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Abstract
Purpose  Endo-parasites of the bathypelagic king of herrings Regalecus glesne and oarfish Regalecus russelii are only known 
from few specimens opportunistically examined. As a consequence, there are few records of parasites from either Regalecus 
species. We report plerocercoid larvae of phyllobothriidean cestodes parasitizing an adult R. glesne stranded in Bahía de 
La Paz, Baja California Sur, Mexico.
Methods  Sixty-three plerocercoids were obtained from the intestine of R. glesne and characterized using morphological and 
molecular methods (nuclear 28S rDNA and mitochondrial cytochrome c oxidase I gene sequences).
Results  Following the morphological diagnostic criteria of scolex and muscle bands in the strobila, plerocercoids specimens 
were preliminary assigned to the genus Clistobothrium. Mitochondrial and nuclear DNA sequences indicate these plerocer-
coids correspond to Clistobothrium montaukensis Ruhnke, 1993.
Conclusion  Regalecus glesne is a new host known for C. montaukensis and this report is a new geographical record of C. 
montaukensis parasitizing species of the genus Regalecus previously known only from California and Florida, USA.
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Introduction

The genus Regalecus includes two species: king of herrings 
Regalecus glesne Ascanius, 1772 and oarfish Regalecus rus-
selii (Cuvier 1816). Both species typically inhabit the bathy-
pelagic strata (200–1000 m depth) in tropical and temperate 
oceans [1–3]. However, their planktonic eggs may drift over 
the continental shelf [4]. Both Regalecus species have been 
reported in the northwest region of Mexico, including the 
Gulf of California [5–10]. Parasites of R. glesne and R. rus-
selii are scarcely known because the rare finding of speci-
mens [2, 11–13]. Metazoan parasites of R. glesne have been 
reported only in a few studies, including: an unidentified tet-
raphyllidean cestode (plerocercoid) from Florida, USA [11], 
an adult digenean Syncoelium regaleci (Syncoeliidae) Vil-
larreal and Dailey, 1993 from the Gulf of California, Mex-
ico [12] and an unidentified ectoparasitic isopod observed 
in videotapes of living R. glesne in the northern Gulf of 
Mexico, USA [2]. A total of 20 plerocercoids of Clistobo-
thrium cf. montaukensis, two larvae of Contracaecum sp. 
(Nematoda), and an unidentified adult acanthocephalan of 
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the family Arhythmacanthidae were reported parasitizing R. 
russelii in California, USA [13].

The goal of the present study was to report Phyllobothrii-
dae plerocercoids identified based on the morphology and 
nuclear (28S rDNA) and mitochondrial (cytochrome c oxi-
dase subunit I gene, cox1gene) DNA sequences parasitizing 
an adult R. glesne found stranded at Bahía de La Paz, Gulf 
of California, Mexico.

Materials and Methods

Collection and Dissection of R. glesne

An adult female of king of herrings identified as R. glesne 
was found stranded on the beach at Bahía de La Paz, Baja 
California Sur, Mexico (24° 09ʹ 30ʹʹ N, − 110° 19ʹ 11ʹʹ W) 
in May 28, 2014. The specimen measured 5.4 m total length 
and was in fresh body condition (recently died). A sample 
of 63 plerocercoids were obtained from the intestine during 
the dissection, no other helminths were detected. Half of 
the cestodes were fixed in cold formalin 4% saturated with 
sodium borate for morphological identification and the other 
half were fixed in 96% ethanol for molecular purposes.

Morphological Identification of Plerocercoids

Plerocercoid specimens were photographed using a Canon 
Power Shot A2500 digital camera installed in a Carl Zeiss 
SV11 light stereoscope. Formalin fixed specimens were 
dehydrated through a series of gradual ethanol from 30 to 
96%, then stained with Gömöri trichrome, cleared with clove 
oil and permanently mounted in synthetic resin (60% xylene) 
on a slide following the method described for the study of 
larval stages of Platyhelminthes [14, 15]. Specimens were 
measured using a calibrated micrometer installed in the eye-
piece of the Carl Zeiss SV11 stereoscope. The length of 
the body, scolex and strobile of ten plerocercoid specimens 
were measured with a compound microscope (Leica DMLB, 
USA) equipped with a calibrated micrometer (Meyer Instru-
ments). The mean length and range of all morphological 
measurements of the plerocercoids were reported in mil-
limeters (mm). Plerocercoid biometry and morphology of 
the scolex were compared with previous records [11, 16]. 
Two plerocercoid specimens were observed with a Scanning 
Electron Microscope (SEM, Hitachi S-3000 N) following 
a standard protocol described in a previous study of hel-
minths [17]. Nomenclature of microtriches in plerocercoids 
was used following standard criteria [18]. One plerocer-
coid specimen was deposited in Colección Parasitológica 
del Museo de Historia Natural, Universidad Autónoma de 
Baja California Sur, La Paz, Mexico (accession number: 
CPMHN-UABCS-724); and three specimens were deposited 

in Colección Nacional de Helmintos, Instituto de Biología, 
Universidad Nacional Autónoma de México, Mexico City 
(accession numbers: CNHE 11151–11153). No hologeno-
phores were deposited in any of these two parasitological 
collections.

Molecular Identification (DNA Extraction, Gene 
Amplification, and Sequencing)

Total DNA of three plerocercoid specimens was extracted 
using the Kit QIAGEN at the Laboratorio Nacional de Bio-
diversidad (LANABIO, IB-UNAM, Mexico City) and used 
for the amplification of the D1-D3 region of the nuclear 28S 
rDNA gene (28S). DNA from other three plerocercoid speci-
mens was extracted using the automated Glass Fiber proto-
col [19] in the Barcode of Life facilities located at Centro 
de Investigaciones Biológicas del Noroeste (CIBNOR, La 
Paz, Baja California Sur, Mexico) to amplify partial mito-
chondrial cytochrome c oxidase subunit I (cox1). Both genes 
were amplified through polymerase chain reaction (PCR). 
The primers JB3 5ʹ TTT​TTT​GGG​CAT​CCT​GAG​GTT​TAT​ 
3ʹ [20] and CO1-R-Trema 5ʹ CAA​CAA​ATC​ATG​ATG​CAA​
AAGG 3ʹ [21] were used for cox1 gene fragment and prim-
ers ZX-1 5ʹ ACC​CGC​TGA​ATT​TAA​GCA​TAT 3ʹ [22] and 
1500R 5ʹ GCT​ATC​CTG​AGG​GAA​ACT​TCG 3ʹ [23] for the 
28S gene fragment. Amplification reactions were performed 
in a thermo-cycler Eppendorf (Mastercycler Pro) following 
the next profile for cox1, 3 min at 96 °C, then 35 cycles 
30 s at 94 °C, 2 min at 56 °C and 90 s at 72 °C, with a final 
extension of 5 min at 72 °C. The profile for nuclear 28S 
included 2 min at 94 °C, then 40 cycles of 30 s each at 
94 °C, 30 s at 54 °C, 2 min at 72 °C, with a final extension of 
7 min at 72 °C. Each PCR reaction included 1 µl of genomic 
DNA (10–30 ng/µl), 3.6 µl of 5X PCR Buffer, 0.9 µl of each 
primer (10 µM), and 0.15 µl of MyTaq (5U/µl, Bioline) for a 
total volume of 18 µl. Sequencing reactions were carried out 
in an Applied Biosystem 3500 × 1 sequencer (24 capillaries) 
(Life Technology Corporation, Thermo Fisher Scientific, 
Singapore) at the Laboratorio Nacional de Biodiversidad 
(LANABIO, IB-UNAM, Mexico City). The same primers 
used for cox1 PCR were used for sequencing reactions. For 
sequencing reactions of the 28S gene, in addition to the PCR 
primers, we used the internal primers 300F 5ʹ CAA​GTA​
CCG​TGA​GGG​AAA​GTTG 3ʹ [24], ECD2 R 5ʹ CTT​GGT​
CCG​TGT​TTC​AAG​ACGGG 3ʹ [24], 1090F F 5ʹ TGA​AAC​
ACG​GAC​CAAGG 3ʹ [25], and 400R R 5ʹ GCA​GCT​TGA​
CTA​CAC​CCG​ 3ʹ [26].

Sequences were assembled and edited using GENEIOUS 
11.1.4 software [27]. A BLAST analysis [28] was performed 
to compare with sequences deposited in GenBank (http://​
www.​ncbi.​nlm.​nih.​gov/​BLAST/) and BOLD Systems (www.​
bolds​ystems.​org). However, the cox1 tree is here shown only 
for future comparative purposes. Taxon for the phylogenetic 
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analyses was selected based on Caira  et al. [29–31] and 
sequences available in GenBank. DNA sequences of 28S 
and cox1 with > 95% identity similarity compared with the 
newly generated sequences were selected (Table S1, Sup-
plemental information). Thysanocephalum crispum (Linton, 
1889) Linton 1890 was selected to root the 28S analysis 
based on previous phylogenetic studies [30, 31] and Acan-
thotaenia shipleyi von Linstow, 1903 was selected to root the 
cox1 analysis based on BLAST results and a previous study 
[32]. Maximum Likelihood phylogenetic analyses of both 
genetic markers were performed using RaxML v. 8.2 [33] 
with the command line version, with 10,000 bootstrap rep-
licates using the general time reversible model (GTR) with 
gamma distributed rate parameter and invariable regions 
model selected by default. 28S and cox1 gene sequences of 
plerocercoids parasitizing R. glesne generated in the present 
study were deposited at GenBank (Table S1). The lengths of 
the three 28S sequences deposited at GenBank were 972 bp 
(MT772143), 864 bp (MT772143), and 891 bp (MT772145), 
and the lengths of the three cox1 sequences deposited in 
BOLD System were 895 bp (MT772382, MT772383), and 
539 bp (MT772384) (Table S1).

Results and Discussion

A sample of 63 plerocercoid specimens (Fig. 1A) were 
recovered alive from the anterior part of intestine of R. gle-
sne. Morphological comparative morphometry and maturity 
stage of plerocercoid larvae parasitizing R. glesne are shown 
in Table S2 (Supplemental information). Plerocercoid speci-
mens showed an apical sucker in the scolex and four long-
foliose bothridia (two-dorsal and two-ventral bothridia) pro-
vided with an anterior round muscularized accessory sucker 
and posterior loculus (Fig. 1B, C). Loculus foliose is in form 

of folding flap of tissue (Fig. 1B), Strobila with distinct lon-
gitudinal band of muscles (Fig. 1A). These morphological 
traits are diagnostic of the larvae of the genus Clistoboth-
rium (Ruhnke 1993) [16, 34]. Tegument of larval body was 
covered with acicular filitriches. Although the morphology 
of plerocercoid specimens analyzed in the present study 
was similar to the plerocercoid previously reported from R. 
glesne [11] and R. russelii [13, 34], several morphological 
differences in the measures of length of the scolex and the 
total length of the larval body were detected (Table S2). The 
total length of the single plerocercoid specimen (3.12 mm) 
reported previously [11] is shorter than the ten specimens 
measured in the present study (6.57–9.27 mm) (Table S2). 
However, based on morphological data, we assign these 63 
plerocercoid specimens to the genus Clistobothrium. Kuris  
et al. [13] reported the plerocercoid of Clistobothrium cf. 
montaukensis parasitizing R. russelii from Santa Catalina 
Island, California, USA and noted that the morphology of 
the unidentified plerocercoid found parasitizing R. glesne in 
Florida, USA [11] was congruent with the Clistobothrium 
specimens of their study, and in general, congruent with the 
morphology of the specimens reported in the present study.

The final 28S gene matrix included 64 terminals and 972 
aligned nucleotides. The log-likelihood of the optimal ML 
tree analysis was − 1544.320017. The phylogenetic analy-
sis places the three sequences reported in the present study 
within a group of C. montaukensis and an unidentified tet-
raphyllidean from the squid Illex coindetii Vérany, 1839 
collected in the Mediterranean Sea with a 61% bootstrap 
value (Fig. 2A). Importantly, the specimens of the present 
study group with sequences of C. montaukensis obtained 
from adult worms parasitizing Isurus oxyrhynchus from 
New York, USA. Therefore, based on this evidence, the 
plerocercoid specimens collected from R. glesne stranded 
in Bahía de La Paz, Baja California Sur, Mexico belong 

Fig. 1   Clistobothrium mon-
taukensis obtained from the 
intestine of R. glesne found 
stranded at a beach of Bahía 
de La Paz, Gulf of California, 
Mexico. A C. montaukensis 
observed with Gömöri tri-
chrome stain showing longitu-
dinal muscle bands (mb) in the 
strobila. SEM images obtained 
at different magnifications (B) 
morphological detail of the 
scolex with the apical sucker 
(as), bothridia (bo) and the 
accessory sucker (acs) in each 
bothridium, C amplified of the 
apical sucker (as) of the scolex
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to C. montaukensis. Two samples obtained in the present 
study appeared forming a group; this variation is interpreted 
as intraspecific variation, especially after comparing the 

variation found among C. montaukensis and its congeners. 
Sister to C. montaukensis is a group formed by Clistoboth-
rium sp. 1. These specimens were labeled as Clistobothrium 

Fig. 2   Maximum likelihood phylogenetic tree, based on the analyses 
of: A the nuclear 28S rDNA gene (D1-D3 region) (28S) of cestodes 
representing major lineages according to Caira  et al. [31] and B the 
partial mitochondrial cytochrome c oxidase subunit I gene (cox1). 
Values next to nodes indicate bootstrap values above 50%. For Clis-
tobothrium montaukensis and species with a single representative, 
taxon names are followed by GenBank accession numbers. For spe-

cies with more than one representative N indicates the number of 
DNA sequences included in the analysis. *Parasite collected from R. 
glesne; **Parasite collected from R. russelli. In bold, sequences gen-
erated in the present study. The genus and species of the host and the 
sampling location is shown for each sequence in 28S and cox1 gene 
trees
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cf montaukensis from a squid host (Doryteuthis pealeii) 
reported in a previous study [35], but recently recognized 
as a separate species for which no formal description is still 
available [31] (Fig. 2A). Overall, the same groups recovered 
in the comprehensive study of Caira  et al. [31] were also 
found in the present study, in particular the same clusters of 
samples representing distinct species (Fig. 2A). However, 
major differences in deeper nodes were found but with little 
support (< 70%). For example, in Caira et al. [31], Clistobo-
thrium amyae and C. gabywalterorum form the sister group 
of all the species of Clistobothrium genus, whereas in the 
present analysis, only C. amyae is sister to all species of the 
genus Clistobothrium. It is important to mention that most of 
the internal nodes shown in the 28S tree of Caira  et al. [31] 
and in the 28S tree of the present study have bootstrap values 
under 50%, indicating that the phylogenetic relationships 
within Clistobothrium still remain unresolved (Fig. 2A).

The comparison among the three newly generated cox1 
sequences showed 15 variable sites, 14 of them correspond 
to third positions and only one was in a second position. 
Only two amino acid changes were detected when sequences 
are translated into proteins. The genetic distance among the 
three cox1 sequences was < 1% suggesting that the three 
analyzed specimens belong to the same species (Fig. 2B). 
BLAST comparisons recovered Clistobothrium montauke-
nsis (JQ268541) infecting the shortfin mako shark Isurus 
oxyrinchus from New York, USA [36] as the closest match 
(98.4–99.5% of similarity) with a genetic distance between 
0.5–1.7%. In the cox1 phylogenetic tree (Fig. 2B), the newly 
generated sequences from the present study form a group 
with the same parasite specimen found infecting the shortfin 
mako shark, together with four additional sequences identi-
fied as C. montaukensis for which no additional informa-
tion is available (Fig. 2A). Interestingly, two unidentified 
samples of Clistobothrium were found forming a separate 
group (MT583827 and MT583827); these sequences were 
obtained from plerocercoids parasitizing the longfin inshore 
squid Doryteuthis pealeii collected in the Atlantic Northwest 
[35]. Fortunately, 28S sequences were generated from the 
same samples and they group with Clistobothrium sp.1 sensu 
Caira  et al. [31]. Based on this information, this separate 
lineage of Clistobothrium found in the cox1 analysis most 
likely corresponds to Clistobothrium sp.1 sensu Caira  et al. 
[31].

Life cycles of Clistobothrium species are partially char-
acterized [31, 37, 38]. Previously, information of hosts 
and geographical distribution range of Clistobothrium 
montaukensis in plerocercoid larval stage includes cepha-
lopods [39–41] and Regalecus species [11, 13] (Fig. S1A). 
Adult specimens of Clistobothrium species are known 
from large pelagic sharks of the families Lamnidae [16, 
34, 42] and Pseudocarchariidae [31] (Fig. S1A). Regalecus 
russelii has been mentioned as paratenic hosts for species 

of Clistobothrium [13] and then be trophically transmitted 
to shortfin definitive hosts. Our study adds R. glesne to the 
lists of hosts for species of Clistobothrium and provides 
evidence that both Regalecus species might function as 
paratenic hosts for Clistobothrium spp. Regalecus species 
feed on euphausiid swarms, small herrings and squids 
[43, 44], and a previous study suggested that R. russelii 
becomes parasitized with phyllobothriidean procercoids 
after preying pelagic crustaceans infected with procercoids 
[13]. During the dissection of R. glesne analyzed in the 
present study, we observed small euphausiid crustaceans 
in the intestine; however, it was not possible from these 
semi-digested specimens to study if these crustacean were 
parasitized. Therefore, the host of Clistobothrium before 
parasitizing R. glesne is still to be confirmed in future 
studies.

The present study represents the first record of C. mon-
taukensis parasitizing R. glesne (here identified based on 
morphological and molecular evidence) and this C. mon-
taukensis report in Bahía de La Paz, Baja California Sur, 
Gulf of California (Fig. S1A, B) extends previous known 
biogeographic distribution of Clistobothrium parasitizing 
Regalecus in Florida and California, USA.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s11686-​021-​00400-9.
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