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Abstract
Purpose The treatment of leishmaniasis, an anthropozoonosis caused by Leishmania protozoa, is limited by factors, such 
as adverse effects, toxicity, and excessive cost, which has highlighted the importance of novel drugs. In this context, natural 
products have been considered as sources of antileishmanial agents. This study investigated the leishmanicidal activity of 
Microgramma vacciniifolia frond lectin (MvFL) on promastigotes and amastigotes of Leishmania amazonensis.
Methods The effects of MvFL on promastigote proliferation and macrophage infection by amastigotes were evaluated and 
mean inhibitory concentrations  (IC50) were calculated. As a safety assessment, the hemolytic capacity of MvFL (6.25–200 µg/
mL) against mouse and human erythrocytes was determined. Additionally, the ability of MvFL (6.25–100 µg/mL) to modu-
late lysosomal and phagocytic activities and the nitric oxide (NO) production by murine peritoneal macrophages was also 
investigated.
Results After 24 h, MvFL inhibited the proliferation of L. amazonensis promastigotes, with an  IC50 of 88 µg/mL; however, 
hemolytic activity was not observed. MvFL also reduced macrophage infection by amastigotes with an  IC50 of 52 µg/mL. 
Furthermore, treatment with MvFL reduced the number of amastigotes internalized by infected murine peritoneal mac-
rophages by up to 68.9% within 48 h. At a concentration of 25 µg/mL, MvFL stimulated lysosomal activity of macrophages 
within 72 h, but did not alter phagocytic activity or induce NO production at any of the tested concentrations.
Conclusion MvFL exerts antileishmanial activity and further studies are needed to assess its therapeutic potential in in vivo 
experimental models of leishmaniasis.
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Introduction

Leishmaniasis is a cosmopolitan public health concern 
affecting more than 98 countries, with an estimated 900,000 
to 1,600,000 new cases occurring annually, mainly in Brazil, 
Ethiopia, Somalia, South Sudan, and Sudan [1, 2]. Leishma-
niasis is a complex of infectious parasitic diseases caused by 
protozoa of the genus Leishmania (family Trypanosomati-
dae), which are transmitted through bites of female phle-
botomine vectors, and are associated with lesions in different 
organs [3].

According to the clinical manifestations of the disease, 
Leishmaniasis is divided into: cutaneous leishmaniasis, with 
95% of the cases occurring in the Americas, Mediterranean 
Basin, Middle East, and Central Asia; mucocutaneous 
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leishmaniasis, with 90% of the cases occurring in Bolivia, 
Brazil, and Peru; and visceral leishmaniasis, with more than 
90% of the cases occurring in seven countries, including 
Brazil [4, 5]. Leishmania amazonensis is one of the patho-
genic species distributed throughout South America, with 
a high prevalence in Brazil, and is associated with different 
clinical forms of leishmaniasis. It is also the main causa-
tive agent of diffuse cutaneous leishmaniasis in America, 
a rare clinical form developed by individuals infected with 
this parasite and that is commonly refractory to currently 
available treatments [6, 7]. To survive inside host cells and 
spread into host organs, the parasites trigger mechanisms 
of immune silencing and evasion to escape oxidative stress 
induced by hydrolases, lysosomal attack inside macrophage 
vacuoles, and intracellular calcium, which facilitates altera-
tion of the cytoskeleton [8, 9].

The first prescription option for leishmaniasis is the pen-
tavalent antimonial drugs; N-methyl-glucamine antimoniate 
is the first-choice drug in Brazil against cutaneous, mucocu-
taneous, and visceral leishmaniasis whilst amphotericin B 
(Amp-B) and pentamidine are the alternative options [10, 
11]. However, the choice of drug depends on the Leishmania 
species and factors intrinsic to the patient (comorbidities, 
pregnancy and aging). Nonetheless, these drugs are poten-
tially toxic, with several kinds of side effects, and low effec-
tive, which leads many patients to choose not to undergo 
treatment [12].

Thus, there is a need to develop novel antileishmanial 
compounds with pharmacological potential and reduced tox-
icity using alternative methods that are reliable, have lower 
cost, and are easily accessible. In this context, plant species 
have been considered as promising sources of substances 
with antileishmanial activity as plants in general contain 
diverse bioactive compounds that made them promising 
sources for development of novel drugs [13, 14]. Lectins, 
a heterogeneous group of proteins that can recognize and 
interact with carbohydrates present on the surface of differ-
ent cell types, are among these bioactive compounds [15]. 
These biomolecules possess several biological properties, 
including antimicrobial [16], anti-inflammatory [17], antitu-
mor [18], immunomodulatory [19], and leishmanicidal [20, 
21] properties. The ability of lectins to interact with target 
glycans on cells plays a significant role in the immunological 
defense against pathogens [22].

Microgramma vacciniifolia (Langsd. & Fisch) Copel. 
(family Polypodiaceae) is an epiphyte pteridophyte that has 
ornamental uses, is used as a medicinal plant for intestinal 
and respiratory infections, and hemorrhages, and promotes 
expectoration [23, 24]. Two lectins have been identified 
and isolated from M. vacciniifolia: one from the rhizome 
(MvRL) [25] and the other from the frond (MvFL) [26]. 
MvFL is a multifunctional protein that exhibits lectin activ-
ity and has been reported to exert immunomodulatory effects 

on human lymphocytes, which may be linked to its antitumor 
properties [18, 26].

There are no reports on the antileishmanial effects of 
the lectins derived from M. vacciniifolia. Considering the 
increasing need for alternatives sources of bioactive com-
pounds that can facilitate the development of new drugs, this 
study aimed to investigate the antileishmanial and immu-
nomodulatory activities of MvFL against promastigotes and 
internalized amastigote forms of L. amazonensis in vitro. 
Furthermore, the hemolytic activity of MvFL against mouse 
and human erythrocytes was evaluated.

Materials and Methods

Plant Material and Isolation of MvFL

Fronds of M. vacciniifolia were collected at the campus of 
the Universidade Federal de Pernambuco (UFPE) (Recife, 
Brazil) with authorization (number 36,301) from the Insti-
tuto Chico Mendes de Conservação da Biodiversidade. 
Access was recorded (A9D147B) at the Sistema Nacional 
de Gestão do Patrimônio Genético e do Conhecimento 
Tradicional Associado. Taxonomic identification was done 
at the herbarium Dárdano de Andrade Lima, at the Insti-
tuto Agronômico de Pernambuco (Recife, Brazil), where a 
voucher specimen (number 63,291) was deposited.

MvFL was isolated as described by Patriota et al. [26]. 
Briefly, fronds of M. vacciniifolia were washed with tap and 
distilled water and then dried at 28 °C for 7 days before 
being powdered using a blender. The powder was extracted 
with 0.15 M NaCl (10%, w/v) for 16 h at 25 °C with con-
stant agitation using a magnetic stirrer. The mixture was 
filtered and centrifuged at 9000 × g for 15 min at 4 °C, and 
the supernatant was collected and used as the frond extract in 
experiments. Frond extract (containing 3.0 mg protein) was 
loaded onto a Sephadex G-75 (GE Healthcare Life Sciences, 
Marlborough, MA, USA) column (30.0 cm × 1.5 cm) equili-
brated with distilled water. The fractions corresponding to 
the first absorbance peak at 280 nm were collected, lyophi-
lized, resuspended in 0.1 M Tris–HCl (pH 8.0), and loaded 
(2.5 mg protein) onto a DEAE-Sephadex (GE Healthcare 
Life Sciences) ion exchange column (3.0 cm × 2.0 cm) pre-
viously equilibrated with the same buffer. The column was 
washed with Tris buffer and the adsorbed proteins (MvFL) 
were eluted with 0.1 M Tris–HCl (pH 8.0) containing 1.0 M 
NaCl, dialyzed with distilled water for 4 h, and lyophilized.

Protein Concentration and Hemagglutination 
Activity

The concentration of proteins was estimated according to the 
method described by Lowry et al. [27] using bovine serum 



871Acta Parasitologica (2023) 68:869–879 

1 3

albumin (31.25–500 μg/mL) for the standard curve. The 
sample (0.2 mL) was incubated for 10 min at 25 °C with 
1 mL alkaline copper solution (1 mL of 0.5% [w/v] cop-
per sulfate in 1% [w/v] sodium citrate added to 50 mL of 
2% [w/v] sodium carbonate solution in 0.1% [w/v] sodium 
hydroxide). After incubation, 0.1 mL of–Folin-Ciocalteu 
reagent (Sigma-Aldrich, St. Louis, MO, USA) diluted 1:1 
in water was added, and after 30 min incubation at 25 °C, 
the absorbance was measured at 720 nm.

The carbohydrate-binding ability of MvFL was assessed 
using a hemagglutination activity (HA) assay according to 
the protocol described by Patriota et al. [26]. Briefly, 50 μL 
of the sample was serially diluted twice in 0.15 M NaCl and 
mixed with 50 μL of 2.5% v/v suspension of rabbit erythro-
cytes fixed with glutaraldehyde [28] in each well of V-bot-
tomed 96-well microplates. The plates were then incubated 
at 27 °C for 45 min. Erythrocyte suspension incubated in the 
absence of a sample was used as the negative control. HA 
was expressed as the reciprocal  (titer−1) of the highest dilu-
tion of the sample that was able to promote agglutination. 
Specific HA was calculated as the ratio of HA to protein 
concentration (mg/mL). HA inhibitory assay was also per-
formed in the presence of 0.5 mg/mL fetuin as described by 
Patriota et al. [26]. The Ethics Committee on Animal Use 
of UFPE approved the method used to collect rabbit eryth-
rocytes (process 23076.033782/2015-70).

Anti‑leishmanial Assay in Promastigote Forms of L. 
amazonensis

For conducting in vitro assays to assess antileishmanial 
activity, promastigote forms of L. amazonensis (IFLA/
BR/67/PH8) maintained at the Laboratório de Atividade 
Antileishmania, Núcleo de Pesquisas em Plantas Medici-
nais, Universidade Federal do Piauí were used. Promas-
tigote forms of L. amazonensis were cultured in Schneider 
media (Sigma-Aldrich) supplemented with 10% bovine 
fetal serum (BFS) (Sigma-Aldrich) and 10,000 IU/10 mg/
mL penicillin–streptomycin (Sigma-Aldrich) at 26 °C in a 
greenhouse of biological oxygen demand (BOD) [29, 30]. 
Promastigotes in the logarithmic growth phase (1 ×  106 
leishmania/100 μL medium) were seeded in 96-well culture 
plates containing supplemented Schneider’s—medium, and 
then serial dilutions of MvFL (6.25, 12.5, 25, 50, 100, 200, 
400, and 800 μg/mL) were added to the wells and the plates 
were incubated at 26 °C for 42 h in a BOD incubator.

Next, 20 μL of 1 mM resazurin (Sigma-Aldrich) was 
added to each well, and the plate was incubated for a fur-
ther 6 h in the BOD incubator. Therefore, the total incuba-
tion time was 48 h. The absorbance was read at 550 nm 
using a BioTek ELx800 microplate reader (BioTek Instru-
ments, Inc., Winooski, VT, USA). Schneider medium 

with 0.2% DMSO was used as the negative control and its 
absorbance value was considered as representing 100% 
viability of the parasites. Amp-B at a concentration of 
2 μg/mL was used as the positive control to validate the 
experiment. A blank read for each concentration and con-
trol was performed to subtract the absorbance resulting 
from the interaction of the medium with the tested plant 
materials. All experiments were performed in triplicate.

Hemolysis Assay

The hemolytic activity of MvFL was evaluated using 
mouse and human erythrocytes, according to the protocol 
described by Pita et al. [31], with some modifications. 
Swiss females (25–30 g, 6–8 weeks of age) were obtained 
from the bioterium of the Laboratório de Imunopatolo-
gia Keiso Asami (LIKA-UFPE). The animals were main-
tained under a 12 h light/dark cycle at a temperature of 
23 ± 2 °C), with free access to water and food (Presence 
Nutrição Animal, São Paulo, Brazil). The mice were anes-
thetized with an intraperitoneal injection of a mixture of 
ketamine (150 mg/kg) and xylazine (15 mg/kg) and sub-
jected to brachial blood collection, which was immediately 
mixed with the anticoagulant ethylenediamine tetraacetic 
acid (EDTA). Similarly, approximately 4 mL of periph-
eral venous blood was collected in vials containing EDTA 
from voluntary donors with blood  A+,  B+,  AB+, and  O+ 
types who signed the free and informed consent form. All 
experiments performed in this study were approved by the 
Animal Research Ethics Committee of UFPE (permission 
No. 0037/2020) and by the Human Research Ethics Com-
mittee of UFPE (process 33550320.1.0000.5208).

To isolate erythrocytes, 2  mL of whole blood was 
diluted with 8 mL of phosphate-buffered saline (PBS, pH 
7.4) and centrifuged at 300 g for 5 min. The supernatant 
and buffy coat were then removed by gentle aspiration, 
and the above process was repeated twice. Erythrocytes 
were then resuspended in PBS to make a 1% suspension 
(v/v) for use in hemolysis assay. Various concentrations of 
MvFL (6.25, 12.5, 25, 50, 100, and 200 μg/mL) dissolved 
in PBS was added to 1 mL of the erythrocytes suspension. 
The MvFL-erythrocyte mixtures were incubated in a mixer 
for 60 min at 25 °C and then centrifuged at 3000 rpm for 
5 min. The absorbance of the supernatants was determined 
at 540 nm using a microplate reader to measure the extent 
of red blood cell lysis and determine the concentration that 
produces 50% hemolysis  (HC50). Positive (100% hemoly-
sis) and negative control (0% hemolysis) were also used 
and were determined by incubating erythrocytes with 1% 
Triton X-100 in PBS and PBS alone, respectively. All 
experiments were performed in triplicate.
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Antileishmanial Activity of MvFL Against 
Intramacrophage Amastigotes

Male and female BALB/c mice also obtained from LIKA-
UFPE, aged between 4 and 5 weeks, weighing 25–30 g, were 
used for the present experiment. Mice were intraperitoneally 
injected with 1.5 mL of 3% thioglycolate medium, and five 
days later, the mice were sacrificed, and peritoneal mac-
rophages were collected. Animals were treated according to 
the Guiding Principles (NIH publication #85-23, revised in 
1985) for care and use. All experiments performed in this 
study were approved by the Animal Research Ethics Com-
mittee of UFPE (permission No. 0037/2020).

Murine macrophages were cultured in 24-well plates 
containing sterile 13 mm diameter round coverslips in each 
well, at a concentration of 1 ×  106 cells/mL in RPMI medium 
(Sigma-Aldrich) supplemented with 10% heat inactivated 
fetal bovine serum, 100 U/mL penicillin, and 100 µg/mL 
streptomycin. The culture plates were incubated at 37 °C 
in a 5%  CO2 incubator for 3 h to facilitate cell adhesion. 
Adhered macrophages were then incubated with fresh 
medium containing 2 ×  106 promastigote forms in station-
ary growth phase at a ratio of 10 promastigotes to 1 mac-
rophage and incubated at 37 °C in a 5%  CO2 incubator for 
4 h. The supernatant was subsequently aspirated to remove 
non-internalized parasites, and the wells were washed with 
0.1 M PBS.

Then, the infected macrophages were incubated with 
MvFL at 22.5, 45 and 90 µg/mL (concentrations non-toxic 
to cells), or 0.2 μg/mL Amp-B for 48 h. Subsequently, the 
coverslips were removed and stained using Panoptic fast 
staining technique (Laborclin, Curitiba, Brazil). The number 
of infected macrophages (%) and survival index (n) (number 
of amastigotes recovered per macrophage) were determined 
by counting the number of parasites in 100 macrophages in 
a Neubauer chamber. These values were used to calculate 
the half-maximal inhibitory concentration  (IC50) of internal-
ized amastigotes. RPMI containing 0.2% DMSO was used 
as the negative control. Three independent experiments were 
performed in triplicate [30].

Evaluation of Macrophage Activation Parameters

Lysosomal activity

Murine macrophages (2 ×  105 cells/well) were cultured in 
96-well plates and incubated with MvFL (6.25, 12.5, 25, 50, 
and 100 µg/mL) at 37 °C in a 5%  CO2 incubator. After 48 h, 
10 μL of 2% neutral red stack solution in DMSO was added 
to each well and the plates were incubated for 30 min. Next, 
the supernatant was washed with 0.9% NaCl at 37 °C, and 
the neutral red trapped in lysosomal vesicles was solubilized 
by addition of 100 μL of extraction solution (1% [v/v] glacial 

acetic acid and 50% [v/v] ethanol (v/v) in distilled water). 
After 30 min at 25 °C on constant agitation, the absorbance 
was measured on a microplate reader at 550 nm [32].

Phagocytosis Assay

Murine macrophages (2 ×  106 cells/well) were incubated with 
MvFL (6.25, 12.5, 25, 50, or 100 µg/mL) at 37 °C in a 5% 
 CO2 incubator. After 48 h of incubation, 10 µL of neutral red-
stained zymosan solution was added per well and the plate was 
incubated for 30 min at 37 °C. Following incubation, the plates 
were washed with saline 0.9% (w/v) and 100 μL of Baker's 
fixative (4% [v/v] formaldehyde, 2% [w/v] sodium chloride, 
and 1% [w/v] calcium acetate in distilled water) was added 
to stop phagocytosis of zymosan. Then, 100 μL of extraction 
solution was added to each well, the plate was incubated for 
30 min with constant agitation, and the absorbance was meas-
ured on a microplate reader at 550 nm [33].

NO Synthesis

Murine macrophages (2 ×  106 cells/well) were plated in a 
96-well plate and incubated with MvFL (6.25, 12.5, 25, 50, 
and 100 µg/mL) in the presence or absence of L. amazonensis 
promastigote forms (1 ×  106 cells/well). After 24 h of incuba-
tion at 37 °C in a 5%  CO2 incubator, the supernatants were 
transferred to another 96-well plate for nitrite dosing. A stand-
ard curve was prepared with sodium nitrite in RPMI medium 
at concentrations of 1, 5, 10, 25, 50, 75, 100, and 150 μM. 
After 24 h of incubation with nitrate, the supernatants were 
transferred and incubated with equal amount of Griess reagent 
(Sigma-Aldrich). The absorbance was read on a microplate 
reader at 550 nm. The results are expressed as the percentage 
of nitrite production. RPMI medium containing 0.5% DMSO 
was used as the negative control [34, 35].

Statistical Analyses

All data are presented as the mean ± standard error and all 
experiments were performed in triplicate.  IC50 was calculated 
with 95% confidence limit using the Probit regression model 
of SPSS 22.0 software (IBM, Armonk, NY, USA). One-way 
analysis of variance followed by Tukey’s test was performed 
using GraphPad Prism 6.0 (GraphPad Software, San Diego, 
CA, USA) to assess statistical significance. Differences were 
considered statistically significant at p < 0.05.
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Results

Effect of MvFL Against Promastigote Forms of L. 
amazonensis

M. vacciniifolia frond extract was subjected to chromatog-
raphy on a Sephadex G-75 column, and MvFL was recov-
ered in the first peak [26] with a specific HA of 12,100. 
The carbohydrate-binding ability of MvFL was neutralized 
in the presence of fetuin.

The inhibitory activity of MvFL against promastigote 
forms of L. amazonensis was also evaluated. Incubation 
with MvFL for 24 h inhibited the growth of promastig-
otes in a dose-dependent manner (Fig. 1), and maximum 
inhibition was observed at 800 µg/mL. After nonlinear 
regression analysis, at 24 h, an  IC50 value at of 88 µg/mL 
(1.63 µM) was obtained.

Hemolytic Activity Assay

The cytotoxic effect of MvFL against mouse and human 
erythrocytes is shown in Fig. 2. MvFL was found to be 
safe for mouse and human erythrocytes, owing to its low 
toxicity against these cells. The maximum hemolytic 
activity of 200 μg/mL MvFL (the highest concentration 
evaluated) against mouse erythrocytes was 14.3 ± 0.11%, 
and 1.66 ± 0.36%, 2.53 ± 0.08%, 1.67 ± 0.08%, and 
3.86 ± 0.08% for human erythrocytes isolated from blood 
types  A+,  B+,  AB+, and  O+, respectively.

Effect of MvFL on Macrophages Infected by L. 
amazonensis

The effect of treatment with MvFL and the reference drug 
Amp-B on infected macrophages is shown in Fig. 3. MvFL 
at concentrations of 22.5, 45, and 90 µg/mL reduced both 
the number of infected macrophages (Fig. 3A) and internal-
ized amastigotes (Fig. 3B) compared to the negative control. 
MvFL significant inhibited macrophage infection at 48 h at 
all three tested concentrations (p < 0.05), with an  IC50 of 
52 µg/mL. Furthermore, 90 µg/mL MvFL reduced the num-
ber of internalized amastigotes by 68.9 ± 0.53%.

Effect of MvFL on Lysosomal Activity, Phagocytosis, 
and NO Production in Murine Macrophages

The effect of MvFL on macrophage activation-related 
parameters, such as lysosomal activity and phagocytic 
capacity, were assessed based on the retention of neutral 
red and phagocytosis of neutral red-stained zymosan by 
murine macrophages. NO production was assessed by nitrite 
measurement in murine macrophages that were incubated 
with the sample prior to nitrate treatment. Treatment with 
25 µg/mL MvFL significantly (p < 0.05) increased lysosomal 
activity compared to the control (Fig. 4A). However, MvFL 
did not affect phagocytic capacity of macrophages at any 
of the tested concentrations (6.25–100 µg/mL) (Fig. 4B). 
Additionally, MvFL did not significantly affect NO levels 
compared to the control, with only a slight reduction in NO 
levels noted at 6.25 µg/mL (Fig. 5), suggested that MvFL 
does not directly interfere with nitric oxide synthase (NOS) 
activity or any other stage of NO synthesis in macrophages.

Discussion

Parasite resistance and substantial risk of toxicity with 
drugs used for the treatment of leishmaniasis have increased 
the need for new antileishmanial drugs [36–38]. In recent 
years, novel bioactive molecules from natural sources that 
can be obtained in a sustainable manner, are affordable, and 
have low toxicity, have been the focus of the pharmaceuti-
cal industry and researchers [39–41]. Several plant species 
have been reported to be important sources of bioactive 
compounds that can potentially be used as alternative treat-
ments for various diseases, including leishmaniasis [13, 42, 
43]. Among these chemical compounds are lectins, whose 
specific carbohydrate interactions have been the focus of 
several studies, mainly in relation to host–pathogen recogni-
tion [44], modulation of the host immune system [45], and 
inhibition of parasitic development [46]. Thus, understand-
ing the nature of these interactions is not only useful for 
elucidating their biological function, but can also be applied 

Fig. 1  Effect of Microgramma vacciniifolia frond lectin (MvFL) 
on promastigote forms of Leishmania amazonensis after 24 h expo-
sure. The graphs represent the mean ± standard error of mean (SEM) 
of three independent experiments, considering the control (0.2% 
DMSO) as 100% viability. One-way ANOVA was used to compare 
the inhibition observed at different concentrations of MvFL with the 
control. Different letters (a, b, c and d) indicate significant differences 
between different concentrations of lectin (p < 0.05)
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Fig. 2  Cytotoxic effects of MvFL against mouse (A) and human 
erythrocytes with blood type A + (B), B + (C), AB + (D) and O + (E). 
Data are expressed as the mean ± SEM of three independent experi-

ments performed in triplicate, considering the control group (1% Tri-
ton X-100 in PBS) as 100% hemolysis; (*) p < 0.005 vs control; (**) 
p < 0.01 vs control; (***) p < 0.001 vs control

Fig. 3  Effects of MvFL and reference drug amphotericin B (Amp-B) 
on infected macrophages (A) and survival index of BALB/c murine 
macrophages infected with L. amazonensis (B). Cells infected with L. 

amazonensis were treated with MvFL or Amp-B for 48 h. Data are 
presented as the mean ± SEM of three independent experiments, con-
sidering the control as 100% viability. (***) p < 0.001 vs control
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to different areas of research, such as immunology, drug 
development and delivery, and diagnostics [44].

In the present study, the lectin MvFL, with high HA, was 
isolated following the protocol described previously. As 
expected, HA of MvFL was inhibited by fetuin, confirming 
the presence of lectin molecules with functional carbohy-
drate-binding sites [26]. Then, we investigated the effect of 
MvFL on the interaction between L. amazonensis and mac-
rophages. We first evaluated whether MvFL exerts leishman-
icidal activity against promastigote forms and observed that 

MvFL inhibited the growth of promastigote forms at 24 h 
in a dose-dependent manner. Other natural compounds have 
also been reported to exert inhibitory effect against promas-
tigote forms of L. amazonensis. Verbascoside, a phenyletha-
noid glycoside, was reported to have antileishmanial activity 
and inhibited L. amazonensis promastigotes with an  IC50 of 
19 μM [47]. Garcinielliptone FC obtained from the seeds of 
Platonia insignis and bioflavone from the flowers promoted 
in vitro growth inhibition of promastigotes with  IC50 values 
of 14.06 μM and 47.71 μg/mL, respectively [42, 48].

Promastigotes are the flagellated forms of Leishmania 
spp., which infect humans through bites of infected sand 
flies, and are phagocytosed by immune cells, transforming 
into amastigotes. To prevent infection of host cells by the 
parasite and subsequent development of leishmaniasis, it 
is important to inhibit the growth of promastigotes to pre-
vent their proliferation and transformation into intracellular 
amastigote forms [49, 50].

Lectins have been described in the literature as promising 
agents against promastigote forms of Leishmania spp. Simi-
larly, a lectin isolated from the venom of Bothrops leucurus 
(BLL) inhibited L. amazonensis promastigote growth and 
viability, with an  IC50 value of 1.5 µM [20]. Carneiro et al. 
[21] reported that Parkia pendula lectin (PpeL) significantly 
inhibited the growth of Leishmania infantum promastigotes 
with an IC50 value of 4.9 ± 0.05 μM at 48 h, through its 
carbohydrate recognition domain, suggesting an interac-
tion between PpeL and glycans from L. infantum. Sousa et 
al. [51] reported that a galectin isolated from the marine 
sponge Chondrilla caribensis exerted a leishmanicidal effect 
on L. infantum promastigote forms with an  IC50 value of 
1.2 ± 0.094 μM at 24 h through its interaction with parasite 
glycans.

Fig. 4  Effects of MvFL on lysosomal activity (A) and phagocytic 
capacity (B). Murine peritoneal macrophages were treated at ranging 
concentrations for 48  h. Lysosomal activity and phagocytic capac-
ity were assessed by quantification of neutral red (NR). Phagocytic 

capability was determined as the ratio of incorporation of zymosan 
to NR, solubilized by the extraction solution. (*) p < 0.001 vs control 
(untreated cells)

Fig. 5  Nitrite measurement in infected or non-infected murine peri-
toneal macrophages treated with MvFL for 24 h. The culture super-
natant was mixed with equal parts of the Griess reagent. Data are 
presented as the mean ± SEM of three experiments performed in trip-
licate. *p < 0.05 vs control (0.5% DSMO)
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The indiscriminate use of medicinal plants to prevent or 
cure diseases can cause cytotoxic and genotoxic changes that 
can potentially lead to the development of other patholo-
gies. Therefore, it is important to understand the action of 
natural products at the cellular level to ensure their safety 
and to support further research [52, 53]. In vitro toxicologi-
cal assays, such as hemolytic activity, are preliminary tests 
that are especially useful in cytotoxicity assessment of com-
pounds to choose a safe concentration range for use in later 
stages of drug development [34, 54]. Our study showed that 
MvFL did not cause significant hemolysis of mouse eryth-
rocytes or human erythrocytes derived from different blood 
types, suggesting that this lectin can be evaluated in animal 
models at the concentrations assessed in the present study.

Given the observed inhibitory activity of MvFL on pro-
mastigote proliferation, we investigated whether it could also 
reduce the percentage of macrophages infected by L. ama-
zonensis. Experimental models using macrophages infected 
with amastigotes of Leishmania are used because these 
forms in the parasite life cycle are associated with the clini-
cal manifestations of leishmaniasis [48, 55]. Furthermore, 
models with the intracellular form provide the most efficient 
method for correlating the in vitro activity of a drug with its 
effectiveness in an in vitro assay [56]. Based on the results 
of our experiments, MvFL is an inhibitor of promastigote 
growth and reduces the number of amastigotes internalized 
by macrophages.

Afonso-Cardoso et al. [57] evaluated the effect of latex 
lectin of Synadenium carinatum (ScLL) (100, 50, and 10 µg/
mL) against infection of peritoneal macrophages of BALB/c 
mice by L. amazonensis in vitro, and noted infection rates of 
55%, 65%, and 45%, respectively, compared to the control 
(100% infected cells). Aranda-Souza et al. [20] also analyzed 
the effect of BLL lectin against macrophages infected with 
L. amazonensis and Leishmania braziliensis amastigotes and 
reported that the infection rate in cells treated with 1.6 μM 
BLL was 28.5 ± 7.91% and 35 ± 8.83% for L. amazonensis 
and L. braziliensis, respectively.

Afonso-Cardoso et al. [58] analyzed whether associa-
tion of ScLL with the soluble antigen of L. amazonensis 
would immunize BALB/c mice against promastigote forms 
of L. amazonensis. They observed that ScLL (100 µg/ani-
mal) promoted a 61.7% reduction in the parasite load inside 
macrophages compared to the control group, suggesting 
that the underlying mechanism responsible for the observed 
protection required further investigation. ArtinM, a lectin 
isolated from the seeds of Artocarpus heterophyllus, binds 
to D-mannose and has immunomodulatory properties due 
to its interaction with N-glycans of immune cells. ArtinM 
was reported to induce infected human neutrophils infected 
with Leishmania major promastigotes and reduced parasite 
viability by 50% when compared to untreated neutrophils 
[59].

In the present study, MvFL significantly reduced the 
number of intracellular amastigotes, in addition to reducing 
infection; however, the underlying mechanism is not clear 
as it could be due to direct effect on the parasite or acti-
vation of macrophage defense mechanisms. Macrophages 
play a vital role in modulating the immune response against 
Leishmania parasites through cytokine production and 
phagocytosis to destroy pathogens or repair lesions associ-
ated with inflammation [60]. Macrophages are activated on 
contact with parasites, which triggers changes in lysosomal 
activity, phagocytic capacity, and NO production [61]. To 
understand the mechanism underlying the decrease in the 
survival rate of intramacrophage amastigotes, the effect of 
MvFL on parameters associated with macrophage immune 
response were analyzed to determine whether changes in 
these parameters stimulated inhibition of parasites.

Phagocytosis and the lysosomal system are essential com-
ponents that mediate the functions of activated macrophages 
in innate immune responses through antigen internalization 
and degradation. In macrophages, parasites are restricted to 
phagosomes, which fuse with lysosomes to form the para-
sitic vacuole, an inhospitable compartment with acid hydro-
lases, reactive oxygen, and NO species, which participate in 
pathogen degradation [62, 63]. However, our results suggest 
that the effect of MvFL on the number of amastigotes is not 
due to an effect of MvFL on phagocytic action; therefore, 
the observed effect of the lectin could be due to direct action 
on the parasite or inhibition of infection by promastigotes.

Like the findings of the present study, Afonso-Cardoso 
et al. [57] observed that ScLL did not induce NO produc-
tion, suggesting that a NO-independent pathway engages in 
the decrease of the number of intracellular L. amazonensis. 
Thomazelli et al. [64] reported that concanavalin A lectin 
(Con-A) increased the phagocytic capacity of immune cells 
and promoted L. amazonensis elimination. Pretreatment with 
Con-A increased the synthesis of reactive oxygen species as 
well as the expression of iNOS enzyme, but did not affect 
NO production, perhaps because even though Con-A treat-
ment induced production of pro-inflammatory cytokines, it 
also promoted the synthesis of anti-inflammatory cytokines. 
Our results suggest that the leishmanicidal activity of MvFL 
against promastigote and amastigote forms of L. amazonen-
sis may be related to its proinflammatory potential, as previ-
ously described by Patriota et al. [26].

The findings of the present study showed that MvRL, 
a lectin isolated from the frond of M. vacciniifolia exerts 
significant in vitro antileishmanial activity against L. ama-
zonensis promastigote replication and macrophage infection. 
This study also demonstrated that MvFL promoted the acti-
vation of macrophages by increasing lysosomal activity but 
did not affect NO production and phagocytosis. Our study 
paves the way for further studies to elucidate the immuno-
logical mechanisms involved in the leishmanicidal effects of 
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MvFL as well as investigating its effect in in vivo immuniza-
tion models for leishmaniasis.
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