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Abstract Mathematical spaces are widely used in the

sciences for representing quantitative and qualitative

relations between objects or individuals. Phenotype

spaces—spaces whose elements represent phenotypes—are

frequently applied in morphometrics, evolutionary quanti-

tative genetics, and systematics. In many applications,

several quantitative measurements are taken as the

orthogonal axes of a Euclidean vector space. We show that

incommensurable units, geometric dependencies between

measurements, and arbitrary spacing of measurements do

not warrant a Euclidean geometry for phenotype spaces.

Instead, we propose that most phenotype spaces have an

affine structure. This has profound consequences for the

meaningfulness of biological statements derived from a

phenotype space, as they should be invariant relative to the

transformations determining the structure of the phenotype

space. Meaningful geometric relations in an affine space

are incidence, linearity, parallel lines, distances along

parallel lines, intermediacy, and ratios of volumes. Bio-

logical hypotheses should be phrased and tested in terms of

these fundamental geometries, whereas the interpretation

of angles and of phenotypic distances in different direc-

tions should be avoided. We present meaningful notions of

phenotypic variance and other statistics for an affine phe-

notype space. Furthermore, we connect our findings to

standard examples of morphospaces such as Raup’s space

of coiled shells and Kendall’s shape space.

Keywords Affine space � Disparity � Invariance �
Morphometrics � Morphospace � Numerical taxonomy �
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Introduction

Mathematical spaces are widely used in the sciences for

representing quantitative and qualitative relations between

objects or individuals. Biological applications range from

representations of stretches of DNA, RNA, or proteins as

elements of a sequence space (e.g., Maynard Smith 1970;

Stadler et al. 2001, 2002), to phenotypes as equivalence

classes of genotypes (e.g., Fontana and Schuster 1998a, b),

to different approaches of capturing similarity and close-

ness of morphologies (see Sneath and Sokal 1973;

Bookstein 1991; McGhee 1999; Mitteroecker and Gunz

2009, and references therein). A phenotype space is a space

whose elements represent phenotypes such as RNA folding

patterns, morphological, physiological, or behavioral traits.

Specifying the relations between phenotypes in terms of a

formal space can lead to effective analyses and visualiza-

tions of complex connections and variation patterns that

would not be easily accessible by tabulations of pairwise

relations. For example, phenotype spaces have proven

relevant to investigate the evolutionary accessibility of

phenotypes or to compare developmental trajectories and

growth patterns (Fontana and Schuster 1998a; Stadler et al.

2001; Mitteroecker et al. 2004). Fitness landscapes or

adaptive landscapes represent the distribution of fitness or

adaptiveness across a phenotype space (Wright 1932;

Arnold et al., 2001). For all these types of spaces, the range
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of useful scientific inferences is determined by the geo-

metrical or topological properties of the formal space that

appropriately represents the empirical data.

To put it very generally, a mathematical space consists of

some set of elements (often called ‘‘points’’) together with

particular relations describing the structure of the space.

Since structures can be more or less specific, spaces differ in

their degree of generality. Euclidean space consists of points

in a vector space together with the notions of angle and

distance. Affine space, for example, is one generalization of

Euclidean space where distances in different directions are

incommensurable. (We shall describe Euclidean and affine

geometry in more detail below.) Issues of ‘‘meaningfulness’’

in biology and other scientific disciplines arise very often

because, as expressed in Suppes et al. (1989, p. 40),

‘‘whenever a Cartesian coordinate system is used, one tends

to assume that all Euclidean relations, and only those, are

defined and usable.’’ It is, however, very often the case that a

geometric structure that adequately represents a domain of

interest (like a phenotype space) is not Euclidean but, in fact,

less specific. In these cases, Euclidean geometry is too

‘‘rich’’. It allows one to draw conclusions that do not corre-

spond to features of the empirical domain of interest, as the

empirical structure permits a wider class of transformations

than just Euclidean transformations (see below). Conclu-

sions drawn within the framework of Euclidean geometry

thus are not guaranteed to be scientifically meaningful.

We shall focus in this paper on necessary conditions for

scientifically meaningful conclusions that are based on the

structure of phenotype spaces. Our examples are morpho-

logical spaces or morphospaces, i.e., spaces based on

morphological characteristics. Our conclusions, however,

apply to other phenotype spaces as well. We shall argue

that several kinds of phenotype spaces are, in fact, affine

spaces and not Euclidean. Thus, many of the concepts

familiar from Euclidean geometry, such as distance and

angle, will not be meaningful in most phenotype spaces.

We will address notions of similarity and disparity of

phenotypes as well as different geometries of phenotypic

trajectories, and discuss meaningful quantifications and

statistics of these properties.

Vector Spaces, Affine Spaces, and Euclidean Spaces

This section briefly reviews some standard mathematical

structures, which can be used to represent relations

between phenotypes. We limit our discussion to spaces

with a vector space structure and point to implicit

assumptions about the underlying empirical structures they

are supposed to represent. We refer the interested reader to

Suppes et al. (1989) for more details. This section may be

skipped by readers with some background in geometry.

Vector Spaces

Vector spaces are widely used to represent very different

kinds of empirical structures. A vector space ðV ;þ; �Þ is an

algebraic structure defined over a field F. Elements of V

can be added by performing the addition operation ?. They

can also be multiplied with scalars, i.e., elements of the

field F. Essentially, the operations of addition and scalar

multiplication in general vector spaces are similar to the

familiar case of a real vector space, where F is the field of

real numbers and where we have component-wise addition

ðx1; . . .; xnÞ þ ðy1; . . .; ynÞ ¼ ðx1 þ y1; . . .; xn þ ynÞ

and multiplication with real numbers

rðx1; . . .; xnÞ ¼ ðrx1; . . .; rxnÞ:

Real vector spaces are the most common type of vector

spaces to represent empirical biological structures. How-

ever, the field F may also be finite or countably infinite

(rationals), and it may be ordered (rationals, reals) or

unordered (complex numbers, various finite fields).1

Affine Spaces

Affine spaces add more structure to vector spaces by

identifying points, lines, planes, and so on. These objects

are called linear varieties. A linear variety in an

n-dimensional vector space is a set of the form

yþ
Xk

i¼1

lixijli 2 F; i ¼ 1; . . .; k

( )
;

where 0 B k B n and y; x1; . . .; xk 2 V are fixed. If k = 0,

the linear variety consists of a point y. If k = 1 or k = 2,

then the linear variety is a line or a plane through

y, respectively. By fixing k and varying y and x1; . . .; xk we

get all linear varieties Lk of dimension k. For instance, we

get all points, lines, or planes. Furthermore, an incidence

relation I is introduced for linear varieties Lk 2 Lk: If L 2 Lj

and L0 2 Lk and if j \ k, then I(L, L0) if L0 contains L, i.e., if

L � L0: In geometric terms, this means that L lies on L0.
Think of a point lying on a line or on a plane. An

n-dimensional vector space ðV ;þ; �Þ together with all linear

varieties L0; . . .;Ln and the incidence relation I constitutes

an affine geometry.

An affine transformation / is characterized by mapping

k-dimensional linear varieties to k-dimensional linear

varieties, and by preserving incidence relations:

1 When an underlying empirical structure is unordered, the use of an

ordered field would contain more structure than its empirical

counterpart and may lead to unwarranted conclusions drawn from

the mathematical representation.
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/ðLÞ 2 Lk () L 2 Lk

Ið/ðLÞ;/ðL0ÞÞ () IðL; L0Þ

This means, for instance, that points are mapped to points,

lines to lines, and planes to planes. Moreover, points that

are on the same line before the transformation will also be

on the same line after the transformation.

The definition of affine transformations is equivalent to

saying that an affine transformation is an automorphism of

V together with a translation, i.e.,

/ðxÞ ¼ Axþ y;

where A is a non-singular n 9 n matrix and y is an arbitrary

element of V. Geometrically, affine transformations comprise

translation, rotation, reflection, scaling, and shearing (Fig. 1).

For an ordered field F (such as the reals) the concept of

betweenness on a line or of a midpoint can be defined in

affine spaces. More generally, affine transformations leave

barycentric combinations invariant; these are given byP
j=0
n aj xj, where the weights aj sum up to 1. E.g., if n = 2

and a1 = a2 = 1/2, then the resulting combination is the

midpoint between x1 and x2; weights of 1/n for n points

gives the centroid or the center of gravity of these points.

Consequently, the concept of a mean is affine invariant

(i.e., unchanged by affine transformations).

Euclidean Spaces

In Euclidean spaces the concept of perpendicularity is

added to the affine structure of a vector space over R: In an

n-dimensional real Euclidean vector space, perpendicular-

ity is commonly defined by

Xn

i¼1

xiyi ¼ 0; ð1Þ

where x ¼ ðx1; . . .; xnÞ; y ¼ ðy1; . . .; ynÞ 2 R
n: If (1) holds,

then x and y are said to be perpendicular. The left-hand side

of (1) is the standard inner product of two vectors in R
n: The

concept of an inner product can be generalized to vector

spaces ðV ;þ; �Þ over the ordered field R: An inner product

h�; �i is a mapping from V 9 V to R which is symmetric (the

order of arguments does not matter), positive definite

(hx; xi[ 0 except for x = 0) and bilinear (linear in both

arguments). Hence, perpendicularity can be defined for

general real vector spaces by defining that x is perpendicular

to y if, and only if, hx; yi ¼ 0:A Euclidean geometry can then

be defined as consisting of a vector space over the field R

together with an affine geometry and a perpendicularity

relation based on an inner product. An inner product also

defines a distance measure d by setting

dðx; yÞ ¼ hx� y; x� yi
1
2:

Congruence is a central notion for Euclidean spaces

which is defined in terms of d. Two points x, y are said to

be congruent to two other points x0, y0 if, and only if,

d(x, y) = d(x0, y0). The distance d is also a measure of

similarity. In particular, if x 6¼ y then d(x,y) [ 0. Moreover

d is symmetric and satisfies the triangle inequality. Thus, d

is a metric.2

Euclidean geometries are preserved under a certain

group of transformations, called similarities. (Traditional

treatments often use invariance relative to motions, i.e.,

similarities which leave distances invariant.) A similarity w
is an affine transformation which preserves perpendicu-

larity and congruence:

hwðxÞ � wð0Þ;wðyÞ � wð0Þi ¼ 0() hx; yi ¼ 0

dðwðxÞ;wðyÞÞ ¼ dðwðx0Þ;wðy0ÞÞ () dðx; yÞ ¼ dðx0; y0Þ

In perhaps more familiar terms, a similarity is an orthog-

onal transformation (a rotation) together with a translation

a cb

Fig. 1 a Four points (A–D), constituting a square in R
2; along with

their centroid X. In b and c this point configuration is modified by two

different affine transformations. In b the transformation is a scaling of

the vertical axis and in c a shear along the vertical axis. Notice that

distances, relative distances, and angles have been changed by these

transformations. But in all three figures the lines AB and DC are

parallel and the ratio of the lengths of these lines is constant.

Furthermore, the points AXC are collinear before and after the affine

transformations, and X remains the exact midpoint of A and C. The

areas of the triangles ABC and ACD are affected by the transforma-

tion, but the ratio of these areas is invariant

2 A vector space together with a distance measure is a special case of

a metric space. A metric space does in general not have to be a vector

space.
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and multiplication by a scalar (uniform scaling; Fig. 2).

This invariance also means that we can define Euclidean

geometry in terms of the similarity group, like we can

define affine geometry in terms of the group of affine

transformations, reflecting the dual nature of geometries.

They can either be thought of as given by a particular

relational structure, from which other relations can be

defined. Or they can be conceived as being defined by some

group of transformations. The relational structure of the

geometry is implicitly given by requiring that it is invariant

under the group of transformations (Klein 1872; Narens

2002).

Finally, we would like to make a short remark on the

metrizability of affine spaces. As was pointed out above,

neither distances nor orderings of distances are invariant to

affine transformations. However, distance along a line is an

appropriate concept for an affine geometry since orderings

of distances on a line are preserved under affine transfor-

mations. Similarly, distances of segments of parallel lines

can be compared. This extends to certain metrics based on

norms (Minkowski geometries, cf. Busemann 1955). It

should be pointed out that such metrics do not exhibit

strong invariance properties that go beyond the partial one

for lines.

Meaningfulness

The group of transformations associated with a geometry

provides us with a powerful criterion to evaluate statements

about the represented empirical structure. Meaningful

statements should be invariant under the relevant class of

transformations (see Narens 2002, for a comprehensive

account of meaningfulness). Performing a transformation

of this class produces a new space that is the same as the

old one in all relevant respects. A conclusion which holds

in one space but fails to hold after transforming the space

into an equally suitable one does not reflect significant

properties of the represented empirical structure. Thus, all

meaningful conclusions that we draw about the empirical

structure from its representing mathematical structure must

be invariant across all equivalent versions of the mathe-

matical structure.

A meaningful relation in Euclidean space is one that is

preserved under similarities (Fig. 2). Distances are mean-

ingful in this sense, since the order of distances (not the

distances themselves) are invariant to similarity transfor-

mations (this follows immediately from the invariance of

congruence). Another meaningful relation in Euclidean

space are angles (an angle is a function of the ratio of two

distances and hence invariant to similarities). However,

distances and angles are not meaningful in affine spaces.

Similarities are a subgroup of the group of affine trans-

formations. There exist affine transformations which do not

preserve Euclidean relations such as angle and distance

(Fig. 1). Yet, if a relation is invariant to all affine trans-

formations, then it will also be invariant to similarities.

Thus, concepts and relations characteristic of affine spaces

are also meaningful in Euclidean spaces. One such geo-

metric concept is given by parallels. Parallelism is mean-

ingful both in affine and Euclidean geometry since it is

preserved under all affine transformations. An important

concept which is meaningful in Euclidean but not affine

spaces is volume. (Orders of) volumes are preserved under

similarities but not under affine transformations, only ratios

of volumes are affine invariant (see below).

For phenotype spaces, this translates into an analogous

condition for a concept or a conclusion to be meaningful.

Formal concepts used to infer biological conclusions, such

as the distance between phenotypes or the angle between

evolutionary trajectories, must be invariant relative to a

suitable class of transformations. Common transformations

in biometrics are changes of the origin of a coordinate

system used for measurement, changes of the scales or

units of variables, log transformations, or the replacement

of measures by equivalent measures. The substantive

conclusions drawn from the structure of phenotype spaces

should be unaffected by these transformations which rep-

resent arbitrary choices in the course of research. For

example, a meaningful conclusion should not depend on

whether we express a measure in millimeters instead of

centimeters, or a temperature in degree Celsius rather than

in degree Fahrenheit (in statistics this is usually referred to

as scale invariance), or whether a structure is represented

by two or by three equivalent measurements. While this is

not a sufficient criterion for scientific importance, it is a

necessary condition for a meaningful biological interpre-

tation of structures in phenotype space. In the following

Fig. 2 In Euclidean space, all geometric properties invariant to

similarity transformations (translation, uniform scaling, rotation,

reflection) are meaningful. The figure shows four two-dimensional

points (A–D) and several similarity transformations of them. All the

affine invariant relations (linearity, parallelity, intermediacy) as

well as angles and relative distances are preserved by these

transformations
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sections we investigate how this criterion of meaningful-

ness can be applied to scientific statements derived from

multidimensional phenotype spaces.

The Affine Geometry of Phenotype Spaces

It is well established that many physical properties such as

length, volume, weight, and temperature can be represented

by real numbers together with meaningful operations of

addition and multiplication (‘‘extensive measurement’’),

whereas this is not guaranteed to be the case for other

phenotypic characteristics like for behavioral traits (e.g.,

Krantz et al. 1970). In this paper we limit the discussion to

phenotypic properties that can be represented by real

numbers and for which meaningful operations of addition

and multiplication exist. This is the case for most mor-

phological and physiological measurements. However,

numerical representations of biological characteristics

typically have empirical upper and lower limits, outside of

which the numbers do not correspond to biological struc-

tures. E.g., the diameter of an organ cannot be smaller than

the diameter of a single cell, or an organ cannot be larger

than the whole organism (these considerations can have

effects on scales; see Frank and Smith 2010).

To illustrate the properties of multidimensional pheno-

type spaces derived from a set of such measurements, we

examine morphospaces typically used in morphometrics

and evolutionary quantitative genetics. One prime example

is the work by Raup and Michelson (1965) and Raup

(1966), who developed a simple geometric model of coiled

shells based on three parameters: Distance between the

cross-section of the shell and the coiling axis, the rate of

translation of the cross-section along the axis per revolu-

tion, and the rate of increase in the size of the generated

shell cross-section per revolution (Fig. 3). Raup used these

three parameters to construct a three-dimensional real

vector space representing the possible geometries of shells.

He compared the regions in this space that were occupied

by different taxa to those which appeared to be uninhab-

ited. The size of the region in a morphospace occupied by a

taxon is often called its ‘‘disparity’’ (e.g., Foote 1997, see

also below). Morphospaces like Raup’s have been influ-

ential because they allow one to raise the fundamental

question of why certain areas in a morphospace seem to be

empty. Two common explanations are that either the

morphologies in the empty regions are selectively disad-

vantageous, or that internal constraints on the morpholo-

gies make these regions inaccessible (but see also Pie and

Weitz 2005). For more examples of these types of mor-

phospaces see McGhee (1999) and references therein.

Similar morphospaces have been put forward in the

classical morphometric literature and in numerical taxon-

omy (e.g. Rohlf and Sokal 1965; Blackith and Reyment

1971; Sneath and Sokal 1973; Bookstein et al. 1985;

Marcus 1990). Developments in multivariate statistics,

such as principal component analysis, have been applied to

morphological measures of all kinds, like distances and

ratios of distances, angles, volumes, or counts. The mea-

sured values of these variables typically serve as Cartesian

Fig. 3 Raup’s (1966) space of coiled shells. To define orthogonal

axes of his morphospace, Raup used three out of several parameters in

a geometric model of shell geometry. These parameters are the

distance between the cross section and the coiling axis, the rate of

translation of the cross section along the axis per revolution, and the

rate of increase in the size of the generated shell cross section per

revolution (a). Raup identified regions in this space corresponding to

the morphology of existing taxa, but most parts of the space remain

empty. These geometrically possible forms have not been realized by

Nature (b)
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coordinates of the specimens in the underlying vector

space. Raup’s variables, by contrast, were the parameters

of his geometric model, not any empirical measurements,

and the location of forms in his space was based on visual

comparison of actual and computed forms. Likewise, a

vector space of measured or unmeasured traits is used in

quantitative genetics to study evolutionary changes of

phenotypes and the distribution of fitness over a phenotype

space (e.g., Lande 1979; Lynch and Walsh 1998; Arnold

et al. 2001).

A set of such measurements or parameters, represented

by vectors of real numbers together with the operations of

addition and scalar multiplication, induce a vector space

(with certain empirical limits). An affine space additionally

consists of linear structures such as lines or planes. In order

to identify linear structures, a joint linear increase or

decrease of the measurements must correspond to a feasi-

ble phenotypic change. This is not necessarily the case. For

example, one side of a rectangle and the diagonal of this

rectangle cannot both increase linearly. Likewise, Pro-

crustes shape coordinates or the set of all possible

Euclidean distances between a configuration of landmarks

constitute a curved manifold rather than a linear space

(Kendall 1984; Bookstein 1991; Dryden and Mardia 1998;

Slice 2001). However, such manifolds can be unfolded into

a linear space (consider, e.g., the Mercator map of the

surface of the Earth) or approximated by a linear tangent

space (e.g., a plane tangent to the surface at some point).

For example, geometric morphometric analyses are usually

carried out in the linear tangent space to the curved shape

space; this has been shown to be a good approximation

even for large biological variation (Rohlf 1999; Marcus

et al. 2000).

In many practical applications, the vector space of the

measured variables thus has—at least locally—an affine

structure, but the variables do not necessarily posses

commensurate units. For example, different measures such

as distances, angles, or volumes share no common scales

but are often used to construct a phenotype space. Two of

Raup’s three parameters are of the same unit, but they

serve fundamentally different roles in his geometric model

and there is no ‘‘natural’’ relation among their scales.

Furthermore, some variables may be geometrically

dependent so that it would be misleading—or at least

arbitrary—to take them as orthogonal axes of a morpho-

space. For example, Raup’s three parameters are not

independent; a change in whorl expansion rate automati-

cally leads to changes in the other two variables (Schindel

1990). Consider also two measured distances sharing the

same starting point, or the angles and distances of a tri-

angle. Similarly, two spatially closely adjacent measure-

ments of an organisms cannot be considered as independent

(Mitteroecker and Bookstein 2007; Mitteroecker 2009). In

some cases, like for landmark coordinates, variables may

also lack a meaningful origin.

For such measurements there is no unique way of

scaling the variables and of arranging the axes to construct

a multidimensional space. Thus, if we choose a specific

coordinate system we are free to scale each basis vector

independently of the other basis vectors. Moreover, the

basis vectors do not need to be orthogonal and we may

choose an arbitrary origin. (Note that when the basis vec-

tors are not orthogonal, scaling of one vector would affect

other vectors too.) These operations correspond to the

affine transformations of stretching or shrinking the phe-

notype space along its axes, to shearing the space, and to

translation. Geometric relations characteristic for Euclid-

ean geometry, such as distance and angle, are affected by

scaling and shearing the vector space. They are not

meaningful in an affine phenotype space.

We thus propose that classical morphospaces exhibit an

affine geometry and are not Euclidean. The same applies

more generally to spaces of more than one quantitative

character as long as there is no substantial relationship

between the characters that would justify more geometrical

structure, in particular, perpendicularity and congruence.

The classical morphospaces and similar phenotype spaces

therefore pose certain restrictions on which concepts and

relations can be used to describe phenotypes in a mean-

ingful way.

In the next two sections we provide two different formal

versions of this argument, the first one starting with a set of

measured variables, and the second one starting with a set

of phenotypic distances between specimens.

Affine Transformation of Measurements

Consider the vector xi; consisting of p phenotypic mea-

surements of individual i, where i goes from 1 to n. These

vectors can be represented as n points in a p-dimensional

phenotype space (a so-called Q-space). In the above

introduction to mathematical spaces we have seen that one

characterization of an affine space is in terms of affine

transformations

/ðxiÞ ¼ Axi þ b; ð2Þ

where A is any regular square matrix.

In the absence of any natural relation between the scales of

the measurements we are free to change the scales inde-

pendently. A change of scale for one variable by the factor k

corresponds to a multiplication of the vectors by a diagonal

matrix with the value k in the corresponding diagonal ele-

ment and 1s in all other diagonal elements. Take three

variables as an example. Multiplying xi with the matrix

340 Evol Biol (2011) 38:335–351
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k 0 0

0 1 0

0 0 1

0
@

1
A ð3Þ

multiplies the first measurement by k and leaves all other

measurements unchanged (this corresponds to Fig. 1b).

We further argued that the geometric dependence

between variables may be a result of the measurement

scheme (e.g., interlandmark distances with one landmark in

common) or of the model used to generate variables (e.g.,

the parameters in Raup’s model). When the angles between

the axes of a phenotype space do not explicitly reflect these

relationships, we are also free to separately modify the

orientation of the axes. This corresponds to a multiplication

by a matrix that differs from the identity matrix by one off-

diagonal element. E.g., when multiplying xi with the

matrix

1 k 0

0 1 0

0 0 1

0
@

1
A; ð4Þ

the first new variable is a linear combination of the first and

the second measurements, whereas all other variables stay

the same (Fig. 1c). We are also free to exchange any two

axes of the phenotype space, which corresponds to a

multiplication by a matrix that differs from the identity

matrix by exchanging two rows (or two columns).

Multiplying xi with

0 1 0

1 0 0

0 0 1

0

@

1

A; ð5Þ

for instance, exchanges the first two measurements.

These three types of matrices are called elementary

matrices. It is well known that any nonsingular matrix A

can be decomposed into elementary matrices A ¼
TqTq�1. . .T2T1: Each elementary matrix Tj can be

obtained from the identity matrix I in one step. This step

either consists of (i) multiplying a row of I with a scalar

k, (ii) replacing a row of I by the sum of that row and a

multiple of another row, or (iii) exchanging two rows of

I.

Geometrically, (i) corresponds to scaling one of the

coordinate axes in phenotype space, (ii) represents a

shear of two axes, and (iii) corresponds to exchanging

two coordinate axes. This means that we can expand the

affine transformation in (2) into transformations involv-

ing only these three kinds of elementary steps together

with a translation. Conversely, performing transforma-

tions of type (i), (ii) or (iii) consecutively will always

result in a linear (i.e., affine) transformation. (The result

will be a nonsingular matrix since we have excluded

projections.)

There is an important relationship between (i) and (ii).

Whenever two variables are geometrically dependent, scal-

ing of one variable will also affect the scale of the other

variable. In this case, the corresponding axes or basis vectors

are not orthogonal and scaling of one axes (i) is performed

together with a shear (ii). In fact, the possibility of inde-

pendent scaling of variables leads to a criterion for orthog-

onality of the corresponding axes in phenotype space.

If we suppose that our phenotype space has a vector space

structure, it will be affine instead of Euclidean if all possible

Tj can be applied to the vector space in arbitrary order

without violating any of the information we have about the

relationships between the measured specimens (points in the

phenotype space). This implies that (a) there is no natural

relation between the scale of the variables, allowing for

arbitrary rescaling, (b) the geometric dependencies between

the variables are unknown, allowing for arbitrary shearing,

(c) there is no inherent order in the variables, i.e., the asso-

ciated coordinate axes can be permuted, and (d) there is no

distinguished origin, which allows arbitrary translation of

the phenotype space. Whenever these conditions are met, the

phenotype space will be a vector space with an affine

geometry.

It is instructive to compare these conditions to admis-

sible transformations in Euclidean spaces, i.e., to similarity

transformations. A similarity is obtained from an orthog-

onality (rotation) by a translation and a multiplication by a

scalar. Geometrically, an orthogonality rotates a vector

space in such a way that a coordinate system with per-

pendicular axes is transformed into another coordinate

system with perpendicular axes (angles between coordinate

axes are preserved). This essentially means that the geo-

metric dependencies (angles) between the variables are

known and are expressed in the same way in all admissible

representations of the phenotype space. Multiplication by a

scalar (uniform scaling) corresponds to a scaling of all axes

by the same factor. This implies that there is a natural

relation between the scales of all variables which is pre-

served in all admissible representations of the phenotype

space. In an affine space, by contrast, the axes can be

scaled separately. Both in Euclidean spaces and in affine

spaces the coordinate system can be translated and the axes

can be permuted.

Weighted Phenotypic Distances

Instead of referring to the measured variables as Cartesian

coordinates, a phenotype space can also be constructed by
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ordinating a set of phenotypic distances between indi-

viduals (using methods such as principal coordinate

analysis or multidimensional scaling; Sneath and Sokal

1973; Mardia et al. 1979). This approach has been central

to numerical taxonomy, which is aimed at classifying

organisms by means of phenotypic similarity (Sokal 1961;

Rohlf and Sokal 1965). Cain and Harrison (1960) intro-

duced the term to describe an approach in which forms

are spatially arranged in some phenetic space or diagram

‘‘by overall similarity, based on all available characters

without any weighting’’ (p. 3). Likewise, the concept of

an overall phenotypic distance plays an important role in

many morphometric applications. Equal weighting of

every character in an overall similarity measure or in a

distance function is fundamental in these approaches.

The most frequently used index of overall (dis)similarity

between two phenotypes is the Euclidean distance between

the two vectors of measurements, which is the 2-norm of

the difference vector x� y:

kx� yk2 ¼
Xp

i¼1

ðxi � yiÞ2
 !1=2

: ð6Þ

It has also been referred to as taxonomic distance by Sokal

and Sneath (1963) and Rohlf and Sokal (1965). In

geometric morphometrics, Procrustes distance is usually

approximated by the Euclidean distance between two sets

of Procrustes shape coordinates (Dryden and Mardia 1998;

Rohlf 1999). Euclidean distance is a member of a family of

metrics, the Minkowski metrics

kx� ykk ¼
Xp

i¼1

jxi � yijk
 !1=k

; ð7Þ

but only Euclidean distance (k = 2) is invariant to arbi-

trary rotations of the coordinate system. When k = 1 the

overall distance is simply given by the sum of the abso-

lute univariate distances, which is referred to as Man-

hattan distance, city block distance, or mean character

difference when divided by the number of variables (Cain

and Harrison 1960). It is particularly used for categorical

variables but has also been applied to continuous

variables.

The central dogma of equal weighting of characters is

reflected by the unweighted variables in the distance

functions (6) and (7). Sneath and Sokal (1973) defended

equal weighting because no principled a priori weighting of

characters can be supported. However, equal weighting is

of course one particular form of weighting and is, ulti-

mately, an arbitrary decision. A measure of phenotypic

distance may thus be supplied with any non-zero weigh-

tings ai for each variable:

kx� yk0k ¼
Xp

i¼1

jaiðxi � yiÞjk
 !1=k

¼
Xp

i¼1

jaixi � aiyijk
 !1=k

:

ð8Þ

It is easy to see that weighting of the variables in the dis-

tance function is equivalent to a linear scaling of the ith

variable by the factor ai. When constructing a matrix D

with the factors ai in the diagonal and zeros in all

off-diagonal elements, we can thus write kx� yk0k ¼
kDðx� yÞkk ¼ kDx� Dykk:

When we cannot scale the variables independently

because of geometric dependencies between the variables,

the linear influence of variable j on variable i may be

represented by aij. The non-zero factor aii is the same as ai

in (8) and corresponds to a linear scaling of the ith variable.

The weighted distance is then given by

kx� yk00k ¼
Xp

i¼1

j
Xp

j¼1

aijxj � aijyjjk
 !1=k

: ð9Þ

When building a regular matrix A with the elements aij

from formula (9), we can write kx� yk00k ¼ kAðx� yÞkk ¼
kAx� Aykk: Because distances are unaffected by changes

of the origin, the weighting in (9) represents all possible

affine transformations of the variables.

In most classical morphometric and taxonomic approa-

ches the weighting is largely arbitrary or unknown so that

meaningful inferences should be unaffected by the

weighting of variables in a distance function; that is to say,

they should be invariant under affine transformations of the

variables. A meaningful overall distance function or simi-

larity measure is possible only in the presence of a prin-

cipled weighting scheme and a specification of geometric

dependencies. When the weightings in a distance function

are unknown, only affine invariant structures can be

interpreted in an ordination analysis.

Redundancy of Variables

Equal weighting is also arbitrary because the number of

measurements per anatomical unit (and the definition of

units or characters) already represents a form of weighting.

An anatomical region has a larger effect on a phenotypic

distance if it is covered by many measurements, as com-

pared to regions assessed by less measurements. Consider,

for example, simple organisms composed of two parts.

Two such organisms might be similar in the first part but

clearly differ in the second part. If there were many mea-

surements of the first part and only few of the second part,
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the organisms would appear quite similar relative to a third

one. In the opposite situation—few measurements of the

first part and many of the second one—the two organisms

would appear more different. One might tend to cover both

parts by the same number of measurements and hence give

them equal weight, but this decision is arbitrary and not

applicable in practice where biological signals and ana-

tomical units cannot be identified in such an idealized way.

More formally, consider three different variables a, b, c

and augment them with a fourth variable d that is identical

to c except for mean differences. For example, the first

three variables might be measures of different parts of an

organism while measurement d is spatially closely adjacent

to c. Variable c, hence, is affecting the distance measure

twice in the four-variable scenario as compared to the first

three variables only. For the Euclidean distance this gives
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

a þ D2
b þ D2

c þ D2
d

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

a þ D2
b þ 2D2

c

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

a þ D2
b þ ð

ffiffiffi
2
p

DcÞ2
q

;

where Da stands for the difference ai - aj between two

individuals i and j and similarly for the other variables. One

can see that including the variable c twice in the distance

function is equivalent to a linear scaling of this variable by the

factor
ffiffiffi
2
p

(or
ffiffiffi
2k
p

for other Minkowski metrics). The vector

space of the four variables is of course not a linear transfor-

mation of the three-variable space; it simply has one more

dimension. But the matrix of four variables still is of rank

three, and the first three principal components of a, b, c, d are

identical to the principal components of a; b;
ffiffiffi
2
p

c; which are

an affine transformation of the original three variables. For

real data, variables are of course not perfectly correlated and a

change in the redundancy of variables only approximately

corresponds to an affine transformation.

In careful morphometric studies, many measurements are

spatially closely adjacent and hence highly correlated. In

particular, modern geometric morphometric approaches

often are based on a large number of spatially closely adja-

cent landmarks and semilandmarks, giving rise to effective

exploratory studies (e.g., Polly and McLeod 2008; Adams

et al. 2004; Gunz et al. 2009; Mitteroecker et al. 2005;

Coquerelle et al., in press). Adjacent measurements (land-

marks), or measurements of bilateral symmetric traits, might

thus be reduced to a smaller number of measurements or they

could be augmented by additional measurements without

leading to major changes of the captured information. But the

distribution of measurements across an organism is a kind of

linear weighting of anatomical regions or biological signals

in any quantification of overall phenotypic distance and in

any low-dimensional ordination of such distances. Since the

choice of measurements and especially the number of

adjacent measurements often is largely arbitrary, meaningful

results should be affine invariant.

Applications

In the previous sections we have argued that many phe-

notype spaces exhibit an affine geometry. We now apply

the corresponding condition for meaningfulness to partic-

ular statistics of phenotypic variation and disparity. Fur-

thermore, we analyze typical transformations of variables

in terms of invariance to affine transformations.

Phenotypic Variation and Disparity

In many morphospace approaches the size or the volume of

a region occupied by some taxa is of central interest and

interpreted as a measure of phenotypic variability. Pheno-

typic variability within and between taxa is often referred

to as morphological disparity or diversity, and has been

assessed frequently in paleobiological and ecological con-

texts (Foote 1997; Roy and Foote 1997; Wills 2001;

Zelditch et al. 2004). Factors responsible for the creation,

maintenance, and canalization of phenotypic variance and

covariance within a population have been studied both

from evolutionary and developmental perspectives (e.g.,

Lynch and Walsh 1998; Hallgrimsson and Hall 2005;

Arnold et al. 2008; Mitteroecker and Bookstein 2009).

Several measures of disparity have been suggested, such

as total variance (trace of the covariance matrix or,

equivalently, sum of its eigenvalues), the summed

Euclidean distances of all specimens from their mean, or

the sum of all pairwise Euclidean distances between the

specimens. Another common multivariate measure of

variance is the determinant of the covariance matrix, which

is referred to as generalized variance. The determinant is

equal to the product of all eigenvalues and can thus be

interpreted as the volume of the orthotope (the multidi-

mensional box) spanned by the scaled eigenvectors.

For a single variable x, the variance Var(x) is affected

by linear scaling of the variable but not by translation:

Varðaxþ bÞ ¼ ðn� 1Þ�1
Xn

i¼1

ðaxi þ b� a�x� bÞ2

¼ ðn� 1Þ�1
Xn

i¼1

a2ðxi � �xÞ2

¼ a2VarðxÞ;

ð10Þ

where a = 0 and b are real numbers. However, ratios of

variances are invariant to linear scaling:
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VarðaxÞ
VarðayÞ ¼

a2VarðxÞ
a2VarðyÞ ¼

VarðxÞ
VarðyÞ :

Similarly, all multivariate measures of variance or disparity

are affected by affine transformations. Only ratios of

generalized variances are affine invariant. As mentioned

above, generalized variance relates to the volume spanned

by the scaled eigenvectors in phenotype space and ratios of

volumes are invariant to affine transformations:

detðAT S1AÞ
detðAT S2AÞ

¼ ðdet AÞ2 det S1

ðdet AÞ2 det S2

¼ det S1

det S2

Here, S1 and S2 are two covariance matrices, A is a regular

matrix, and the superscript T denotes the transpose of a matrix.

Ratios of total variance are only invariant to affine transfor-

mations if the covariance matrices are proportional. That is,

if S2 ¼ kS1 then TrðkS1Þ=TrðS1Þ ¼ TrðAT kS1AÞ=TrðAT

S1AÞ ¼ k: In all other cases, ratios of total variance need not

be invariant relative to affine transformations, just like sum-

med Euclidean distances (see the ‘‘Appendix’’ for details).

Another affine invariant extension of the notion of ratios

of variances are relative or generalized eigenvalues. For two

covariance matrices S1 and S2, generalized eigenvalues are

equal to the eigenvalues of S2
-1 S1, which are the same as the

eigenvalues of (ATS2A)-1(ATS1A), where A is again a

nonsingular matrix. This follows from the fact that the

matrices S2
-1S1 and (ATS2A)-1(ATS1A) are similar. To see

this, set B = A-1, which exists since A is nonsingular. Then

B�1ððAT S2AÞ�1ðAT S1AÞÞB ¼ AA�1S�1
2 S1AA�1 ¼ S�1

2 S1:

ð11Þ

Furthermore, as shown in (10), the translation term of an

affine transformation does not affect the calculation of the

transformed covariance matrices. Hence, measures based

on generalized eigenvalues, such as the metric for pheno-

typic covariance matrices proposed in Mitteroecker and

Bookstein (2009), are meaningful in an affine space. The

space of covariance matrices, a Riemannian manifold in

the form of a convex cone, thus is a metric space that is

locally Euclidean, even when the underlying phenotype

space is affine. Also, likelihood ratio tests for comparing

multivariate means or covariance matrices are affine

invariant as they are based on generalized eigenvalues (see

the ‘‘Appendix’’ for more details).

Transformation of Variables

Logarithmic Transformations

It is a common practice in traditional (i.e., non-geometric)

morphometrics and quantitative genetics to transform

variables to their logarithm (to any base; see, e.g.,

Bookstein et al. 1985; Marcus 1990; Falconer and Mackay

1996). Logarithms have been justified partially from the

multivariate generalization of the bivariate allometric

equation (Jolicoeur 1963). Furthermore, variances and

covariances of logged data are unit free and hence indepen-

dent of linear scaling factors, i.e., Var(log x) = Var(log kx) for

any k = 0.

Logarithmic transformations might thus appear as a

natural solution to the problem of incommensurable units.

However, such transformations also modify many relevant

geometric relationships in a phenotype space. For example,

while preserving incidence relationships, linear trajectories

in the original space may be curved when the variables are

log transformed; parallel trajectories may be divergent or

convergent and vice versa; many curved trajectories (those

with exponential relationships between the variables)

would be linear in the logged space. In general, linear

varieties do not map onto linear varieties under log trans-

formation. Absolute and relative distances, and hence also

variances and covariances, are affected by logarithmic

transformations (see Fig. 4 for an example).

This implies that most conclusions drawn from the

empirical distribution within a morphospace would not be

invariant to logarithmic transformations of the variables. It

is thus crucial to specify the correct geometry prior to the

analysis. For example, a straight trajectory should indicate

a constant process during a certain (evolutionary or

developmental) time period. For the raw variables such a

straight trajectory results from an additive process, whereas

for log transformed variables it follows from a multipli-

cative process, such as exponential growth of cell popula-

tions. Furthermore, log transformed variables should have a

meaningful origin since Var(log x) = Var(log (b ? x)) for

any b = 0. However, many morphometric studies are about

bone morphology, where growth and remodeling due to

osteoblast and osteoclast activity may more closely resemble

an additive rather than a multiplicative process (e.g., Hall

2005).

Mahalanobis Distance

Another common transformation is to divide a variable by

its standard deviation r, so that differences between two

specimens or between a specimen and the population mean

are expressed as a multiple of r. The multivariate extension

of this statistical distance is usually called Mahalanobis

distance or generalized statistical distance (Mahalanobis

1936),

dMðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� yÞT S�1ðx� yÞ

q
; ð12Þ

where x and y are vectors representing two specimens and

S is a variance-covariance matrix. In most applications S is
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the (pooled) within-group covariance matrix. The Maha-

lanobis distance between two points is equal to the Euclid-

ean distance when S is the identity matrix or when the data

points are transformed by S�1=2; the inverse square root of

the covariance matrix (e.g., Mitteroecker and Bookstein

2011). This linear transformation leads to an isotropic

within-group distribution by standardizing the affine com-

ponents of the data space (Fig. 5). Mahalanobis distance

thus is invariant to affine transformation of the raw

variables.

To show this in more detail, consider the one-dimen-

sional case first. An affine transformation of the two values

x and y is given by ax ? b and ay ? b, where a 6¼ 0 and b

are real numbers. Let the variance be denoted by r2. Then,

the squared Mahalanobis distance between the transformed

values is

d2
Mðaxþb;ayþbÞ¼ ðaxþb�ay�bÞ 1

a2r2
ðaxþb�ay�bÞ

¼ aðx� yÞ 1

a2r2
aðx� yÞ

¼ ðx� yÞ 1

r2
ðx� yÞ

¼ d2
Mðx;yÞ:

The last expression is the same as the squared

Mahalanobis distance between the original values x and

y. The multi-dimensional case proceeds analogously, but

for simplicity we may ignore the translation term as it

Fig. 4 Four trajectories (A–D) of ten specimens each are plotted for

the two variables V1 and V2 (left) and for the natural logarithm of

these variables (right). While the linear trajectories A and B are

parallel for the original variables, they are oblique for the logged data

and A is even curved. In contrast, B and C are linearly diverging for

the untransformed data and parallel for the logged variables. The

trajectory D is linear only after a log transformation. Note also that

the variable V1 has a larger variance than V2, whereas the opposite is

the case for the transformed variables

a b

Fig. 5 a Two random variables

for three groups of specimens

with a common covariance

matrix S: The three ellipses are

the 90% equal frequency

ellipses. When the space is

transformed by S�1=2 as shown

in b, Mahalanobis distance is

equal to the Euclidean distance

in this transformed space. The

transformation is an affine map,

which leads to an isotropic

(circular) average within-group

distribution
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cancels out in the calculation of both distances and

variances (see (10)):

d2
M ¼ ðAx� AyÞTðASATÞ�1ðAx� AyÞ
¼ ðx� yÞT ATðATÞ�1S�1A�1Aðx� yÞ
¼ ðx� yÞT S�1ðx� yÞ

ð13Þ

Intuitively, dM(x, y) is a distance relative to a reference

distribution S, and affine transformations affect the squared

Euclidean distance between x and y in the same way as

S, so that the relative distance remains constant.

The interpretation of the resulting Mahalanobis metric

crucially depends on the choice of the reference distribution.

There are examples in evolutionary quantitative genetics

where Mahalanobis distance has a natural meaning (e.g.,

Lande 1979), but an interpretation in a biometric context can

be difficult and computationally unstable. One typical

application is the Mahalanobis distance between specimens

and different group means in the context of linear discrim-

ination (Mardia et al. 1979). Under the (relatively unreal-

istic) assumption of homogenous within-group covariance

matrices, the squared Mahalanobis distances between a

specimen and different group means are proportional to the

log likelihoods for the specimen in these groups. The com-

putation of dM is problematic when S is singular or nearly

singular, which is typically the case in modern morpho-

metrics (Mitteroecker and Bookstein 2011). However, as

Euclidean space differs from a space based on Mahalanobis

distance by a linear (i.e., affine) transformation, all affine

invariant relations are the same in both spaces and do not

depend on the choice of a reference distribution.

Discussion

In this paper, we investigated the meaningfulness of biological

statements derived from a representing mathematical struc-

ture, which are geometric spaces in our case. There is a long

history of these considerations, going back to Felix Klein’s

Erlanger program (Klein, 1872). Klein defined geometrical

concepts not by bridging them to physical space, but by tying

them to inherent mathematical principles. His basic idea was

to identify a geometry with the invariance under certain

transformational groups. The fundamental properties of a

geometry remain unaffected by the associated group of

transformations, whereas other properties may change. As an

example consider the case of angles and distances, which are

invariant under similarities (Euclidean geometry) but not

under affine transformations (affine geometry). The mean-

ingfulness of geometric concepts depends on the groups of

transformations defining the geometry (Narens 2002).

This view of meaningfulness is closely related to the

problem of measurement scales in the physical and social

sciences (Krantz et al. 1970; Suppes et al. 1989; Luce et al.

1990). The study of physical measurement processes based

on the assignment of numbers to qualitative (empirical)

objects dates back at least to von Helmholtz (1887) and

was further worked out by Hölder (1901). It also played

an important role in Hilbert’s foundations of geometry

(Hilbert 1899). While these early approaches to measure-

ment are confined to the measurement of physical quanti-

ties like length or temperature, there is also a long standing

tradition of measurement studies in mathematical psy-

chology and economics. Stevens (1946) proposed a clas-

sification of psychological measurement scales that has

immediate consequences for the problem of meaningful-

ness, for it identifies scales like ordinal scales or ratio

scales with particular groups of transformations. These, in

turn, determine permissible statistics, which are precisely

those that are invariant under the corresponding group of

transformations. Similar approaches have been important

in economics, particularly for modern utility theory, which

goes back to von Neumann and Morgenstern’s theory of

cardinal utility (von Neumann and Morgenstern 1944).

Utility is a numerical representation of a qualitative pref-

erence ordering, giving rise to particular measurement

scales and thus to implicit conditions for meaningfulness in

terms of invariance.

Even though specifying meaningful geometric relations

by groups of transformations has a long history in several

scientific disciplines, it had less impact on the concept of

phenotype spaces (but see, e.g., Bookstein 1991; Dryden

and Mardia 1998; Lele and McCulloch 2002). Once an

appropriate representing structure is identified, invariance

yields a powerful tool to justify the use of certain geometric

and statistical methods and to establish limits on what can

meaningfully be said about an empirical structure. How-

ever, geometric representations of empirical structures are

only instances of a more general class, including topolog-

ical (and weaker) representations as well (see, e.g., Stadler

et al. 2001; Stadler et al. 2002; Mitteroecker and Huttegger

2009).

The Fundamental Relations and Properties

in a Phenotype Space

We showed that typical phenotype spaces, such as Raup’s

space of coiled shells or the spaces used in traditional

morphometrics and numerical taxonomy, often are char-

acterized by an affine rather than an Euclidean geometry.

Kendall’s shape space, the central phenotype space in

landmark-based geometric morphometrics, is a space in

which a point corresponds to the shape of a landmark

configuration. Kendall (1984) showed that this space is a

Riemannian manifold, which can be approximated locally

by a Euclidean tangent space. But given the more or less
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arbitrary spacing and number of landmarks, even this

phenotype space should be considered as a structure that

locally is similar to an affine space. The concepts of dis-

tance, angle, and volume are not meaningful in an affine

space, but several other concepts are invariant to affine

transformations.

The most fundamental geometric relationship in an

affine space is incidence. Phenotypes inhabiting the same

position in a space are identical; phenotypes lying on

another structure such as a line or a plane are elements of

these sets of phenotypes. For example, statements about the

overlap of groups (the intersection of convex hulls) are

affine invariant. A specimen within a cluster of specimens

belongs to this cluster even under affine transformation.

Raup’s finding that different taxa inhabited different areas

in his morphospace whereas other areas remain empty thus

is a meaningful statement. Furthermore, intersection,

overlap, or identity of phenotypic trajectories are affine

invariant relations.

Linearity is a fundamental property in an affine space. A

linear trajectory remains linear under all affine transfor-

mations and indicates a constant additive process. A curved

developmental trajectory, by contrast, would indicate a

nonlinear processes or, alternatively, a combination of two

or more additive developmental processes. For log trans-

formed variables a linear trajectory would indicate a con-

tinual multiplicative process. Furthermore, a point lying in

between two other points is an affine invariant relation so

that phenotypic intermediacy is a meaningful property.

Parallel lines remain parallel under affine transforma-

tions. Two parallel trajectories represent the same additive

processes whereas oblique trajectories indicate different

processes. For instance, overlapping and parallel develop-

mental trajectories can be indicative of heterochronic

developmental processes (Mitteroecker et al. 2005). Fur-

thermore, distances along parallel lines can be compared

meaningfully, i.e., for two parallel trajectories (identical

processes), the length of these trajectories (the extent or

magnitude of these processes) can be assessed. The fol-

lowing is an example of a meaningful statement: ‘‘Two

organisms grow in the same way (direction), but one

organism experiences more growth along this common

pattern than the other one’’. However, distances along

different directions, like the amount of growth or evolution

along different directions, cannot be related meaningfully

in a quantitative way.

Ratios of volumes are constant under affine transfor-

mations even though volumes per se are not meaningful in

an affine space. As a consequence, no measures of disparity

or total phenotypic variance can be interpreted directly,

only ratios of generalized variance (determinant of the

covariance matrix) are meaningful (take Raup’s morpho-

space as a paradigmatic example). Moreover, the metric for

phenotypic covariance matrices proposed in Mitteroecker

and Bookstein (2009) as well as other statistics based on

generalized eigenvalues are affine invariant.

Distances relative to a reference distribution, such as

Mahalanobis distances, are affine invariant. That is to say,

although distances are not generally invariant relative to

affine transformation, they may become so by supple-

menting more information about the distribution of data

points, as in the case of the Mahalanobis distance. There-

fore, the likelihood of a specimen belonging to a certain

group can be computed, and discrimination and classifi-

cation problems can be meaningfully approached (see the

‘‘Appendix’’).

All these listed geometric relations are invariant under a

relatively large class of arbitrary choices leading to affine

transformations of the phenotype space, whereas pheno-

typic distances, angles, and volumes are not guaranteed to

be meaningful. They are also unaffected by small modifi-

cations of the number and spacing of measurements. Sci-

entific hypotheses should thus be phrased and tested in

terms of these geometric relationships within phenotype

spaces. The interpretation of angles and phenotypic dis-

tances in different directions should be avoided.

Phenotypic Distances

We showed that in many cases it will not be possible to

define a meaningful distance measure between phenotypes.

This is a controversial position, and it deserves some fur-

ther comments.

Overall measures of phenotypic similarity or dissimi-

larity are averages over a range of different characters and

signals, so that the emerging measure might lack a mean-

ingful biological interpretation. Consider two mice with

5 mm difference in the length of their tails and another two

mice with 5 mm difference in head length. Is it valid to say

that both pairs of mice have the same phenotypic distance?

What if the skull had been measured by 20 different

measurements and the tail only by one, so that skull dif-

ferences would have a much larger impact on a phenotypic

distance than tail differences? A similar ambiguity arises

when comparing the difference in, e.g., a length measure to

a difference in an angle. The inability to define a mean-

ingful general notion of phenotypic distance leads to an

affine phenotype space rather than a Euclidean one. In an

affine space only distances along parallel directions are

comparable, that is, distances along the same characteris-

tics or combination of characteristics. When two organisms

both grow 5 mm in the forelimbs and 8 mm in the hind-

limbs, it is meaningful to say that they have the same

additive growth pattern (parallel trajectories of the same

length in phenotype space). Another organism with 10 mm

forelimb growth and 16 mm hindlimb growth would have
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the same direction or pattern of growth as the previous

ones, but a twofold amount of growth (a parallel trajectory

of twofold length). Likewise, a notion of intermediacy is

meaningful in affine phenotype spaces. For instance, in the

tendency to reduce facial size and increase brain size,

Australopithecus is approximately in between chimpanzees

and humans. It is, however, ambiguous to assess how much

humans differ from chimpanzees as compared to the

morphological distance between chimpanzees and gorillas

because they differ in other characteristics (distances in

different directions in phenotype space).

A meaningful general phenotypic distance can only be

defined under certain (relatively unrealistic) conditions.

Derived from some functional or developmental model, it

might be possible to select a small number of measure-

ments with known geometric dependencies that capture the

expected signals or determine a specific function. When

these measurements are of the same unit and of equal

weight, they could be construed as the axes of a Euclidean

phenotype space. It is also tempting to asses biological

structures by a large set of equally spaced landmarks or

semilandmarks (e.g., Schaefer et al., 2006; Polly and

McLeod 2008; Gunz et al. 2009) and to treat them as

descriptors of equal weight and with similar geometric

dependencies. Results based on such phenotypic distances

should still be interpreted with great care. For example,

larger elements would be covered by more landmarks and

hence would have a larger impact on phenotypic distance

than smaller structures. In general, the distance between

two phenotypes A and B is guaranteed to be larger than the

distance between A and C only if this holds for all rea-

sonable weightings or transformations, that is, for all linear

combinations of characters.

We showed that distances relative to a reference distri-

bution, such as Mahalanobis distance, are affine invariant.

The space induced by Mahalanobis distance preserves all

affine invariant relations (Euclidean space relates to this

space by an affine transformation), but the interpretability

of all additional geometric relations, including distance,

depends on the scientific significance and the computa-

tional stability of the reference distribution. Logarithmic

transformations, by contrast, modify most geometric rela-

tions in phenotype space.

In general, the properties of the representing geometric

structure (the phenotype space) depends on the empirical

structure in question. Particular empirical structures (cer-

tain measures or descriptions, particular relations of inter-

est) may also result in groups of transformations different

from affine or Euclidean transformations. In such cases, the

meaningfulness of notions like distance has to be assessed

again. It may be the case that some notion of distance can

be found that is meaningful with respect to the given group

of transformations. Thus, in a certain sense affine space

constitutes a worst-case scenario for morphospaces. Its

structure could be improved by new information; for

example, specifications of the geometric dependencies

between the variables could fix the angles between the axes

in a coordinate system. Without such additional informa-

tion, however, affine spaces appear to be the most appro-

priate choice of geometry for many phenotype spaces.

One topic that we only have implicitly touched in this

paper is the problem of how to determine whether a

mathematical representation matches an empirical struc-

ture. This is at the heart of the problem of meaningfulness.

We have motivated the choice of affine geometries in the

case of classical morphospaces, and we have pointed out

that we expect similar structures to be appropriate for other

phenotype spaces. A deeper justification would proceed

along the lines of establishing representation theorems

between synthetic and analytic geometries (Suppes et al.

1989). This requires an axiomatization of the properties

and relations governing the empirical structure and show-

ing that it is uniquely represented by some geometry (or

some other mathematical structure). Such an approach will

yield much deeper insights than the one offered in our

paper and is left for future work.
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Appendix: Affine Invariant Statistics

Incidence relations, averages, and also distances relative to

a statistical distribution are affine invariant. Consequently,

many statistical tests can be applied to data with an affine

structure. For example, the classical test to compare mul-

tivariate means is based on the Hotelling’s T2 statistic

T2 ¼ nð�x� l0Þ
T S�1ð�x� l0Þ;

where n is the number of cases, �x a p-dimensional vector

representing the estimated mean, l0 the hypothesized mean,

and S is a p 9 p sample covariance matrix. If x is a random

variable with a multivariate normal distribution and S has a

Wishart distribution with m = n - 1 degrees of freedom

and is independent of x, then T2 has a Hotelling’s T2 distri-

bution with the parameters p and m. The Hotelling’s T2 sta-

tistic is equal to the squared Mahalanobis distance (11)

multiplied by n . We have shown in (12) that Mahalanobis

distance is invariant to affine transformation and hence T2 is

affine invariant too. It follows that multivariate means can be

tested meaningfully even if their underlying geometric

structure is affine instead of Euclidean.

An extension of the Hotelling’s T2 distribution is the

Wilks’ lambda distribution. For two covariance matrices S1
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and S2 with Wishart distributions of m and n degrees of

freedom, Wilks lambda is

K ¼ detðS1Þ
detðS1 þ S2Þ

¼ 1

detðIþ S�1
1 S2Þ

¼
Y 1

1þ ki

� �
�Kðp;m; nÞ;

where I is the identity matrix and ki is the ith eigenvalue of

S�1
1 S2: In several likelihood ratio tests (e.g., in the context

of MANOVA) S1 is the error variance and S2 the variance

explained by some model. As shown in (11), the eigen-

values of S�1
1 S2 are equal to the eigenvalues of

ðAT S1AÞ�1AT S2A; so that K is affine invariant.

For the likelihood ratio test of homogeneity of covari-

ance matrices, i.e., of H0: R1 ¼ R2 ¼ � � � ¼ Rk; the maxi-

mum likelihood estimate of Ri is S ¼ n�1
P

niSi under H0

and Si under the alternative, where ni is the sample size of

the ith group and n =
P

ni. The likelihood ratio

�2 log ka ¼
Xk

i¼1

ni log detðS�1
i SÞ;

has an asymptotic v2 distribution with 1
2

pðpþ 1Þðk � 1Þ
degrees of freedom (Mardia et al. 1979, p. 140). As the

eigenvalues of S�1
i S are affine invariant (11), this test is

meaningful also for data with an affine structure. Similarly,

the metric for covariance matrices

dcovðS1; S2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xp

i¼1

ðlog kiÞ2
s

;

where ki is the ith eigenvalues of S�1
2 S1; is invariant to

affine transformation (Mitteroecker and Bookstein 2009).

For the multivariate multiple regression of Y on Z; the

least squares estimates of the regression coefficients are

given by b ¼ ðZT ZÞ�1ZT Y and the predicted values are

Ŷ ¼ Zb: Affine transformation of the predictors Z has no

affect on the prediction because

Ŷ ¼ ZAðATZT ZAÞ�1AT ZT Y

¼ ZAA�1ðZT ZÞ�1ðATÞ�1AT ZT Y

¼ ZðZT ZÞ�1ZT Y:

As Fisher’s linear discriminant function is computationally

equivalent to a multiple regression of a group variable

on the phenotypic variables, the success of linear dis-

crimination is unaffected by affine transformations (see

Mitteroecker and Bookstein 2011, for an explicit proof).

When the dependent variables Y are transformed into YA;

the predicted values result from the same transformation

ŶA ¼ ZðZT ZÞ�1ZT YA:

We have argued that only ratios of generalized variance

(determinant of the covariance matrix) are affine invariant,

whereas generalized variance itself and also total variance

(trace of the covariance matrix) and ratios of total variance

are affected by affine transformations. We demonstrate this

here by an example. Consider two covariance matrices

S1 ¼
2:3 1:2
1:2 1:8

� �
; S2 ¼

2:1 0:6
0:6 2:4

� �

and the transformation matrix

A ¼ 0:8 �0:3
0:2 1:2

� �
:

The total variance of S1 is TrðS1Þ ¼ 4:10 and that of the

transformed data TrðAT S1AÞ ¼ 3:86; and similarly for the

generalized variances DetðS1Þ ¼ 2:70 and DetðATS1AÞ ¼
2:81: The ratios of total variance are TrðS1Þ=TrðS2Þ ¼ 0:91

and TrðAT S1AÞ=TrðAT S2AÞ ¼ 0:80; whereas the ratio of

the generalized variance is affine invariant: DetðS1Þ=
DetðS2Þ ¼ DetðAT S1AÞ=DetðAT S2AÞ ¼ 0:58: Ratios of

total variance are affine invariant only if S2 ¼ kS1:
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