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Introduction

The roundworm Toxocara canis commonly parasitizes vari-
ous canids, but its eggs can also be a source of infection 
for paratenic (non-final) hosts, including humans. In these 
hosts, the third-stage larvae (L3) hatch from the eggs, pen-
etrate the intestinal wall, and migrate via the bloodstream 
to different tissues, where they can survive for years [1]. 
Infected paratenic hosts may become a reservoir of infec-
tion not only for the definitive but also for the next paratenic 
host [1, 2].

Although Toxocara spp. infections in humans may 
remain clinically inapparent, they can rarely manifest as lar-
val toxocarosis (LT): (i) the most common form is visceral 
larva migrans (VLM), followed by (ii) ocular larva migrans 
(OLM), (iii) covert/common toxocarosis, and (iv) neural 
larval toxocarosis or neurotoxocarosis (NLM) [1–6]. The 
severity of the infection is closely related to the number of 
parasites deposited [7, 8].
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Abstract
Toxocara canis larvae are one of the most overlooked agents of nervous system infection in paratenic hosts. Previous 
studies in mouse models have shown that infection with various (mainly high) numbers of larvae leads to neurobehavioral 
disturbances and pathological changes. Our study investigated whether the infection with low and moderate numbers of 
larvae could affect the physical condition, motor skills, and pathogenesis in the brains of experimentally infected mice.

Two groups of BALB/c mice were orally infected with 10 and 100 T. canis larvae per animal and examined regu-
larly until the 97th week after infection. General appearance, specific antibody responses, and motor/balance skills were 
assessed. The number and viability of larvae in the liver, spleen, lungs, and brain were assessed by quantitative compressed 
biopsy technique, while the pathological changes of the brain infection were studied histologically.

As a result, changes were observed in overall appearance, activity, as well as motor and balance ability. The infections 
were associated with an increased IgG antibody response to the specific anti-T. canis excretory/secretory antigen and tissue 
damage in the brain characterized by necrosis, cell infiltrations, including foamy cells, and hemorrhages.

The study demonstrated the effects of low and moderate T. canis infection in a paratenic host during the chronic phase 
of infection, which lasted up to 97 weeks for the first time.
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Compared to VLM, knowledge on the pathogenesis 
of NLM is scarce (e.g., Deshayes et al. [9]), even though 
this form of infection can also cause behavioral changes in 
infected individuals, including humans [10–13]. Studies on 
animals experimentally infected with Toxocara eggs or lar-
vae under defined conditions have helped to elucidate these 
changes [12]. The larvae have been shown to migrate natu-
rally, accumulate, and damage the host nervous tissue under 
certain circumstances [14–17]. Most available data show 
that the risk of central nervous system (CNS) invasion by 
Toxocara larvae [16, 18] and the associated development of 
neurodegenerative changes [12, 15, 19–21] increases with 
higher parasite infection dose, i.e., more than 1,000 eggs/
larvae per mouse.

Although infections with lower parasite doses (up to 100 
eggs/larvae per animal) are thought to more closely mimic 
the natural conditions that lead to NLM, they are still not 
fully understood due to the significantly lower number of 
studies [18, 22, 23]. Nevertheless, it seems that these types 
of infection [24, 25] may also lead to pathophysiological 
processes that could affect the behavioral changes of the 
affected individuals.

It has been documented that the presence of larvae in host 
tissues led to the host immune response characterized by 
increased leukocyte infiltration, particularly of eosinophil 
counts, as well as specific cytokine and antibody produc-
tion (e.g., interleukin 4, interleukin 10, interferon-gamma, 
immunoglobulin E) [26, 27], and hepatosplenomegaly [8, 
17, 28, 29]. In terms of the brain damage during the T. 
canis infection, substantial studies showed that the tissue 
damages are also associated with enhanced expression of 
selected biomarkers (e.g., transforming growth factor β1, 
glial fibrillary acidic protein, β-amyloid precursor proteins) 
[15] widely used to delineate pathophysiological mecha-
nisms in various brain injuries. Some pathophysiological 
changes in experimental cerebral toxocarosis in mice inocu-
lated with a high dose of 1,000 eggs appear to be relevant 
to the abnormal behavioral and motor changes, e.g. stereo-
typed unidirectional circling movements, progressive limb 
ataxia, tumbling movements, incoordination and balance 
problems, reduced righting reflex, spatial awareness and 
exploratory behavior [6, 25, 30–33].

In contrast, the aim of our study was to mimic the condi-
tions of natural T. canis infections, as the number of larval 
invasions into the brain was low, to clarify whether even 
moderate to low parasite infections can affect the motor 
activities of the paratenic hosts.

Materials and methods

Material for Infection and Serological Studies

Adults of Toxocara canis were obtained from the feces of 
naturally infected shelter dogs previously treated with one 
tablet of praziquantel (Drontal™, Bayer, Germany). From 
the adults, unembryonated eggs were isolated and their 
maturation was performed in vitro using a method by Kol-
beková et al. [14]. From fully embryonated eggs, the larvae 
were hatched according to a method by Fan et al. [34]. The 
obtained larvae in the L3 stage were kept in RPMI 1640 
medium (R8758, Sigma-Aldrich, Germany) with 100 IU/
ml penicillin and 250 µg/ml streptomycin at 37 °C and 5% 
CO2 with regular weekly changes of the medium until used 
in experimental infections. The collected medium was used 
for the preparation of larval excretory-secretory antigens 
(TcES).

Before the infection of animals, viable larvae were 
washed with a sterile medium, and the number of larvae per 
1 ml was counted by sampling method using a binocular 
stereomicroscope. Then, the larvae were concentrated to the 
desired infection dose (ID), i.e., 100 (moderate) or 10 larvae 
(low) per mouse.

Preparation of TcES antigens and further determination 
of protein concentration was performed according to Novák 
et al. [35] and Savigny et al. [36]; antigen aliquots with a 
protein concentration of 0.0875 µg/ml were stored at -20 °C 
until used.

Infection Experiments

Female BALB/c mice aged 6 weeks were used for the 
experiments (Velaz Ltd., Prague, Czech Republic). Mice 
were infected by oral administration of defined T. canis ID 
in 10–50 µl of medium per mouse using sterile pipet tips. A 
total of 7 mice infected with 100 larvae each were included 
in group G/100; group G/10 included 4 mice infected with 
10 larvae each. The control group G/0 consisted of three 
uninfected mice that received only tap water and were kept 
under the same conditions as in the previous cases.

Infection Response Assessment

The whole blood was collected from the tail tip of all experi-
mental animals at week 7 post infection (p.i.) and sera were 
stored at -20 °C until use. The mouse infection was con-
firmed by the detection of specific anti-TcES IgG antibod-
ies by ELISA according to Novák et al. [35]. Briefly, the 
wells of microplates (NUNC Maxi Sorp, Massachusetts, 
USA) were coated with 100 µl of bicarbonate coating buf-
fer (pH 9.6) containing TcES diluted at 1:750 (final protein 
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concentration 0.0875 µg/ml, i.e. 0.00875 µg/well) for 1 h 
at 37 °C, then overnight at 4 °C. Free binding sites were 
blocked using 1% bovine serum albumin (BSA) in phos-
phate buffered saline (PBS) containing 0.02% Tween 20 
(PBS/T/BSA) for 1 h at room temperature (RT). After three 
cycles of washing with PBS containing 0.05% Tween 20 
(PBS/T), 100 µl of mouse sera (pre-diluted at 1:800 in 
PBS/T/BSA) were added and incubated for 1 h at RT. After 
washing 3× with PBS/T, TcES-specific IgG was detected 
using peroxidase-conjugated goat anti-mouse IgG (ab6823, 
Abcam, Great Britain) diluted at 1:10,000 in PBS/T/BSA 
(100 µl, 1 h, RT), washed and visualized by 0.04% o-phen-
ylenediamine dihydrochloride with 0.012% H2O2 in citrate 
buffer. The reaction was stopped after 20 min by adding 
100 µl 2M H2SO4. Optical density (OD) was measured 
at 490 nm (Dynatech MRX II) and analyzed in GraphPad 
Prism (version 8) using one-way ANOVA. The cut-off was 
double the mean OD of uninfected mice (G/0) [37].

Examination of Animals and Evaluation of Motor/
Balance Skills

The animals were examined continuously at defined inter-
vals (Table 1) from the day of initial infection until the end 
of the experiment, i.e., week 97 p.i. At each defined time 
interval one mouse was killed and material was collected 
for microscopic and serological studies; the exception was 
the situation in the 65th week p.i., when two animals were 
killed and examined.

The weights of all mice in each group were measured in 
2-week intervals using laboratory scales. Normalized per-
centage body weight gain was used to adjust for differences 
in mean weight at the start of the experiment and maximum 
mean weight gain between groups. Two-way analysis of 
variance (ANOVA) with Tukey’s multiple comparison test 
was used for statistical analysis.

Assessment of general appearance, activity, and motor/
balance abilities, as well as testing on motor abilities, were 
performed in 7-week intervals (Table 1). Animals were 
housed in a plastic cage (disinfected and cleaned with 96% 
ethyl alcohol and 0.02% acetic acid) in an environment cov-
ered with a tight-fitting cloth to limit any visual stimula-
tion. All animals were observed and examined by the same 
observer throughout the experiment to minimize the influ-
ence of subjective observation by multiple examiners.

Animals were observed for 10 min and scored for the 
following external parameters: (1) overt cachexia [38]; (2) 
disheveled hair [30, 39]; (3) abnormal posture (kyphosis, 
reduced pelvic elevation) [30, 39, 40]; (4) reduced gen-
eral activity [30, 41, 42]; (5) stereotyped movements [30, 
31, 39]; (6) stomping; (7) tumbling movements [30, 41]; 
(8) impaired balance [30]; (9) limb ataxia [30] or partial/
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hold onto the beam for more than 10 s. When tested on 
the thick beam, the animals’ ability to maintain stability, 
walk without balance, and without slipping their paws 
was monitored within a 30-second trial. If the mice 
were unable to do this, their behavior was classified as a 
motor disorder.

Larva Recovery Study and Histology Assessment

Mice were euthanized by cervical dislocation [46] and nec-
ropsied at the defined intervals p.i. or at the onset of severe 
signs of the infection to avoid suffering (Table 1).

The liver, spleen, lungs, and brain were examined 
microscopically for the presence of larvae, which were 
also assessed for viability (Nikon Eclipse E200LED MV 
R, Nikon, Japan); except the brain, the other organs were 
weighed [19]. Larval recovery was processed from 10 tis-
sue samples of approximately 1 mm3 from the liver, spleen, 
and lungs. The selected tissue was compressed between two 
microscope slides to detect larvae (quantitative compressed 
biopsy technique, QCBT) and to estimate the burden for the 
whole organ [23, 47, 48].

One of the sagittally separated brain halves was divided 
into cerebrum with medulla oblongata and cerebellum [49] 
and also examined by QCBT for the presence and number of 
the larvae [19, 20]. The remaining brain hemispheres were 
fixed in Bouin´s solution (HT101128, Sigma-Aldrich, Ger-
many), and further histological sections stained with hema-
toxylin-eosin (H/E) were prepared using Gill’s hematoxylin 
solution (HTG-A10,00 BaSo, Taiwan) and eosin Y (E4382, 
Sigma-Aldrich, Germany). The location and extent of tissue 
damage were observed microscopically and compared with 
uninfected tissues.

Results

Antibody Response

The specific antibody response was recorded in all infected 
mice. The intensity of the anti-TcES IgG antibody immune 
response in the blood of all infected mice correlated with 
the infection dose, i.e., the higher the dose, the more intense 
the immune response (Fig. 1). Statistically significant differ-
ences were found between G/10 and G/100 (p < 0.05) and 
between G/0 and G/100 (p < 0.01).

General Condition and Motor and Balance Skills

All mice showed a stable weight gain: G/0 to 53 weeks 
of the experiment, G/10 to 47 weeks p.i., and G/100 to 44 

complete paralysis [38, 43]; and other abnormal findings 
[30, 32, 42] when recorded.

Two tests, slightly modified in our study, were used to 
assess the motor activity of infected animals:

1) Turn-back test [44]: Each mouse was placed in the 
supine position by tail manipulation, then released, and 
its behavior was observed to test the righting reflex. 
Resumption of the natural body position by curling up, 
spasmodic return to the side, or not turning at all was 
classified as an inability to return to the original posi-
tion. The trials were repeated five times in succession 
and if these failures occurred on three or more trials, the 
resulting situation was scored as a failure of the righting 
reflex.

2) The beam test originally described by Deacon [45] was 
modified as follows: the two static horizontal beams 
used, placed on a test table, were– (i) a thin metal beam 
with a diameter of 0.95 cm (originally 0.6 cm) and a 
test length of 46 cm (originally 38 cm), placed 13 cm 
above the surface (originally 49 cm) and (ii) a thick, ser-
rated beam with a diameter of 1.9 cm (originally 1.5 and 
2.2 cm) and testing length of 30 cm (originally 60 cm) 
with paper barriers at the ends to prevent the mouse 
from the escaping, placed 33 cm (originally 60 cm) 
above the surface. Testing on a thin beam monitored the 
animals’ ability to hold onto the beam for three con-
secutive 30-second trials; by repeating the trials, it was 
possible to rule out situations where the mice slipped 
off the beam due to the metal surface. Motor impair-
ment was assessed as the mouse being unable to grasp 
the beam correctly with its forelimbs or being unable to 

Fig. 1 Levels of Toxocara canis excretory-secretory antigen-specific 
IgG antibodies in sera of mice infected by 10 (G/10) and 100 (G/100) 
larvae compared with controls (G/0) on week 7 post infection. Signifi-
cant differences among groups are indicated by asterisks (*p < 0.05, 
**p < 0.01). Cut-off is stated as double the mean OD of G/0
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observed with earlier onset in both groups (weeks 4 and 36 
p.i. in G/10 and G/100, respectively).

The changes in general appearance and activity and the 
impairment on the thin beam were observed in one control 
mouse, with the first detection at weeks 62 and 64 of the 
experiment. In this animal, necropsy revealed pathological 
changes of non-infection origin, namely lung neoplasms, 
which were probably the cause of the deterioration in body 
condition. In view of this, this mouse was not excluded from 
the experiment.

Larvae Recovery and Brain Pathology

Microscopically, larvae were found at defined intervals in 
the CNS (Table 3), but not in the liver, lung, or spleen. They 
were found in all examined hemispheres of mice from G/100 
(3.0 − 15.0% of ID, 19–97 weeks p.i.) and in 2 out of 4 mice 
from G/10 (10% and 40% of ID on week 54 p.i. and 76 p.i., 
respectively). QCBT showed viable intact larvae. Histology 
revealed at least one of the following brain pathological pat-
terns in all mice at the G/100: necrosis, foamy (or gitter) 
cells, hemorrhage, and infiltration. In G/10, striking necro-
sis and hemorrhages were observed in 3 out of 4 infected 

weeks p.i. From these time points, weight gain was stagnant 
or slightly decreased in all groups. The percentage gains of 
body weights during the experiment are shown in Fig. 2. 
The differences were significant between G/0 and G/100, 
and between G/10 and G/100 from week 3 p.i. One mouse 
from G/100 showed a massive loss of 11.6 g at week 53 
p.i. In the infected mice, the weight loss is correlated with 
changes in general appearance, activity, and motor/balance 
disturbances.

Of all infected animals, seven mice showed changes in 
general appearance and activity (6 of G/100, 1 of G/10), 10 
mice showed subtle motor and balance impairments (7 of 
G/100, 3 of G/10), and 5 mice developed obvious motor and 
balance impairments (4 of G/100 and 1 of G/10) (Table 2). 
Only one mouse from G/10 appeared to have no changes or 
impairments at the time of necropsy at week 26 p.i.

The changes in general appearance and activity, obvious 
motor, and balance disturbances were detected at week 19 
p.i. in G/100 and started to develop in more animals from 
week 53 p.i. In G/10, these changes were only occasion-
ally recorded from week 74 p.i. onwards (Fig. 3). However, 
the subtle motor and balance impairments (Fig. 3) were also 

Fig. 2 Mean body weight gain in 
percentage ± standard deviation 
of mice infected by 10 (G/10) 
and 100 (G/100) Toxocara canis 
larvae compared with controls 
(G/0). The differences were sig-
nificant between G/0 and G/100, 
and between G/10 and G/100 
from week 3 p.i.to week 53 p.i. 
(indicated by the line)
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mice (Table 3; Fig. 4). Pathologies were observed in several 
brain regions: corpus callosum, cerebellum, medulla oblon-
gata and pons varolli, midbrain, caudate putamen, an optic 
tract in the hypothalamic area, cerebral cortex, hypothala-
mus, and ventral striatum. Larva in the anterior olfactory 
nucleus without any surrounding pathology was recorded 
only in mouse from G/100 necropsied at week 78 p.i.

The success rate of brain invasion was 100% for G/100 
mice and 50% for G/10 mice. While we did not observe 
a trend towards accumulation of larvae in the brain dur-
ing infection of G/100 mice, there was an increase in the 
number of parasites in the G/10 group from week 76 p.i. 
The number of larvae detected in the brain of G/100 did 
not correlate with any observed changes in general appear-
ance and activity, either subtle or obvious motor and balance 
impairments. However, the number of larvae detected in the 
brains of G/10 did correlate with the development of these 
changes.

Discussion

The present study aimed to comprehensively investigate the 
consequences of any neurological and behavioral changes 
of BALB/c mice with a long-term infection due to low and 
moderate numbers of T. canis larval invasion of the brain. 
The strain of mice was used for its susceptibility to Toxo-
cara infections, which makes it convenient to compare our 
results with other studies [3, 14, 50–52].

The success of oral infection in mice was demonstrated 
by the detection of a specific immune response against T. 
canis larval antigens. In agreement with other studies [24, 
28], we confirmed that the intensity of the antibody response 
correlated with the dose of infection. In our study, it was 
highest in animals infected with 100 larvae (Fig. 1). The dif-
ference between the G/0 and G/10 was insignificant.

The weight of the mice increased continuously from the 
beginning of our experiment (Fig. 2). A slight decrease in 
weight began to occur in G/100 at 44 weeks p.i., which 
corresponded to the approximate interval when animals 
started to show changes in general appearance, activity, and 
motor/balance disturbances, i.e., 36–41 weeks p.i. The rapid 
weight loss occurred at week 53 p.i. in one mouse of G/100. 
This animal also developed multiple changes in general 
appearance and activity, and both subtle and obvious motor 
and balance impairments; this mouse was sacrificed imme-
diately to prevent suffering. According to Miller et al. [53], 
aging should be considered as a possible factor that could 
affect the weight of mice in a long-term experiment. There-
fore, weight loss in our experiment was also considered as 
an indicator of onset physical deterioration.
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The modified tests of Fox [44] and Deacon [45] were 
used to detect the subtle motor and balance changes. To 
test the righting reflex, we used the method of flipping the 
mice onto their backs by their tails, because it is easier to 
manipulate the animals, in contrast to authors who flipped 
mice onto their backs using a V-shaped bed [54] or used 
the backward rotation test [55–57]. Failure to turn-back was 
only observed in G/100 at weeks 40 and 91 p.i. The mice 
had difficulty in regaining the position of the four limbs and 
were spastic. These manifestations were similar to those 
described by Janecek et al. [30] in animals infected with a 
significantly higher numbers of parasites, i.e., 2,000 larvae. 
Thus, our results show that neurological problems can occur 
even with milder infections.

The fine motor and balance skills of the animals were 
also assessed using a modified beam test [45], which was 
performed using a lower bar position above the surface. 

The first observed change in general appearance and 
activity was stereotyped movement at week 19 p.i., fol-
lowed by the rest of the changes at week 53 p.i. in mice of 
G/100. This time point was earlier than in animals infected 
with a tenfold lower dose of larvae (G/10), where the first 
changes were observed at 74 weeks p.i. Janecek et al. [30] 
also observed stereotypical circling in 2,000 T. canis eggs-
infected mice at day 27 p.i., which corresponds to the higher 
ID they used. Furthermore, their mice showed another simi-
lar general change in condition, namely lowered pelvic 
position, at day 34 p.i., which is an earlier onset of abnor-
mal posture compared to week 53 p.i. in G/100 in our study. 
Looking at experiments with other parasites and the conse-
quences of the infection, stereotypical circling and ruffled 
coats in mice have also been reported in Toxoplasma gondi 
infections [39].

Fig. 3 The time development 
of changes in general appear-
ance and activity, and motor and 
balance impairments in mice 
infected by 10 (G/10) and 100 
(G/100) Toxocara canis larvae 
compared with controls (G/0)

 

1 3



Acta Parasitologica

This test allowed for safer animal testing, while the beam 
height was sufficient to prevent the animals from deliber-
ately jumping off the bar. The subtle motor and balance 
changes were first observed in one G/10 mouse at week 4 
p.i.; the animal showed impairment throughout the experi-
ment and later developed a disturbance on the thick beam at 
week 40 p.i. The remaining animals developed the disorder 
much later, from 66 weeks p.i. onwards. In comparison, the 
G/100 mice first developed thick beam impairment at week 
36 p.i., followed by thin beam impairment from week 40 
p.i. and the final development of thick beam impairment at 
week 93 p.i. The subtle neurological signs occurred earlier 
(week 4 p.i. in G/10 and week 36 p.i. in G/100) than obvious 
ones (on week 53 p.i. onwards). The changes in inconspicu-
ous neurological signs (righting reflex) were also observed 
by Janecek et al. [30] from day 69 p.i. onwards in 2,000 
ID mice. The difference in the ID used makes it difficult to 
compare the temporal continuity of subtle and overt neuro-
logical signs between this study and ours.

The increasing age of the experimental animals is a fac-
tor that had to be considered for any changes observed with 
advancing long-term infections. The possibility that the 
age of the animals influenced the behavior and motor skills 
of the animals is impossible to exclude. Many factors can 
affect movement during aging, such as bone and joint dis-
ability, loss of muscle mass, poor vision causing reduced 
activity, and CNS impairment and neurodegenerative 
changes due to old age [58]. Age-associated osteoporosis 
is known in BALB/c strain [58]. However, our experiment 
demonstrated the same symptoms in the G/10 and G/100 
groups with earlier symptom onset in the higher infectious 
dose mice. In the experiments aimed at long-term infection 
observation, selecting experimental animals with longer 
average lifespans would be advisable. For example, using 
experimental rats could prolong the time of experimental 
infection [59]. Still, comparing it to other studies would 
require more work. Using different murine strains or apply-
ing caloric restriction to prolong murine lifespan was not 
considered an option, as the time of experiments is too long 
to be covered by the different murine strains and diets [59].

Viable parasite larvae were only detected in the brains of 
mice (Table 3). Our results differ from the literature, which 
shows that even in mild infections, larvae can be detected 
in the organs through which they migrate. For example, 
Hanh et al. [8] detected T. canis larvae in the lungs of mice 
infected with 10 eggs/mouse and 100 eggs/mouse one-week 
p.i. In mice with an initial infection dose of 200 T. canis 
eggs, Kayes and Oaks [60] found 3.2–12.3% larvae in the 
liver and 0.1–4.9% parasites in the heart/lungs at weeks 1 
to 8 p.i. In contrast to these authors, who detected parasites 
in the liver and lungs at week 8 p.i. (i.e., shortly after infec-
tion), we only started to examine these organs from week 
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Fig. 4 The brain pathologies in hematoxylin/eosin-stained sections of 
mice infected by 100 (a-c) and 10 (d-f) Toxocara canis larvae: a - 
foamy cells (arrows) in optic tract in the hypothalamus area on week 
53 p.i.; b - the larva (asterisks) without any tissue change around in 
the anterior olfactory nucleus on week 78 p.i.; c - necrosis with foamy 

cells (arrows) and infiltration of monocytes (white asterisks) in the cor-
pus callosum on week 91 p.i.; d - hemorrhage (arrow) in the medulla 
oblongata on week 68 p.i.; e and f - necrosis (rectangle, arrows) in oth-
erwise intact tissue in the corpus callosum on week 68 p.i., f presenting 
magnified detail of necrosis marked by rectangle in e
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[63]; but we found a higher number of larvae in the cere-
brum, which is in agreement with Kolbeková et al. [37] and 
Janecek et al. [50]. Based on our results, the detected lar-
val load corresponds more to the size of the brain part than 
to the affinity of the larvae for selected parts. Localization 
[64] and type of tissue damage [20, 37, 50, 65–68] were 
also assessed histologically. Except for one mouse infected 
with 10 larvae, which showed no pathological changes in 
the brain and no physiological or neurological changes, all 
other infected animals manifested these changes to varying 
degrees. Histopathology revealed necrosis and cellular infil-
tration predominantly in the corpus callosum, foamy cells in 
the cerebellum, and in optic tract in the hypothalamic area; 
hemorrhages were recorded predominantly in the medulla 
oblongata and pons varolli. Our results are consistent with 
the pathology reported in the high-dose infection study (ID 
2,000 eggs/mouse) [20], including the accumulation of 
foamy cells in fiber tracts, as seen in the corpus callosum 
of G/100. We also observed foamy cells in the optic tract of 
G/100 mice. This suggests that the presence of foamy cells 
in the optic tract may be related to larval invasion to the 
eyes, optic nerve damage, or ocular toxocarosis. However, 
the eyes of the mice were not examined in our study and 
therefore we cannot link possible presence of larvae in eyes 
of the mice to the observed motor impairments or patholo-
gies detected in optic tract in the hypothalamic area.

Although our study was carried out on small groups of 
mice, our results showed that long-term low to moderate 
infections with T. canis larvae can still lead to severe neuro-
logical consequences.

Conclusions

The present study confirmed that even mild infections of 
mice with Toxocara canis larvae can lead to neurotoxocaro-
sis during the chronic phase of infection. Low and moderate 
infections could induce a specific immune response and, in 
addition to changes in the general appearance and activity of 
the animals, disturbances in motility and balance accompa-
nied by the development of necrosis, hemorrhage, and foamy 
cell accumulation. Our study showed that weak infections 
with as few as 10 larvae may be asymptomatic initially, but 
may manifest neurological complications as they progress 
to the chronic phase. The results suggest that even low-level 
infections of a paratenic host, which commonly occur in the 
wild, can have serious health consequences.
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19 p.i., i.e., when the larvae had already left these organs. 
The visceral organs of G/10 animals showed no visible mac-
roscopic changes, granulomas, hepatomegaly, or spleno-
megaly. In contrast, spleen color changes were detected in 
G/100 at 53 and 65 weeks p.i., but no granulomas were dem-
onstrated in the liver. The spleen of these animals reached 
2.5 cm in length at 65 weeks p.i., slightly longer compared 
to control uninfected animals. Given the small number of 
animals, this figure cannot be evaluated statistically.

Our present study found that at an earlier time after infec-
tion, the maximum recovered rate of larvae in the brains of 
mice inoculated with 100 larvae was 15% which was simi-
lar to the study by Skerrett and Holland [61] who detected 
recovery rates of 10% larvae from 100 T. canis eggs/mouse 
ID on days 5 and 14 p.i., however, ours was in between 8.6 
and 32.5%, which was a study by Kayes and Oaks [60] who 
used 200 T. canis eggs/mouse ID during a period of 1 to 
8 weeks p.i. Nevertheless, a higher rate of 40% for mice 
with 10 larvae inoculation was detected in the present study. 
Havasiová-Reiterová et al. [24] noted an average of 6.6% 
larval recovery from 5 T. canis eggs/mouse ID (from 5 
examined mice) and an average recovery of 14.3% from 7 
T. canis eggs/mouse ID (from 5 examined mice) at week 
10 p.i.

Unlike these authors, we used infection-viable larvae 
instead of embryonated eggs and the larva has a resistant 
acellular cuticle, which allows them to escape the gastric 
acid attack, whereas the embryonated eggs if contain imma-
ture larvae making them unable to emerge from the eggs 
to perform the penetration function through the small intes-
tine. The higher larval recovery rate in our experiment was 
also influenced by the cumulative effect of larvae over time. 
Similar or higher recovery rates have already been observed 
for low ID compared to moderate ID at some time points 
[24, 61]. This phenomenon is not well understood, but the 
immune response of the paratenic host may play a role [1, 
17].

In our experiment, the selection between the right and 
left hemispheres of the brain for the larval recovery study 
was randomized. Similarly to Farjat et al. [62] and Eid et 
al. [19], we used QCBT for its advantage of a complex 
examination and quick slide preparation. And similar to 
Kolbeková et al. [14, 37], we detected individual larvae 
in different brain regions or clusters, with a higher num-
ber in the cerebrum than in the cerebellum. Like Janecek 
et al. [50], neither the compression technique nor histol-
ogy showed a significant difference in the number of larvae 
between the right and left brain hemispheres. On the other 
hand, Good et al. [49] observed different distribution of lar-
vae between the telencephalon and diencephalon of mice, 
with more larvae detected on the right side. Some authors 
found a higher predilection of larvae in the cerebellum 
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