS ¼ 1. Then �c2 can be written as the number of

times a particular type of submatrix occurs, times the value

of its squared determinant (see Table 4):

�c2 ¼ nxM1ð Þ2�nxM1

2

 !
02 þ nxM2ð Þ2�nxM2

2

 !
02

þ nxAð Þ2�nxA

2

 !
02 þ nxSð Þ2�nxS

2

 !
02

þ n2xM1xM2

� �
12 þ n2xM1xA

� �
12 þ n2xM1xS

� �
12

þ n2xM2xA

� �
12 þ n2xM2xS

� �
12 þ n2xSxA

� �
22

where n is a constant and can be neglected. Maximizing the

equation above under the constraint xM1 þ xM2 þ xA þ
xS ¼ 1 yields a single solution xA ¼ xS ¼ 0:5 and conse-

quently xM1 ¼ xM2 ¼ 0. The maximum value of the func-

tion �c2 equals n2; therefore the maximum average

conditional evolvability equals n. This shows that the sin-

gle combination of loci giving the highest average condi-

tional evolvability is the one in which half of the loci have

antagonistic and the other half synergistic effects on the

two traits, but none are modular. The average evolvability

of such GP map is n, hence max �c ¼ �e. Also note that the

average unconditional evolvability is at its maximum here,

because all vectors attain their maximal length.

Continuous Genetic Effects

Here we show that the above is also the solution to the B

matrix of continuous effects. We show that the values of

the determinants in the above matrices are the maximal

values and no other combination of effects will give higher

average conditional evolvability.

Consider the type of submatrices above that yield a non-

zero determinant. These are all submatrices combining loci

with non-equal effects. With respect to the sign of the

effect, we again classify the types of loci as before:

Table 4 Summary of determinants of different types of 2 9 2

submatrices

2 9 2 Submatrix Determinant

One column or row is a scalar multiply of another

(includes equal vectors)

0

Two oppositely modular vectors 1

Any non-modular vector combined with a modular

vector

1

All combinations of antagonistic and synergistic

vectors

2
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modular, synergistic and antagonistic. For each submatrix

with a non-zero determinant, involving two different types

of loci, we show that the determinant (Det) will decrease,

as the elements of the submatrix deviate from the limits of

the interval [-1,1] by some amount ei, where 0 B ei B 1.

Then for a submatrix combining a modular and an

antagonistic vector:

0 � 1þ e2

1� e1 1� e3













 ¼ 1� e1 � e2 þ e1e2 ) 0�Det� 1;

for a submatrix combining a modular and a synergistic

vector:

0 1� e2

1� e1 1� e3













 ¼ e1 þ e2 � e1e2 � 1) �1�Det� 0;

for a submatrix combining two modular vectors for

different traits:

1� e1 0

0 1� e3










 ¼ e1 þ e2 � e1e2 � 1) �1�Det� 0

and for a submatrix combining an antagonistic and a

synergistic vector:

1� e1 �1þ e3

�1þ e2 1� e4










 ¼ 2� e1 � e2 � e3 � e4 þ e2e3 þ e1e4

) 0�Det� 2:

Thus, submatrix determinants are maximized when

bij 2 �1; 0; 1f g, for which the solution has been derived

above.

Trait Model

The B matrix in the trait model is characterized by constant

vector length irrespective of orientation, thus the effects of

loci per trait depend on the angles of these vectors in

phenotypic space:

B ¼
sin h
b1j j

sin hþxð Þ
b2j j

cos h
b1j j

cos hþxð Þ
b2j j

 !
;

where bj



 

 is the length of the substitution-effect vector at

jth locus, which we assume in the following to be unit

length in all vectors; h is the angle of the first vector from

some reference vector (e.g., trait axis 1), and x is the angle

between the two vectors, so that -p\ x \ p. Average

conditional evolvability for a two-gene system is then

�c ¼ Det B½ � ¼ sin h cos hþ xð Þ � cos h sin hþ xð Þ ¼ sin x:

The solution for this system is obvious: the average

conditional evolvability is maximized when x = ±p/2, and

it is irrelevant how the two vectors are oriented with

respect to the trait axes (h cancels out in the equation). It

follows that the degree of pleiotropy is irrelevant in this

model, as long as the two vectors are orthogonal.

Extending the model to multiple genes, we again use the

observation that the squared average conditional evolv-

ability is the sum of the squared determinants of all pos-

sible two-gene sub-matrices. In terms of between-vector

angles, this means that average conditional evolvability

equals the square root of the sum of the squared sinus

function of angles between all possible pairs of locus

vectors. Note that the initial reference angle h always

cancels out, meaning that the orientation of the genetic

effect vectors relative to the phenotypic axes is irrelevant.

This also means that the degree of pleiotropy is not the

essential criterion for optimization.

Due to rotational invariance in the trait model, we can

expect different equally optimal solutions when optimizing

n n� 1ð Þ=2 angles simultaneously. To characterize these

solutions we consider that, because in the trait model the

length of the effect vector is not affected by its orientation

relative to the trait axes, the total genetic variance

(evolvability) is constant. In terms of the G matrix this

means that the trace of the matrix trace G½ � ¼ k1 þ k2ð Þ is

constant. For the two-trait system �c ¼
ffiffiffiffiffiffiffiffiffi
k1k2

p
, which is

maximized when k1 ¼ k2 ¼ trace G½ �=2, and therefore

when the genetic covariance of G equals zero.

Note that the maximum is at max �c ¼ trace G½ �
2
¼

G11þG22

2
¼ �e:

Multiple equally optimal solutions for a B matrix fulfill

this condition (Fig. 2b). The number of trigonometric vari-

ables representing vectors in B precludes defining an

exhaustive set of solutions. Given the vectors of equal length,

the set of solutions includes e.g., all B matrices in which each

vector has an orthogonal counterpart, however the way such

pairs of vectors are arranged relative to other pairs is arbi-

trary. Complete modularity is a special case of this vector

distribution, in which all pairs of vectors point into two

identical directions, forming two orthogonal bundles. Fur-

ther distributions of vectors for which �c ¼ �e are those with

equally spaced vectors (‘‘Equally-spaced vector arrange-

ment’’; Fig. 2b), or equally spaced bundles of vectors, etc.

The condition G12 = 0 does not specify how the single

covariance contributions add up. In general, all solutions

where negative and positive covariance of loci cancels out

are equally optimal as those where no covariance is gen-

erated. In reality the vectors can be of different lengths,

contributing differently to (co)variance. The equilibrium is

then reached not by the equal numbers of vectors gener-

ating positive and negative variance, but by balancing their

contributions. Thus, the amount of variance allocated at

certain angles is also relevant.
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Appendix 2

Here we show that a modular vector arrangement and an

equally spaced vector arrangement yield maximal average

conditional evolvability in the trait model.

Modular Arrangement

The average conditional evolvability can be calculated for

a general model with orthogonal bundles of vectors by

grouping the between-vector angles into three groups:

between vectors within the bundle 1, between vectors

within the bundle 2, and the angles between vectors of the

opposite bundles. The sine of angles of the first two groups

equal 0, and the sine of the between-group angles all equal

1. Hence:

�c2 ¼ 2
n

4

n

2
� 1

� �
sin2 0þ n

2

� �2

sin2 p
2
¼ n

2

� �2

) �c ¼ n

2
:

This is the same evolvability for the fully modular GP

map as in the character model. Note that all vectors

contribute the same amount of variance. In a case of the

modular two-trait system n=2 ¼ �e.

Equally-Spaced Vector Arrangement

In this case the B matrix has a uniform distribution of

vectors around 2p (the angles between neighboring vectors

are equal). Let n be the number of vectors (angles), then

each angle between neighbor vectors is 2p/n. The squared

average conditional evolvability (=the sum of the squared

sine between all vector-pairs) is then

�c2 ¼ n� 1ð Þ sin2 2p
n
þ n� 2ð Þ sin2 2

2p
n
þ � � �

þ n� n� 1ð Þð Þ sin2 n� 1ð Þ 2p
n

	 


¼
Xn�1

j¼1

n� jð Þ sin2 j
2p
n

	 


¼
Xn�1

j¼1

1

2
n� jð Þ 1� cos 2j

2p
n

	 
	 


¼ 1

2

n n� 1ð Þ
2

þ n

2

� �

¼ n2

4
;

and therefore, �c ¼ n=2 ¼ �e: The last is true because the B

matrix is composed of n columns each with two elements, a

sine and a cosine of the same angle a. The sum of their

squares is always one, and the average evolvability equals

half the sum across n such columns.

Appendix 3

Here we show that the trait and character models of plei-

otropy are equivalent at full pleiotropy, i.e., when in a trait

model, h ¼ s p=4ð Þ, so that s 2{1, 2,…,8}).

House-of-Cards Approximation

Considering the contribution of a single locus j to the

genetic variance of a character 1. In the character model,

the jth B matrix column is bj ¼
�1

�1

 !
; contributing the

following variance to the character 1: G11j ¼ 4u
s1þs2

: In the

trait model, the corresponding column is bj ¼
� cos h

� sin h

 !
;

contributing the following amount of variance to the

character 1: G11j ¼ 4u cos2 h
s1 cos2 hþs2 sin2 h

(where h is the angle

between the mutational effect vector and the axis of

character 1; see Fig. 1).

Gaussian Approximation

In the character model, with locus-vector bj ¼
�1

�1

 !
; the

variance contribution to the character 1 is G11j ¼ rmffiffiffiffiffiffiffiffiffi
s1þs2

p ;

whereas in the trait model of pleiotropy, the locus vector

bj ¼
� cos h

� sin h

 !
contributes G11j ¼ rm cos2 hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s1 cos2 hþs2 sin2 h
p to the

variance of the trait 1. These contributions are equivalent

when h ¼ p=4.
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