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Abstract
Background Trematode infections of the genus Schistosoma can induce physiological and behavioral changes in intermedi-
ate snail hosts. This is because the parasite consumes essential resources necessary for the host's survival, prompting hosts 
to adapt their behavior to maintain some level of fitness before parasite-induced mortality occurs.
Methods In this study, the reproductive and biochemical parameters of Biomphalaria alexandrina and Bulinus truncatus 
were examined during the cercareal shedding stage of infection with Schistosoma mansoni and Schistosoma haematobium, 
respectively, compared with controls.
Results The study revealed an infection rate of 34.7% for S. mansoni and 30.4% for S. haematobium. In B. alexandrina 
infected with S. mansoni, a survival rate of 65.2% was recorded, along with a mean prepatent period of 30.3 ± 1.41 days, a 
mean shedding duration of 14.2 ± 0.16 days, and a mean lifespan of 44.1 ± 0.24 days. Meanwhile, in B. truncatus infected 
with S. haematobium, a survival rate of 56.4% was observed, with a mean prepatent period of 44.3 ± 1.41 days, a mean 
shedding duration of 22.6 ± 2.7 days, and a mean lifespan of 66.9 ± 1.6 days. Feeding increased in both infected species of 
snails, while the net reproductive rate (Ro) of the infected snails decreased. Total antioxidant (TAO) and lipid peroxidation 
activity increased in the two infected snail species during shedding, while Glutathione-S-transferase levels decreased. Lipid 
peroxidase activity and nitrogen oxide levels significantly decreased in infected B. alexandrina and increased in infected 
Bulinus. Steroid hormone levels were elevated in infected Biomphalaria, whereas they were reduced in infected Bulinus. 
Comet assay parameters showed an increase in the two infected genera after infection compared to control snails, indicating 
genotoxic damage and histopathological damage was observed.
Conclusions These findings demonstrate that infection with larva species diverse biochemical, hormonal, genotoxic, and 
histopathological changes in the tissues responsible for fecundity and reproduction in B. alexandrina and B. truncates com-
paring with controls.

Keywords Biomphalaria alexandrina · Bulinus truncatus · Genotoxic effect · Feeding · Schistosoma haematobium · 
Schistosoma mansoni

Introduction

Schistosomiasis is a chronic parasitic disease caused by 
trematodes of the genus Schistosoma. It is considered the 
second most devastating disease worldwide in terms of 
morbidity and mortality [1, 2]. This disease is prevalent 
in tropical and subtropical areas, affecting approximately 
240 million people globally, with about 700 million people 
at risk, particularly in poor communities with inadequate 
sanitation facilities [3–6]. Schistosoma mansoni and S. hae-
matobium are the two parasites that cause the most wide-
spread forms of intestinal and urogenital schistosomiasis [7]. 
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In our laboratory, we use the infection of B. alexandrina 
with S. mansoni and B. truncatus with S. haematobium to 
study the impact of host-parasite infections on physiological 
and behavioral changes, including reduced fecundity and 
increased feeding behavior in the two intermediate host spe-
cies. When B. alexandrina becomes infected with S. man-
soni and B. truncatus becomes infected with S. haemato-
bium, the development of the hermaphroditic reproductive 
system of the two snail species is severely retarded [8–10], 
resulting in the production of almost no eggs. Numerous 
studies have reported behavioral alterations in hosts, such 
as changes in feeding and crawling behavior, caused by 
parasitic infection, and have interpreted these changes as 
induced adaptations by parasites to facilitate transfer to the 
next-stage hosts [11–14]. Increased feeding with infection 
has been interpreted as compensating for nutrient depriva-
tion caused by parasites or as a modification of the host's 
growth rate (gigantism) [15, 16]. The comet assay has sev-
eral advantages over other DNA damage methods, such as 
sister chromatid exchange, alkali elution, and micronucleus 
assay, due to its high sensitivity and the ability to determine 
DNA strand breaks in individual cells [17–19]. Gastropod 
snails have been reported to be intermediate hosts of cer-
tain larval digeneans [20, 21]. These snails harbor various 
developmental stages, such as sporocysts, rediae, and cer-
cariae. During their multiplication and growth, they obtain 
nutrients from infected tissues, such as the digestive gland 
and gonads, leading not only to diverse histopathological 
changes in the snails but also to physiological disturbances 
[19, 21–24].

The aim of this study was to expand and update the exist-
ing knowledge regarding behavioral alterations in hosts, 
specifically focusing on feeding and fecundity, caused by 
parasitic species. The B. alexandrina-S. mansoni and B. 
truncatus-S. haematobium models were utilized for com-
parison with uninfected species (controls). In addition, 
biochemical, histopathological, and genotoxic parameters 
were measured in the tissue homogenate of both infected and 
uninfected snails to facilitate the comparison.

Material and Methods

Species Snails with Infections

Juvenile specimens of both B. alexandrina (shell diameter 
3–5 mm) and B. truncatus (shell diameter 3–5 mm) were 
obtained from the stock reared in the Medical Malacology 
Department at Theodor Bilharz Research Institute (TBRI), 
Imbaba, Giza, Egypt. The snails were originally collected 
from field populations in Giza Governorate and were used 
for all experiments. The snail species were bred under 

standard conditions according to the methodology described 
by [25].

To induce infections, triplicate groups of 10 B. alexand-
rina snails were individually exposed to 5–8 freshly hatched 
S. mansoni miracidia, and triplicate groups of 10 B. trunca-
tus snails were individually exposed to 8–15 freshly hatched 
S. haematobium miracidia for 3 h at 25 °C in 2 ml vials 
containing dechlorinated tap water, following the protocol 
outlined by [10]. Miracidia of S. mansoni and S. haemato-
bium were obtained from the Schistosome Biological Sup-
ply Center (SBSC) at Theodor Bilharz Research Institute in 
Egypt. Triplicate groups of 10 control snails were individu-
ally placed in 2 ml vials without exposure to miracidia. Both 
infected and control snails were housed in plastic aquaria 
(10 snails per container, with a size of 16 × 23 × 9 cm) filled 
with dechlorinated water. The infected snails were allowed 
to develop for 4 weeks after infection with B. alexandrina 
and 8 weeks after infection with B. truncatus.

The infection rate was calculated 4 weeks after infection 
in B. alexandrina and 8 weeks after infection in B. truncatus, 
following the method described by [26]: Infection 
rate = (number of infected snails/total number of snails 
examined) × 100. The survival rate at shedding was also cal-
culated for both snail species according to Frank (1963) 
u s i n g  t h e  fo l l o w i n g  e q u a t i o n :  s u r v i v a l 
rate = Number of survived species snails

total number of exposed miracidia species snails
× 100 . Further-

more, the mean total number of cercariae, mean duration of 
shedding, mean prepatent period and mean lifespan were 
calculated for each species with positive infections, follow-
ing the approach by [26].

In experiments involving quantitative cercarial counting, 
the standard exposure time was extended to 45–60 min. The 
water containing cercariae from the test tubes was carefully 
transferred into Petri dishes lined with graduated paper. To 
immobilize and stain the cercariae, a few drops of Lugol’s 
solution (7.5 g KI + 5 g I2 in 100 ml distilled water) were 
added, facilitating rapid visualization. The cercariae were 
then counted under a dissecting microscope [27].

Snails Feeding

Approximately 120 snails of the same size (3–5 mm) from 
each species were used in the infected and control groups. 
They were housed in a plastic container (16 × 23 × 9 cm) and 
provided with 50 circles of washed clean fresh lettuce leaves 
measuring 4  mm2. The snails were starved for one day before 
the experiment, and then the food was given [28]. The con-
sumption of the lettuce circles was counted and recorded 
daily, and the number of surviving snails in both species 
was noted [29]. Triplicate groups were performed for each 
species and compared side by side with the control groups.
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Biological Parameters

To investigate the fecundity of the two snail species, Styrofoam 
sheets measuring 5 × 5 cm with a thickness of 0.5 cm were 
used as substrates for egg deposition. These sheets were placed 
on the water surface of plastic containers. Weekly collection 
of egg masses was carried out for a period of four to eight 
consecutive weeks. The egg-laying capacity was quantified as 
(Mx), which represents the total number of eggs laid in a given 
week divided by the initial number of living snails (eggs/snail/
week) [30]. The survivorship of the snails (Lx) and the total 
number of eggs laid per snail (Mx) were recorded on a weekly 
basis for each aquarium. The net reproductive rate (R0) of the 
snails throughout the experimental period was calculated using 
the following parameters: Survivorship (Lx), which represents 
the proportion of snails that survived at any given week rela-
tive to the initial population (1.0 = 100% survival rate), and 
Fecundity (Mx), which refers to the average number of eggs 
laid per snail per week. The net reproductive (R0) at any given 
period was determined using the formula (R0 = ΣLxMx).

Species Snail Tissue Homogenates 
and Biochemical Estimations

To investigate changes in biochemical parameters TAO, 
LPO, SOD, NO, and GST in two infected species of snails, 
three replicates of 10 snails per liter were prepared for two 
infected species at the cercarial shedding stage, as well as 
two control groups of the tested species. Snails with an 
average shell diameter of 7–8 mm were carefully crushed 
between two glass slides, and their shells were removed. Tis-
sue weighing 0.1 g from each species was then homogenized 
in 1 ml of phosphate buffer (pH 7.1), followed by centrifu-
gation at 4000 rpm for 15 min. The resulting supernatant 
was collected in Eppendorf tubes and stored at − 20 °C for 
further analysis.

For the biochemical analyses, Biodiagnostic kits (Bio-
diagnostic Dokki, Giza, Egypt) were employed to deter-
mine the levels of SOD and GST [31, 32]. Tissue malon-
dialdehyde (lipid peroxide) was assessed according to the 
method described by [33]. Nitric oxide (NO) concentration 
was determined using a colorimetric NO kit (Biodiagnostic 
Company, Dokki, Giza, Egypt; Cat. No. GR 2511), based on 
the approach outlined by [34]. Additionally, the total antioxi-
dant capacity was estimated using a kit (Cat. No. TA 2513) 
following the methodology established by [35].

Steroid Sex Hormones (Testosterone 
and 17β‑Estradiol)

The study aimed to assess the levels of steroid hormones, 
specifically testosterone and 17β-estradiol, in the tissues of 
two snail species: one infected with the trematode species 

and another serving as an uninfected control group. The hor-
mone levels were measured using the T EIA kit from Enzo 
Life Science (Michigan, USA, ADI-900-065) and the E EIA 
kit from Cayman Chemical Company (Michigan, USA, item 
no. 582251) according to the instructions provided by the 
manufacturers [36].

Genotoxicity by Comet Assay

A study was conducted to compare DNA damage in snails 
infected with trematodes at the shedding stage as well as a 
control species group, following the methods described by 
[37, 38].

Histopathological Alterations

The experiment included simultaneous positive infections 
of B. alexandrina with S. mansoni and B. truncatus with S. 
haematobium, along with their respective control groups. 
Each group consisted of three replicates with 10 snails per 
liter. To examine the snails' tissues, the digestive and her-
maphrodite glands were dissected from their shells, fixed 
using Bouin’s fixative, and embedded in wax blocks. Sec-
tions of 5–8 µm thickness were prepared and stained with 
haematoxylin and eosin, following the protocol by [39]. Sim-
ilar preparations were made for the control snails' digestive 
and hermaphrodite glands.

Statistical Analysis

The values of biological and biochemical parameters were 
expressed as mean ± SD (standard deviation). Statistical 
analysis was performed using the student's "t" test to deter-
mine significant changes between the control and infected 
groups, following the method by [40]. The limit for statisti-
cal significance was set at p < 0.05, corresponding to a con-
fidence level of 95%.

Results

Snail’s Infection Rate

The infection rate in B. alexandrina with S. mansoni was 
recorded as 34.7% (Fig. 1A), while B. truncatus with S. hae-
matobium had a recorded rate of 30.4%.

Prepatent Period and Duration of Cercarial 
Shedding in Snails

The pre-patent period varied from 28 to 32 days (mean: 
30.3 ± 1.41) post-infection for B. alexandrina, and it was 
recorded as 43–50 days (mean: 44.3 ± 1.41) post-infection 
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Fig. 1  Impact of S. mansoni with B. alexandrina and S. haematobium 
with B. truncatus on infection rate (A), pre-patent period and duration 
of shedding (B), total cercarial production (C), life span post mira-

cidia species exposure (D) and Snail’s survival rate 1st cercarial shed-
ding stage (E) comparing with uninfected snails.
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for B. truncatus (Fig. 1B) at 25 °C. The duration of shed-
ding ranged from 11 to 29 days (mean: 14.2 ± 0.16) in B. 
alexandrina and from 14 to 36 days (mean: 24.6 ± 2.6) in 
B. truncatus.

Mean Total Number of Cercariae Per Snail

The mean number of cercariae per snail (Fig. 1C) in B. alex-
andrina was recorded as 2915 ± 74.394 (p < 0.05), and it was 
recorded as 1637.3 ± 307.5) (p < 0.05) in positive B. trunca-
tus. Cercariae production typically increased after the first 
week of patency but often decreased significantly towards 
the end of the snails'.

Snail’s Mean Life Span

The mean lifespan was recorded as 44.1 ± 0.24 days in B. 
alexandrina (Fig. 1D) and 66.9 ± 1.6 days in B. truncatus.

Snail’s Survival Rate at First Shedding

The survival rate of B. alexandrina exposed to Schistosoma 
mansoni at the first cercarial shedding was 65.2%, while the 
survival rate of B. truncatus exposed to S. haematobium 
was 56.4%, compared to the survival rate in the respective 
control groups (Fig. 1E).

Impact of Schistosoma mansoni with Biomphlaria 
alexandrina and S haematobium with Bulinus 
truncatus on Feeding, Fecundity and Reproductive 
Rate

During the prepatent period, the number of feeding B. 
alexandrina snails on green circles of fresh lettuce leaves 
exceeded that of their uninfected counterparts, indicat-
ing that the infected snails were more voracious feeders 
(Fig. 2A). The same pattern was observed in B. truncatus 
infected with S. haematobium (Fig. 2B). Additionally, the 
fecundity of B. alexandrina showed a pattern of ceasing egg-
laying for 4 weeks during the prepatent period (Fig. 2C), 
which was also observed in B. truncatus after being exposed 
to miracidia (Fig. 2D). The net reproductive rate (Ro) in 
infected B. alexandrina and B. truncatus was significantly 
reduced to 47.7% and 84.6% of its value in the respective 
control groups (Fig. 2E).

Impact of Infection with Schistosoma 
mansoni in Biomphlaria alexandrina 
and Infection with S haematobium in Bulinus 
truncatus on Oxidative Stress Parameters 
at 1st Cercarial Shedding Stage

TAO activity showed a significantly higher value (p < 0.05) 
in the homogenized tissue of B. alexandrina compared 
to the uninfected group. Similarly, infected B. trunca-
tus snails exhibited a significantly higher TAO activity 
(Table 1, Fig. 3A). These findings suggest that the infec-
tions were stressful for the snails, triggering an increase 
in their antioxidant defense mechanism.

Lipid peroxidation (LPO) activity displayed contrast-
ing results between the two snail species. In infected B. 
alexandrina snails, LPO activity was significantly reduced 
relative to the uninfected group. Conversely, in infected 
B. truncatus snails, LPO activity increased significantly 
compared to the control group (Fig. 3B). These obser-
vations indicate that S. mansoni infection in B. alexan-
drina may have a protective effect against lipid peroxi-
dation, while S. haematobium infection in B. truncatus 
may induce oxidative damage. Furthermore, a significant 
elevation in the levels of nitric oxide (NO) was observed 
in the tissue homogenate of infected B. truncatus snails 
whereas infected B. alexandrina snails exhibited a signifi-
cant reduction in NO compared to the uninfected group 
(Fig. 3C).

Superoxide dismutase (SOD) levels were higher in 
infected B. alexandrina and B. truncatus snails compared 
to uninfected snails in both species (Table 2, Fig. 3D). This 
indicates an up regulation of the SOD antioxidant enzyme 
as a response to the infections in both snail species.

In terms of glutathione-s-transferase (GST) activity, the 
highest value was measured in infected B. truncatus snails, 
while infected B. alexandrina snails exhibited a reduction 
in GST activity compared to uninfected B. alexandrina 
snails (Fig. 3E). These differences in the antioxidant sys-
tem response may be attributed to variations in laboratory-
infected snail species or the longer prepatent period in B. 
truncatus compared to B. alexandrina, regardless of the 
parasite species.

Impact of S. mansoni with B. alexandrina and S. 
haematobium with B. truncatus on 17β‑Esteradiol 
and Testosterone Hormones in Tissues at 1st 
Cercarial Shedding Stage

In infected B. alexandrina snails, there were significant 
increases in the concentrations of 17β-estradiol and tes-
tosterone in homogenized tissues post-infection (Table 2, 
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Fig. 2  Impact of S. mansoni with B. alexandrina and S. haematobium 
with B. truncatus on feeding (A, B); on fecundity (C, D) and repro-
ductive rate (E) in two infected snails, Survivorship (Lx): This repre-
sents the proportion of snails that survived at any given week relative 

to the initial population (1.0 = 100% survival rate). Fecundity (Mx): 
this refers to the average number of eggs laid per snail per week. The 
net reproductive rate (R0) at any given period was determined using 
the formula (R0 = ΣLxMx) comparing with uninfected snails

Table 1  Impact of infection with Schistosoma mansoni in Biomphlaria alexandrina and infection with S haematobium in Bulinus truncatus on 
oxidative stress parameters at 1st cercarial shedding stage comparing with uninfected snails

Intermediate host Total antioxidant 
(TAO) Mm/L tissue

Lipide peroxidase 
(LPO) nmol/L tissue

Nitrogen oxide (NO) 
nmol/L tissue

Superoxie dismutase 
(SOD)U/g tissue

Glutathione-S-trans-
ferase (GST)U/g 
tissue

Cont. B. alexandrina 1.31 ± 0.11 13.11 ± 0.009 132.74 ± 0.004 0.75 ± 0.001 1.93 ± 0.001
Inf. B. alexandrina 1.87 ± 0.12 7.23± 0.005 126.24 ± 0.005 1.18 ± 0.001 1.79 ± 0.001
Cont. B. truncatus 1.10 ± 0.005 5.63 ± 0.004 176.74 ± 0.005 1.12 ± 0.002 1.19 ± 0.004
Inf. B. truncates 2.05 ± 0.009 8.21 ± 0.007 267.24 ± 0.004 1.15 ± 0.001 1.22 ± 0.0009
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Fig. 3  Impact of S. mansoni with B. alexandrina and S. haematobium with B. truncatus on total antioxidant (A), lipid peroxidase (B), nitrogen 
oxide (C), superoxide dismutase (D) and glutathione-s-transferase (E) at 1st cercarial shedding stage comparing with uninfected snails
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Fig. 4A). On the other hand, infected B. truncatus snails 
exhibited a notable reduction in the concentrations of 
17β-estradiol and testosterone hormones post-infection 
compared to their levels in non-infected control snails 
(p < 0.05) (Fig. 4B).

Impact of S. mansoni with B. alexandrina and 
S. haematobium with B. truncatus on Comet 
Assay at 1st Cercarial Shedding Stage

The comet assay was employed to assess DNA damage in 
B. alexandrina and B. truncatus snails infected with Schis-
tosoma mansoni and S. haematobium, respectively. The 
parameters of tailed % and tailed length, which indicate 
cellular malformation, exhibited significant increases in 
infected B. alexandrina snails compared to the uninfected 
groups (refer to Fig. 5 and Plate 1). Additionally, there was 
an increase in the percentage of normal DNA in the tail, 
indicating migration from the head in infected B. alexand-
rina snails. The tail moment, which represents the combi-
nation of tail length and the percentage of DNA migrated 
from the head, may serve as an indicator of genotoxicity and 
negative effects on the cellular resistance system (Fig. 5 and 
Plate 1). Moreover, the olive tail moment, a marker of DNA 
fragmentation, showed a significant increase in infected B. 
alexandrina snails compared to the control group (p < 0.05). 
Similar adverse impacts on comet assay parameters were 
observed in infected B. truncatus snails with S. haemato-
bium during the shedding stage (Table 3, Fig. 5A, B, Plate 
1).

Table 2  Impact of infection with Schistosoma mansoni in Biomph-
laria alexandrina and infection with S haematobium in Bulinus trun-
catus on steroid sex hormones in tissues at 1st cercarial shedding 
stage comparing with uninfected snails

Intermediate host 17β-stradiol pg/ml Testosterone ng/ml

Cont. B. alexandrina 10.256 ± 0.033 10.68 ± 0.235
Inf. B. alexandrina 28.154 ± 0.021 30.18 ± 0.086
Cont. B. truncates 60.284 ± 0.056 35.1 ± 0.018
Inf. B. truncates 15.136 ± 0.009 10.26 ± 0.092

Fig. 4  Impact of S. mansoni with B. alexandrina and S. haematobium 
with B. truncatus on 17β-esteradiol (A) and testosterone (B) in tissues 
at 1st cercarial shedding stage comparing with uninfected snails

Fig. 5  Impact of S. mansoni 
with B. alexandrina (A) and S. 
haematobium with B. truncatus 
(B) on comet assay parameters 
at 1st cercarial shedding stage 
comparing with uninfected 
snails.
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Impact of S. mansoni with B. alexandrina 
and S. haematobium with B. truncatus 
on the Snails’ Digestive and Hermaphrodite 
Glands Histology at 1st Cercarial Shedding 
Stage

Infection of B. alexandrina and B. truncatus snails with 
S. mansoni and S. haematobium, respectively, can have 
destructive effects on the snail tissues. Histological studies 
were conducted on sections from the digestive and her-
maphrodite glands of both infected and uninfected snails. 
The normal histological structure of the digestive gland in 
both species includes two main cell types: the columnar 

digestive cells with rounded apices and the pyramidal-
shaped secretory cells (Plate 2A & C).

Histological examination of the sections from the diges-
tive gland of infected snails at the shedding stage revealed 
detrimental effects, including swelling and deformation of 
the secretory cells, rupturing and disintegration of the diges-
tive cells, as well as the presence of sporecysts containing 
cercariae species (Plate 2, B & D).

In the hermaphrodite gland, responsible for producing 
both male and female reproductive gametes, mature ova are 
located at the periphery of the acinus, while bundles of male 
sperm are arranged in the center. Various stages of sperm 
and ova development can be observed simultaneously (Plate 

Plate 1  Impact of S. mansoni 
with B. alexandrina and S. 
haematobium with B. truncatus 
on comet assay parameters A 
control B. alexandrina; B B. 
alexandrina-infected; C control 
B. truncatus and D infected B. 
truncatus at 1st cercarial shed-
ding stage

Table 3  Impact of S. mansoni with B. alexandrina and S. haematobium with B. truncatus on comet assay parameters (DNA) at 1st cercarial 
shedding stage comparing with uninfected snails

Intermediate host Tailed % Tail length(PX) DNA% in tail Tail moment Olive tail moment

Cont. B. alexandrina 13.23 ± 0.42 5.9 ± 0.98 10.70 ± 1.54 0.53 ± 0.15 1.47 ± 0.21
Infected B. alexandrina 19.3 ± 0.245 6.6 ± 2.032 14.69 ± 0.47 0.79 ± 0.18 1.60 ± 0.13
Cont. B. truncates 7.4 ± 0.43 5.22 ± 0.30 8.53 ± 1.77 0.45 ± 0.008 1.07 ± 0.25
Infected B. truncates 22.8 ± 0.21 6.73 ± 1.09 14.18 ± 1.16 1.01 ± 0.18 2.30 ± 0.13
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2, A & C). Histological sections of this gland from infected 
snails showed varying degrees of degeneration in ova and 
sperm, depending on the sporecysts of cercariae species dur-
ing the experimental shedding period in both species (Plate 
2, B & D).

Discussion

Snail’s Infection Rate

Lab observations of B. alexandrina infected with S. mansoni 
and B. truncatus infected with S. haematobium were consist-
ent with the findings of [41], which reported a 30% infection 
rate (IR) in B. pfeifferi snails with S. mansoni. However, the 
observations differed from those of [42, 43], who reported 
higher IR in B. pfeifferi snails infected with S. mansoni. In 
the case of B. truncatus, a 50.5% IR was observed in snails 
aged one to seven days, and a 19.9% IR was observed in 
snails aged one and a half to 5 weeks under laboratory con-
ditions [44].

Prepatent Period and Duration of Cercarial 
Shedding in Snails

The mean pre-patent and Snail’s duration periods for posi-
tive B. alexandrina and B. truncatus observed in this study 
are consistent with previous findings regarding the time 
interval between miracidial infection of the intermedi-
ate host and the subsequent release of cercariae. Previous 
research by [45] reported that S. mansoni exhibits the fastest 

rate of development, taking approximately 33 days at 25 °C, 
while S. haematobium takes around 50 days. These find-
ings highlight the significance of prepatency periods in the 
epidemiology of schistosomiasis, as acknowledged by [46].

Furthermore, [45] emphasized the crucial role of the 
latent period (prepatent period) in determining the preva-
lence of infection within snails. The latent period refers to 
the time interval between snail infection by a miracidium 
(the larval stage of a parasitic trematode) and the initiation 
of cercarial shedding (the subsequent larval stage that is 
infective to the final host). The mean total number of cer-
cariae per snail observed in this study differs from the find-
ings reported by [47] in B. glabrata.

However, it aligns with previous studies on Bulinus trun-
catus infected with miracidia, which reported a range of 
29–65 days for cercarial production at 24–26 °C [27, 48]. 
In the present study, the number of cercariae shed weekly 
by positive B. alexandrina was greater than the number of 
cercariae shed weekly in positive Bulinus truncatus. This 
difference can be attributed to the varying doses of miracidia 
given to the two species. Massoud [49] demonstrated that 
the numbers of cercariae shed daily by single snails exposed 
to one or two miracidia were significantly lower than those 
exposed to 5, 10, or 20 miracidia.

Mean Total Number of Cercariae Per Positive Snails

The examination of cercariae in the present study revealed 
that 90–100% of mature S. mansoni and S. haematobium 
cercariae were shed within 45–60 min of exposure to light. 
Pflüger [27] documented that the standard stimulation period 

Plate 2  A Light micrographs 
show the normal digestive 
glands and normal hermaphro-
dite gland of B. alexanderina 
and C normal digestive glands 
and normal hermaphrodite 
gland of B. truncatus snails. 
Digestive cells (blue arrow), 
secretory cells (dark red arrow), 
Lumen (head dark red arrow) 
(H&E; × 100; × 200). Mature 
ovum (red arrow), Oocytes 
(black arrow), Sperms (yellow 
arrow). B and D show infected 
digestive and hermaphrodite 
gland where red arrow (s) 
sporocysts of cercariae species 
at 1st cercarial shedding stage 
compared with uninfected 
snails.
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for mature S. haematobium cercariae was limited to 5 h. 
While cercariae production typically increased after the first 
week of patency, it often decreased significantly towards the 
end of the snails' lifespan.

Snail’s Mean Life Span Comparing with Uninfected 
Snails

The lifespan of Schistosoma-positive snails in B. alexand-
rina was found to range from 45 to 81 days (with a mean 
of 44.1 ± 0.24 days), while in B. truncatus, it ranged from 
55 to 91 days (with a mean of 65.9 ± 1.6 days) compared to 
uninfected snails in both species. The differences between 
the mean lifespan of infected snails and non-infected snails 
in the control group in both species were statistically sig-
nificant (p < 0.05). Chu et al. [50] demonstrated that the 
cercaria-shedding period and the lifespan of infected snails 
were shorter than those of the non-infected controls.

The longer lifespan observed in B. truncatus may be 
attributed to the higher doses of S. haematobium miracidia 
compared to S. mansoni miracidia within B. alexandrina. 
Notably, [51] reported observations on the development 
of the parasite in relation to tissue changes and mortality 
among infected snails. It was concluded that the extensive 
migration of large numbers of cercariae, along with the 
intense tissue reactions associated with trapped and degen-
erating cercariae, are significant factors contributing to the 
death of the snails. Furthermore, laboratory studies con-
ducted by [50, 52] clearly demonstrate that infection with 
any of the three principal species of human schistosomes 
adversely affects the survival of the molluscan host.

Snail’s Survival Rate at at 1st Cercarial Shedding 
Stage Comparing with Uninfected Snails

This study reported a decrease in the survival rate of two 
snail species after shedding cercariae, which supports the 
findings of [53]. The aforementioned study observed lower 
survival rates in snails exposed to S. mansoni miracidia 
compared to unexposed snails. Previous laboratory stud-
ies have shown a wide range of mortality rate increases in 
schistosoma-infected snails compared to uninfected ones, 
with some estimates reaching up to 0.100 [45]. Addition-
ally, [54] discovered that patent infections of S. species 
led to higher per capita mortality rates in Bulinus globosus 
and B. pfeifferia, including mortalities during the prepat-
ent period in the two infected species. The reduction in this 
biological parameter may be attributed to potential competi-
tion between the parasites and the host for essential haemo-
lymph-borne nutrients [55]. Additionally, it could be a result 
of histopathogenic effects on the snail host and depletion 
of nutrients by the parasite, particularly around the time of 
infection maturation and cercariae shedding [56].

Impact of Schistosoma Infection on Feeding, 
Fecundity and Reproductive Rate Comparing 
with Uninfected Snails

Infected B. alexandrina and B. truncatus snails exhibited a 
tendency to feed more frequently compared to uninfected 
snails. This finding aligns with [57], who observed that 
freshwater snails infected with larval trematodes displayed 
increased feeding behavior during the light period under lab-
oratory conditions. Parasite infection often leads to altera-
tions in host behavior, indicating adaptive manipulation of 
the host behavior by the parasite to enhance its transmission 
success [58–60].

Increased feeding behavior in infected individuals has 
been interpreted as a compensatory response to nutrient dep-
rivation caused by parasites or as a modification of the host's 
growth rate, such as gigantism [15, 16]. Other researchers 
have described the reduced fecundity in infected snails as 
castration, suggesting that the trematode parasite alleviates 
the energetic demands of reproduction, allowing the host to 
allocate this energy towards other life-history traits, such as 
growth and survival [61, 62]. Another possible explanation 
for increased feeding is starvation autolysis, which occurs 
due to the compression of digestive tubules at various loca-
tions, hindering the passage of food into the tubules. This 
can lead to intracellular digestion, and heavy infection can 
result in the atrophy of digestive tubules [63, 64]. Infec-
tion with S. mansoni or S. haematobium miracidia has been 
observed to cause B. alexandrina and B. truncatus snails to 
cease egg-laying after exposure, resulting in a reduction in 
reproduction [8, 10, 15].

The development of the hermaphrodite reproductive sys-
tem in L. stagnalis infected with T. ocellata was severely 
hindered, resulting in a near absence of egg production [8, 
10, 15, 65]. Reductions in fecundity were also observed in 
three Bulinus species infected with S. haematobium [66]. 
The decrease in egg-laying could be attributed to nutrient 
deprivation caused by the parasite or the dual burden of pro-
ducing both eggs and parasites, which is not borne by the 
snail [9, 67–69].

In our present study, infected snails ceased egg-laying in 
the early weeks of infection, leading to a significant reduc-
tion in the average number of eggs per snail in both species. 
This finding aligns with [69], who attributed the suppression 
of egg-laying to the indirect effect of trematode larvae on 
oogenesis, potentially caused by nutrient withdrawal by the 
parasite or the burden of producing eggs and parasites [67, 
69]. Nutrient deprivation may be responsible for the decline 
in egg-laying, coinciding with the development of sporocysts 
in the digestive gland [70].

Even a small number of mother sporocysts present during 
the infection stage could be sufficient to disrupt reproductive 
processes in the two species. Finally, it should be noted that 
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the molluscan host experiences partial or complete castration 
following infection [71].

Impact of Schistosoma Infection on Oxidative 
Stress Parameters at 1st Cercarial Shedding Stage 
Comparing with Uninfected Snails

Increasing the level of TAO in infected B. alexandrina and 
B. truncatus snails may explain the increase in the number 
of haemocytes and the generation of large volumes of ROS 
for defensive purposes to damage or kill the parasite's larvae 
[72–75].

Gornowicz et al. [76] found significant differences in TAS 
between control and P. elegans-infected Lymnaea stagnalis 
during the initial period of the experiments. TAS was influ-
enced by infection with trematodes in Biomphlaria galabrata 
with S. mansoni [77].

Biomphalaria alexandrina snails infected with Schistosoma 
mansoni showed a significant reduction in the levels of lipid 
peroxidation (LPO) and nitric oxide (NO) compared to unin-
fected snails. This reduction may be attributed to the develop-
ing schistosome larvae scavenging nutrients from the snail's 
hemolymph, resulting in a decrease in the amount of nutrients 
circulating to the nervous system [78].

Furthermore, another study [79] reported a significant 
decrease in catalase (CAT) and glutathione (GSH) levels, 
along with an increase in malondialdehyde (MDA) levels, in 
the tissues and hemolymph of B. alexandrina following infec-
tion with S. mansoni. However, B. truncatus infected with 
Schistosoma haematobium exhibited a significant increase 
in the levels of LPO and NO compared to uninfected snails 
at the shedding stage. In another investigation [80], it was 
observed that B. alexandrina snails infected with S. mansoni 
and B. truncatus snails infected with S. haematobium showed 
a significant elevation in the activities of glutathione reductase 
(GR), catalase, and superoxide dismutase (SOD). Changes in 
the infected snail tissue homogenates were also reported [81]. 
Upon treatment with sodium fluoride, these altered biochemi-
cal parameters were restored to their values in control unin-
fected snails, indicating the ability of sodium fluoride to inhibit 
oxidative stress and apoptosis in Schistosoma-infected snails 
[81]. In response to parasitic infection, both B. alexandrina 
and B. truncatus snails increase the activity of their defensive 
haemocytes, which generate significant amounts of reactive 
oxygen species (ROS) to damage or kill parasite larvae.

Impact of Schistosoma infection on 17β‑Esteradiol 
and Testosterone Hormones in Tissues 
at 1st Cercarial Shedding Stage Comparing 
with Uninfected Snails

Steroid hormones, such as testosterone and estradiol, were 
found to be elevated in Biomphalaria snails during the 

shedding stage. According to [82], serum estradiol levels 
in male mice susceptible to Taenia crassiceps (TC) infec-
tion increased to levels 200 times higher than their normal 
values. The authors suggested that the parasite affects the 
immunoendocrine mechanism, creating a highly permissive 
environment for its rapid growth. In Biomphalaria alexand-
rina, larval trematode infection disrupts normal reproductive 
activity. This may explain why S mansoni snails increase the 
activity of steroid hormones, creating a highly permissive 
environment in ova and sperm, resulting in adverse effects 
on their physiological activities and defense mechanisms. 
Consequently, infected snails may cease laying eggs. How-
ever, infected positive Bulinus snails, the hormones were 
suppressed. De Jong-Brink [83] illustrated that Schisto-
somin, a peptide produced by the nervous system of infected 
snails following schistosome infection, interferes with the 
host's neuroendocrine system, inhibiting the action of repro-
ductive hormones. Steroid hormones have been documented 
in various molluscs, including B. alexandrina [84–87] and 
B. truncates [88].

Hormonal reductions observed in Bulinus truncatus and 
increases in Biomphalaria alexandrina may contribute to 
fecundity loss in these infected snails [89]. Steroid hormones 
play an important role in gonad development in snails [90]. 
Hormone administration, including testosterone, estradiol, 
and progesterone, has been shown to stimulate spermato-
genesis and oogenesis in various molluscan species [91–94].

Impact of Schistosoma Infection on Comet Assay 
at 1st Cercarial Shedding Stage Comparing 
with Uninfected Snails

The study revealed that B. alexandrina and B. truncatus 
infected with positive cercariae at the 1st cercarial shedding 
stage exhibited a statistically significant increase in DNA 
fragmentation and migration in molluscan tissues compared 
to the control group. These findings are consistent with pre-
vious studies that have reported an increase in tail length 
(length of DNA migration) in the digestive gland cells of 
infected snails due to larval trematode infections. Further-
more, the percentage of apoptosis was significantly elevated 
(58.80%) in the snails infected with larval trematodes com-
pared to uninfected snails (39.59%). The DNA damage and 
increased apoptosis in the digestive glands of infected snails 
may result in a decrease in 5-HT (serotonin) and DA (dopa-
mine) concentrations in all tissues throughout the course of 
infection [80]. DNA has long been recognized as a primary 
target of age-related cellular damage, and its damage can 
potentially contribute to the aging process [97]. Addition-
ally, DNA damage has been observed in the hemocytes of 
Biomphalaria alexandrina [95] and Bulinus truncatus [96]. 
In response to parasitic infection, both B. alexandrina and 
B. truncatus snails increase the activity of their defensive 
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hemocytes, which generate significant amounts of reactive 
oxygen species (ROS) to damage or kill parasite larvae. 
These ROS can potentially be toxic to DNA, leading to DNA 
oxidation and/or strand breaks.

Impact of Schistosoma Infection on Digestive 
and Hermaphrodite Glands at 1st Cercarial 
Shedding Stage Comparing with Uninfected Snails

The study revealed severe damage to the cell constituents of 
the digestive and hermaphrodite glands in infected B. alex-
andrina and B. truncatus snails caused by trematode larvae. 
Changes in the digestive glands and ovotestis induced by 
larval digenean trematode parasites have been reported to 
depend on the severity of infection, larvae size, and types 
of larvae [98]. Possible explanations for these alterations 
include mechanical damage resulting from the migration, 
feeding, growth, and multiplication of trematode larvae, as 
well as physiological changes such as autolysis and/or necro-
sis. Previous studies have shown that redial stages cause 
more mechanical and physiological damage compared to 
sporocysts [64, 99].

Rediae engulf the host's digestive cells and utilize hydro-
lases for extracellular digestion, contributing to physiologi-
cal damage [100]. It can be assumed that spore larval species 
observed within the two host cell constituents' tissues in the 
digestive and hermaphrodite glands are more destructive for 
the two hosts. Parasitic secretions and excretory products 
that produce toxic effects may also be contributory factors 
[101, 102].
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