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Abstract

Purpose Surra is an economically important livestock disease in many low- and middle-income countries, including those
of Northern Africa. The disease is caused by the biting fly-transmitted subspecies Trypanosoma brucei evansi, which is very
closely related to the tsetse-transmitted subspecies T. b. brucei and the sexually transmitted subspecies T. b. equiperdum. At
least two phylogenetically distinct groups of 7. b. evansi can be distinguished, called type A and type B. These evolved from
T. b. brucei independently. The close relationships between the 7. brucei subspecies and the multiple evolutionary origins
of T. b. evansi pose diagnostic challenges.

Methods Here we use previously established and newly developed PCR assays based on nuclear and mitochondrial genetic
markers to type the causative agent of recent trypanosome infections of camels in Southern Algeria.

Results/conclusion We confirm that these infections have been caused by T. b. evansi type A. We also report a newly designed

PCR assay specific for 7. b. evansi type A that we expect will be of diagnostic use for the community.
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Introduction

The single cellular parasite Trypanosoma brucei evansi
belongs to the subgenus Trypanozoon that also comprises
T. b. brucei and T. b. equiperdum [1, 2] (the taxonomical
status of 7. b. evansi is controversial [1, 3, 4]; for this study,
we will be referring to it as a subspecies of T. brucei). Trypa-
nosoma b. evansi is the most widely distributed of the patho-
genic animal trypanosomes, affecting a large number of wild
and domesticated animal species in Asia, Africa and Latin
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America [5, 6]. In Europe, it is present in the Canary Islands,
from where recent sporadic incursions into the French and
Spanish mainland have occurred [5, 7, 8]. Trypanosoma b.
evansi causes a trypanosomosis called “surra” in many coun-
tries [8—10]. It is an acute, chronic or subclinical disease that
is very often fatal in camels, horses and dogs, but can also
seriously affect cattle and buffaloes. Other animals, includ-
ing wildlife, are also susceptible.

In affected countries, surra is an economically impor-
tant disease, which causes high mortality, reduced milk and
meat production, poor carcass quality, reduced reproductive
performance, and decreased draft power and manure pro-
duction [9]. Haematophagous flies of the genera Tabanus
and Stomoxys are particularly relevant for transmitting the
infection from host to host, acting as mechanical vectors
without parasite development in the insect [9]. This is a key
difference to T. b. brucei, where transmission is dependent
on cyclic development in the tsetse fly [11]. Indeed, it is
this mechanical transmission that has allowed the parasite
to move beyond the tsetse fly region and out of Africa [12].
In South and Central America, 7. b. evansi can also be trans-
mitted by vampire bats (Desmodus rotundus), which act as
both vectors and reservoirs [9].

Another key difference to T. b. brucei is that T. b. evansi
strains are either ‘dyskinetoplastic’ or ‘akinetoplastic’,
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i.e., they have either dysfunctional kinetoplast DNA (the
mitochondrial DNA network in these organisms) or lack
it entirely. Where kDNA is present, 7. b. evansi strains
typically lack maxicircles—the equivalent of mitochon-
drial DNA in other eukaryotes—and are characterized by
minicircle sequence homogeneity [13, 14]. By contrast, T.
b. brucei contains hundreds of different minicircle classes
[15]. Trypanosoma b. evansi is therefore incapable of mito-
chondrial gene expression, and a compensatory mutation in
the nuclearly encoded subunit y of the FF, ATP synthase
is necessary to enable viability [16]. Based on the minicir-
cle class that dominates the KDNA networks, T. b. evansi
can be divided into types A and B [1, 13, 17]. Indeed, this
difference can be exploited for polymerase chain reaction
(PCR)-based diagnostics and molecular characterization
of the parasite. PCR-based assays that target Trypanozoon-
specific satellite DNA or ribosomal DNA are regarded as
the most sensitive for diagnosis or characterization of surra
infections [18-20], while for genotyping 7. b. evansi and/
or to distinguish between 7. b. evansi types A and B, PCR
assays targeting type-specific variant surface glycoprotein
genes, mitochondrial minicircles and maxicircles, micros-
atellite markers and the F;-ATP synthase y subunit gene are
being used [4, 17, 21-23].

In northern Africa, the first cases of trypanosomosis were
officially reported from Algeria, Mauritania, Morocco and
Tunisia at the beginning of the last century [24-27]. In-depth
epidemiological studies began at the end of the 1980s and
showed that camel trypanosomosis could be considered as a
dominant disease, with variable prevalence rates depending
on the year, the sampling period and the provinces or wilay-
ate (districts) surveyed [28-34]. A recent epidemiological
study in southern Algeria carried out on 1056 dromedary
camels revealed overall prevalence rates of 2.4% by Giemsa-
stained thin smear (GST), 32.4% by card agglutination test

Table 1 PCR primers used in this study

for trypanosomosis (CATT/T. evansi), 23.1% by enzyme-
linked immunosorbent assay (ELISA/VSG RoTat 1.2),
21.0% by immune trypanolysis (TL) and 11.2% by PCR
(RoTat 1.2 PCR) [35].

Here, we present a genotyping analysis for six of the cam-
els from the previous study [35], based on sequencing of
minicircle DNA and of the F,F, ATP synthase subunit y
gene, and confirm the pathogen as T. b. evansi type A. Fur-
thermore, we present a novel PCR assay based on primers
with improved specificity for minicircle type A that will be
useful for typing of surra infections.

Materials and Methods

All PCR primers are listed in Table 1. All trypanosome iso-
lates or strains are listed in Table 2. Trypanosoma b. evansi
and T. b. equiperdum reference strains were kind gifts from
Kirsten Gillingwater, Swiss Tropical Institute [36] and from
Philippe Biischer and Nick Van Reet, ITM Antwerp.

Growth of T. b. evansi and T. b. equiperdum Reference
Strains and DNA Isolation

Trypanosome reference strains were grown in MFI mice and
purified from blood using DEAE cellulose as described [40].
DNA extraction was performed using the QIAamp 250 mini
blood kit (Qiagen, Hilden, Germany) according to the manu-
facturer’s instructions.

Preparation of FTA Punches
The Harris Uni-Core punch tool (Merck, Darmstadt, Ger-

many) and cutting mat were prepared by soaking in 2%
(w/v) sodium hypochlorite solution for 10 min, followed

Primer ID  Target Sequence References
1 ATP synthase y subunit (Tb927.10.180), forward ~ 5'-AACTGCCGTGTCTTGTTGTAA-3’ This study
2 ATP synthase y subunit (Tb927.10.180), reverse 5'-CGAGTAAGATGGTATTGATGC-3’ This study
3 ATP synthase y subunit (Tb927.10.180), forward  5'-GCGGAATTCGAAGCAGATGACACCTAA-3' [1]

4 ATP synthase y subunit (Tb927.10.180), reverse 5'-GGCGACATTCAACTTCAT-3' [1]

5 Minicircle type A, forward 5'-CCAACAAACAGAATAACTAATG-3' This study
6 Minicircle type A, reverse 5-CTCTCTCACCCTAGTATCTC-3' This study
7 Maxicircle gene A6, forward 5'-ACGGCGGTTTTGAAAACAC-3' [37]

8 Maxicircle gene A6, reverse 5'-ATTAACTTATTTGATCTTATTCTATAACTCC-3" [37]

9 Maxicircle gene ND4, forward 5" TGTGTGACTACCAGAGAT-3' [37]

10 Maxicircle gene ND4, reverse 5'-ATCCTATACCCGTGTGTA-3’ [37]
MiniA Undefined subset of minicircle population, forward 5-GGGTTTTTTAGGTCCGAG-3’ [17]
MiniB Undefined subset of minicircle population, reverse ~ 5'-CCGAAAATAGCACGTG-3' [17]

The underlined nucleotides are not part of the targeted sequence
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Table 2 Isolates investigated or used in this study

Isolate/strain (notes) Year/host Country/region References
Case 1 (1) 2014/dromedary Algeria, El Bayadh, Bnoud [35]
Case 2 (1) 2015/dromedary Algeria, El Bayadh, Brézina [35]
Case 3 (1) 2016/dromedary Algeria, El Bayadh, Brézina [35]
Case 4 (1) 2015/dromedary Algeria, Béchar, Abadla [35]
Case 5 (1) 2015/dromedary Algeria, Béchar, Mechra HB [35]
Case 6 (1) 2015/dromedary Algeria, Béchar, Erg Ferradj [35]
T. b. brucei EATRO 1125 AnTatl.1 90:13 (2) Laboratory strain n/a [38]
T. b. evansi CAN86/Brazil (3) 1986/dog Brazil [36]
T. b. evansi Antat3/3 (2) 1969/capybara South America [43]
T. b. evansi KETRI 2479 (3) 1980/camel Kenya, Ngurunit [17]
T. b. equiperdum BoTatl.1 (3) 1924/horse Morocco [36]
T. b. equiperdum OVI (3) 1977/horse South Africa [36]
T. b. equiperdum Hamburg (3,4) unknown/unknown Unknown [36]
T. b. evansi RoTat1.2 (3) 1982/water buffalo Indonesia [36]
T. b. evansi Philippines (3) 1996/water buffalo Philippines [36]
T. b. brucei Lister 427 ' single marker' (2) Laboratory strain n/a [39]
T. b. equiperdum American (3,4) Unknown/horse USA [36]
T. b. equiperdum AnTat4.1 (3,4) Unknown/unknown Unknown [36]

1, DNA purified from blood put on FTA card; 2, grown in vitro; 3, grown in mice; 4, suspected to be 7. (b.) evansi by Claes et al. [3]

by three washes with ddH,0, soaking in 70% (v/v) ethanol
for 5 min and air drying. Punches from FTA cards were
washed three times with 200 ul FTA Purification Reagent
(GE Healthcare) for 5 min each and twice with 200 ul
TE buffer (10 mM Tris—HCI, 0.1 mM EDTA, pH 8.0) for
5 min each. Punches were dried at 50 °C for 15 min and
added directly to PCR reaction tubes.

PCR Assays

All PCR assays were performed in 25 pl volumes and used
FTA card punches or trypanosome genomic DNA (1-5 ng)
as indicated (negative controls included additional H,O
instead). Assays for all targets, with exception of the full-
length F,F ATP synthase subunit y (Tb927.10.180), used
the following reagents:

Reagent Volume
5% GoTaq PCR buffer (Promega) Sul
MgCl, (25 mM) 2ul
dNTPs (10 mM) 0.5l
GoTaq G2 Hot Start (Promega) 0.125 ul

Specific primers, their volumes, and PCR cycling con-
ditions were as follows:

@ Springer

Target Primers Volume (ul) Cycling condi-
(10 uM) tions
F,F, ATP syn- #1, #2 1 95 °C 5 min
thase subunit y 35x (95 °C 30 s,
(Tb927.10.180), 55°C30s,
511-bp fragment 72 °C 1 min)
72 °C 10 min
Duplex assay #3, #4, #5, #6 1.25 95 °C 5 min
minicircle type 40x (95°C30s,
A (novel)/F,Fg, 51°C30s,
ATP synthase 72 °C 1 min)
subunit y 511-bp 72 °C 10 min
fragment
Minicircle type A #5, #6 2.5 95 °C 5 min
(novel) 40% (95°C 30s,
51°C30s,
72 °C 1 min)
72 °C 10 min
Minicircle type A MiniA, MiniB 2.5 95 °C 5 min
(ref [17]) 40x (95°C 305,
51°C30s,
72 °C 1 min)
72 °C 10 min
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Target Primers Volume (ul) Cycling condi-

(10 M) tions

Maxicircle gene #7, #8 1 95 °C 5 min
A6 35% (95°C30s,
55°C30s,
72 °C 1 min)
72 °C 10 min
Maxicircle gene #9, #10 1 95 °C 5 min
ND4 40%x (95°C30s,
54°C30s,
72 °C 1 min)
72 °C 10 min

PCR reagents for the full-length F,F, ATP synthase subu-
nity (Tb927.10.180) gene, including flanking regions, were
as follows (25 pl total):

Reagent Volume
5% Phusion PCR buffer (New England Biolabs) Sul
Primers #3 and #4 (10 uM) 1.25 ul
dNTPs (10 mM) 0.5l
Hot Start Phusion (New England Biolabs) 0.25 ul

PCR cycling conditions for the full-length gene were as
follows: 98 °C 30 s, 40 cycles (98 °C 10's, 60 °C 30 s, 72 °C
1 min), 72 °C 10 min.

Cloning and Sequencing

All PCR products were cleaned up using the PCR Clean-Up
kit from Macherey—Nagel (Dueren, Germany). Sequencing
was either direct, using the same primers that had been used
for the PCR reaction, or after cloning into pCR-Blunt (Inv-
itrogen; for Phusion PCR products) or into pGEM-T easy
(Promega; for GoTaq PCR products), following the manufac-
turer’s instructions. Cloned products were sequenced using
Sanger technology (Edinburgh Genomics or MRC Sequenc-
ing Service, Dundee) and standard M 13 forward and reverse
primers.

Phylogenetic Analysis

A phylogenetic tree was constructed with IQ-TREE
[41], using a maximum likelihood model with HKY + G
substitution.

Results and Discussion

PCR assays for TbATPase subunit y confirm infection
with T. b. evansi type A

To confirm the diagnosis of a T b. evansi infection in cam-
els from 5 different Algerian regions (Table 2) [35], we

amplified by PCR a 511 bp fragment of subunit y of the
mitochondrial F,Fy ATP synthase (systematic TriTrypDB
ID Tb927.10.180). In the T. b. evansi types identified so
far, this gene contains adaptive mutations that are differen-
tially diagnostic for types A and B [1, 4, 21]. Punches from
FTA cards containing DNA purified from blood samples
from cases 1 to 6 were washed and placed in reaction tubes,
together with PCR reagents and primers #1 and #2 (Table 1).
Initial reactions were carried out with (non-proof-reading)
Taq polymerase because of its robust performance. Total
cellular DNA from a T. b. brucei strain served as positive
control. Reactions for all six cases showed a single amplicon
of the expected size, suggesting infection with a Trypano-
zoon (Fig. 1A). To identify the type of T. b. evansi, we next
amplified the entire ATP synthase y gene with primers #3
and #4 and a proof-reading polymerase, followed by cloning
and sequencing. Sequence analysis confirmed presence of a
heterozygous A281del mutation in the ATP synthase y pro-
tein for all cases (Fig. 1B), providing conclusive evidence for
infection with 7. b. evansi type A [1]. These results are con-
sistent with the previously reported RoTat1.2-positive PCR
results for these isolates [35]. RoTatl.2 is a VSG gene that,
when present, is generally considered as being diagnostic
for T. b. evansi type A [5]. These results are also consistent
with the fact that the only other type of T. b. evansi currently
known, type B, has so far only been reported from countries
in East Africa, namely Kenya and Ethiopia [5, 17, 21].

Development of a Novel PCR Assay Specific
for Minicircle Type A

A defining characteristic of T. b. evansi type A is that (unless
the strain is akinetoplastic [1]) its kDNA is dominated by,
or consists entirely of, thousands of copies of a particular
class of minicircle [13]. A PCR assay for this minicircle
class developed by Njiru and colleagues [17] uses prim-
ers (‘MiniA’ and ‘MiniB’) derived from a region semi-
conserved among all minicircle classes (Supplementary
Figure S1) and can therefore result in false positive reac-
tions [21]. We therefore aimed to develop a PCR assay
that is highly specific for type A minicircles. Alignment of
type A minicircles available in GenBank identified several
regions of perfect conservation outside of the universally
conserved region. Based on this information, we designed
primer sequences that are predicted to amplify a fragment
of ~570 bp in a PCR assay (Supplementary Figure S1, prim-
ers #5 and #6). Alignment of the minicircle type A consen-
sus to the closest match in the recently defined minicircle
population of T. b. brucei EATRO 1125 [15], a minicircle
that contains the same set of gRNA genes, suggests that
primers #5 and #6 should be specific for 7. b. evansi minicir-
cle type A (Supplementary Figure S2). Indeed, when tested
against a panel of type A and non-type A strains or isolates,
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Fig. 1 Detection by PCR

of ATP synthase subunit y
sequences diagnostic of T. b.
evansi type A. A PCR assay for
detection of a 511-bp frag-
ment of ATP synthase subunit
Y (Tb927.10.180). Aliquots

of completed PCR reactions
(15 pl) were fractionated by
electrophoresis on an aga-

rose gel containing ethidium
bromide. Images were captured
using a UV light box. Lanes 1,
19: New England Biolabs 100-
bp ladder (kbp: kilobasepairs);
lanes 3-8: Algerian camel cases
1-6; lanes 9, 18: PCR reactions
with water instead of samples;
lanes 10-17: varying amounts
of total cellular DNA from T

b. brucei strain EATRO 1125
AnTatl.1 90:13. B Sequencing
of ATP synthase y sequences.
Top, trace files of direct
sequencing (from the 5’ end)
of PCR amplicons from cases
1, 3 and 4. Bottom, representa-
tive sequences obtained after
cloning of PCR amplicons.
Sequencing of cloned ampli-
cons confirmed that 7. b. evansi
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case 3 amplicon

case 4 amplicon

TTGAAATTCTTTC———ATATCGTT

strains responsible for infections case 1 clone A

1, 2, 5 and 6 are heterozygous case 1 clone B CTAATTGAAATTCTTTCTGCTATGAGTTCGTTG
for deletion of amino acid case 2 clone A CTAATTGAAATTCTTTCTGCTATGAGTTCGTTG
alanine 281 (A281del). All case 2 clone B CTAATTGAAATTCTTTCT---ATGAGTTCGTTG
cloned sequences obtained for case 3 clone A CTAATTGAAATTCTTTCTGCTATGAGTTCGTTG
case 3 were wild-type, and no case 3 clone B CTAATTGAAATTCTTTCTGCTATGAGTTCGTTG
cloned sequences Wer(; obtained case 5 clone A CTAATTGAAATTCTTTCTGCTATGAGTTCGTTG
for case 4qbut direct sequencin case 5 clone B CTAATTGARATTCTTTCT---ATGAGTTCGTTG
£ PCR i li f? d g case 6 clone A CTAATTGAAATTCTTTCT---ATGAGTTCGTTG
N . amp.tlc‘;nsz‘;%lrdmlef case 6 clone B CTAATTGAAATTCTTTCTGCTATGAGTTCGTTG
eterozygosity for el for protein I E I L s amMms s 1

those cases as well 275 277 279 281 283 285

the PCR assay was highly specific (Fig. 2A). Sequencing of
the ~570 bp amplicons confirmed that they corresponded to
the expected minicircle type A. The only unexpected result
was absence of a~ 570 bp amplicon for strain 7. b. evansi
CANS86/Brazil (Fig. 2A, lane 6). As a PCR reaction using
the MiniA/MiniB primers also failed to produce an amplicon
for this strain (data not shown), we suspect that this strain
has spontaneously lost its KDNA. This phenomenon is not
unusual in 7. b. evansi and T. b. equiperdum [14, 42].
Next, we used the new PCR assay to analyze samples
from cases 1 to 6. For cases 1, 2, 3 and 6, we obtained a
specific band of ~570 bp (Fig. 2B, left panel), and direct
sequencing confirmed that the amplicons were the type A
fragment (Supplementary Figure S3). We did not obtain
a product for cases 4 and 5. The same result was obtained
with primers MiniA/MiniB: strong amplification products

@ Springer

276 278 280 282 284

of the expected size for cases 1, 2, 3 and 6, but no products
for cases 4 and 5 (Fig. 2B, right panel). We conclude that,
in all six cases, camels had been infected with 7. b. evansi
type A. In cases 4 and 5, the parasites may have become
akinetoplastic, and our typing relies exclusively on the
presence of the A281del mutation of ATP synthase subu-
nit y. A phylogenetic tree based on the ~570 bp minicir-
cle type A amplicon shows a separation into two main
branches that is supported by strong bootstrap values (Sup-
plementary Fig. 4). The Algerian cases branch together
with two other isolates from Africa, and also a single
isolate from South America, whereas the other isolates,
all from non-African countries, form a separate branch.
It will be interesting to expand the phylogenetic analysis
of type A T. b. evansi based on their minicircle sequence
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Fig.2 A specific PCR assay for minicircle type A. A PCR assay for
detection of a~570 bp fragment of minicircle type A (‘mini A’) in
samples. In the same reactions (duplex PCR), primers #3 and #4 for
amplification of a~ 1.4-kb ATP synthase subunit y amplicon (‘subunit
y’) were included as positive internal controls. Per reaction, 1-5 ng
total DNA were used as template. Lane 1: Bioline 1-kbp ladder;
lanes 2, 19: New England Biolabs 100-bp ladder; lanes 3, 18: empty;
lane 4: control PCR reaction with water instead of total DNA; lane
5: control PCR reaction with mouse genomic DNA instead of total
trypanosome DNA (several trypanosome strains/isolates were grown
in mice); lanes 6-17: reactions with total trypanosome DNA. Trypa-
nosome strains/isolates were as follows. 1 =T. b. evansi CAN86/Bra-
zil; 2=T. b. evansi Antat3/3 (akinetoplastic); 3=T. b. evansi KETRI
2479; 4=T. b. equiperdum BoTatl.1; 5=T. b. equiperdum OVI; 6=T.
b. equiperdum Hamburg; 7=T. b. evansi RoTatl.2; 8=T. b. evansi
Philippines; 9=T. b. brucei Lister 427; 10=T. b. brucei EATRO
1125 AnTatl.1; 11=T. b. equiperdum American; 12=T. b. equiper-

to include other isolates, perhaps using the entire ~ 1-kb
sequence to further improve resolution and reliability.

PCR assays for maxicircle-encoded genes A6 and ND4
(primer pairs #7/#8 and #9/#10, respectively; Table 2) were
negative (data not shown), consistent with the expected
absence of the maxicircle in T. b. evansi [13, 14].

Conclusion

Based on nuclear and mitochondrial genetic markers, we
have confirmed that the recently reported trypanosome
infections in southern Algerian camels were caused by 7.
b. evansi type A, adding to an accumulating body of recent

N
2 3 &8, FV4 5 6 1 23

1.5

dum AnTat4.1. Strains/isolates previously identified as belonging to
the type A group [1, 3] are indicated by an asterisk. Please note: (i)
T. b. equiperdum in this group have been suggested to be misidenti-
fied or mislabelled 7. b. evansi [3]; (ii) T. b. evansi AnTat3/3 (lane
7) is a type A strain [43], but the strain in our lab had spontane-
ously lost its KDNA [44]; (iii)) T. b. evansi CAN86/Brazil is a type
A strain [1, 3], but, like AnTat3/3, may have spontaneously lost its
kDNA; (iv) amplification of minicircle type A in the same reaction
appears to diminish the signal for subunit y, perhaps by competing for
nucleotides, this is particularly evident in lane 11. B Analysis of cases
1-6 using the PCR assay with primers #5/#6 (left panel) or primers
MiniA/MiniB (right panel). Lane 1: New England Biolabs 100-bp
ladder; lane 2: control PCR reaction with water instead of total DNA;
lanes 3-8: FTA card punches from cases 1 to 6; lane 9: empty; lane
10: empty (left panel); lane 11 (left panel) / lane 10 (right panel): T.
b. evansi RoTatl.2 (positive control)

reports of surra infections in that country [45-47]. We
also report a novel PCR assay based on careful sequence
analysis of type A minicircles that we expect will be a
useful tool for the community to diagnose 7. b. evansi
type A infections in livestock. Our data reported here
suggest good specificity and sensitivity for type A strains
and compatibility with samples prepared on FTA cards.
Further studies should compare specificity and sensitivity
with other assays, such as the recently reported recombi-
nase polymerase amplification lateral flow assay for T. b.
evansi [48].

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11686-022-00577-7.
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