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Abstract Calorie restriction (CR) is a dietary regimen that reduces calorie intake without incurring malnutrition
or a reduction in essential nutrients. It has long been recognized as a natural strategy for promoting health,
extending longevity, and prevents the development of metabolic and age-related diseases. In the present review, we
focus on the general effect of CR on gut microbiota composition and global metabolism. We also propose
mechanisms for its beneficial effect. Results showed that probiotic and butyrate-producing microbes increased
their relative abundance, whereas proinflammatory strains exhibited suppressed relative abundance following
CR. Analyses of the gut microbial and host metabolisms revealed that most host microbial co-metabolites were
changed due to CR. Examples of dramatic CR-induced changes in host metabolism included a decrease in the rate
of lipid biosynthesis and an increase in the rates of fatty acid catabolism, β-oxidation, glycogenolysis, and
gluconeogenesis. The observed phenotypes and the further verification of the direct link between gut microbiota
and metabolome may benefit patients that are at risk for developing metabolic disease. Thus, improved gut
microbiota composition and metabolome are potential biomarkers for determining the effectiveness of dietary
interventions for age-related and metabolic diseases.
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Introduction

Calorie restriction (CR), also called energy restriction, is a
dietary regimen that reduces calorie intake without
incurring malnutrition or reduction in essential nutrients.
It has been recognized as a health-promoting strategy for a
long time and shown to oppose age-related physiological
and pathological changes, thereby extending longevity [1–
3]. The roles of CR at the cellular and molecular levels
have been identified in many studies; for instance, CR
enhances cellular protection, and energy metabolism along
with reduction of both inflammation and oxidative damage
[4–6]. Thus, CR reduces mortality in mammals due to
causes that are age-related or pathological causes, includ-
ing diabetes, cancer, cardiovascular disease, and brain
atrophy [1,7]. CR with its health-beneficial and lifespan-
extending effects has been applied and studied in such
diverse species as fish, hamsters, mice, rats, and dogs

[3,8–12]. Likewise, CR-induced beneficial effects have
been observed in nonhuman primates and humans [13–16].
Recently, knowledge of gut microbiota and metabolic
changes that result from CR has substantially increased.
Humans are considered superorganisms because diverse

and dense microbiota populations colonize their gastro-
intestinal tracts [8,17,18]. The gut microbiota is considered
a separate metabolic organ of the host because of its ability
to modulate host nutrition, metabolism, and immunity
[19]. The composition of gut microbiota is shaped mainly
by diet [20]. Substantial evidence of dramatic diet-induced
changes in microbiota composition resulting from fasting,
use of laxatives, and low fat dietary intervention has been
obtained; these changes counteract metabolic damages
associated with obesity and high-fat diet [21]. Thus, these
CR-induced alterations of the intestinal microbiota sug-
gested that animals can establish a balanced gut microbiota
composition via CR, providing health advantages to the
host.
Identifying the biochemical alterations related to

different diets provide valuable insights into the
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associations between metabolism and phenotypes [22–26].
Global metabolomics captures system end point responses
to these biological perturbations by measuring the
chemical compositions of biological samples, such as
biofluids and tissues. Studies have provided comprehen-
sive information on the metabolic pathways and networks
altered through CR intervention. These studies were
important for uncovering the molecular mechanism of
CR. This review aims to highlight studies that address the
relationships between the gut microbiota and the metabolic
changes that occur with CR.

CR and gut microbiota

The mammalian gastrointestinal tract harbors a complex
community of over 100 trillion microbial cells that can
influence host physiology, nutrition, metabolism, and
immune function. The dysbiosis of gut microbiota has
been proven to be associated with several intestinal
diseases, such as inflammatory bowel disease and color-
ectal cancer, as well as some systematic diseases such as
diabetes and neurological diseases. Several studies found
that the composition of the gut microbiota can be greatly
changed by restricting dietary intake, without significant
alterations in their α-diversity [21,27–29]. CR studies
showed that the gut microbiota exerts more prominent
effects than some diseases, such as viral infection [30], or
physical exercise [3]. However, some reports refute these
observations [31–33], stating that the effect of CR on the
microbiota is minimal. Such discrepancies might have
been due to the limitation of technology for gut microbiota
analysis at the time of these studies, the short duration of
the CR, or use of a small study population. Moreover,
during a rapid growing phase such as that of a 7 – 16 weeks
old rat, the gut microbiota composition could be mainly
ascribed to normal physiological changes. Therefore,
perturbation of the abundant genera and families might
not have been detected [21]. The advent of improved
sequencing technology and well-designed study protocols
have allowed new findings related to the impact of CR on
gut microbiota composition to emerge.
Studies of the CR effect on gut microbiota have been

performed in mouse and rat, as well as, human models. The
diet restriction regimens utilized were 10%–40% calorie
restricted based on either a normal or high fat diet for
animal studies, or 700–1500 kcal/day/person for human
studies. Most of these reported studies focused on either
normal or obese models [3,21,27], whereas some were
conducted on participants with a pathological condition
such as non-alcoholic fatty liver disease (NAFLD) [28] or
influenza [30].
Factors that might have influenced the CR impact on gut

microbiota were dietary composition and age of models.
One murine study [3] showed that most of the microbes

responding to 30% restricted high fat diet (60% fat,
D12492, Research Diets) were not found in mice with 30%
restricted normal diet (10% fat, D12450B, Research Diets).
Furthermore, the CR-induced microbiota alterations were
different in mice of mid-life and late-life ages. Another
human study [29] showed that enormous differences in
intestinal microbial composition existed between lean vs.
obese subjects and such differences were absent after long-
term CR. Thus, CR intervention adjusted the gut micro-
biota composition of obese subjects to that of the lean
subjects which were dramatically different before inter-
vention. Firmicutes, Bacteroidetes, and Proteobacteria are
the main phyla in the gut microbiota; however, results
regarding CR-induced alterations in the relative abun-
dances of these bacteria varied [27,30,34,35]. Some studies
reported that dietary intervention reduced the Bacteroi-
detes population in favor of Firmicutes [34], whereas long-
term (45 days) CR in obese subjects enriched Bacter-
oidetes and greatly reduced the Firmicutes:Bacteroidetes
ratio [35]. The inconsistent results might be due to the
variable diversity of the microbes present under a specific
phylum, and dietary intervention may have led to
remarkably relative alterations in low-level taxa without
affecting the relative abundance of a major phylum.
The alterations of microbes in different levels of taxa

from different studies are summarized in Fig. 1. Generally,
CR treatment showed a substantial effect on the relative
abundances of microbes belonging to the Clostridiales
order, that is, a decrease in families, Eubacteriaceae,
Lachnospiraceae, Peptostreptococcaceae, and Erysipelo-
trichaceae. It also led to decreased abundance in the
Bacteroidales order, whereas certain family levels belong-
ing to this order showed an increasing trend, for example,
for the families, Porphyromonadaceae, Rikenellaceae, and
Bacteroidaceae [3,21,29]. Notably, in some studies, the
operational taxonomic units (OTUs; several hits > 97%
sequence identity) were annotated to species levels, such as
increased abundances of Clostridium saccharolyticum,
Clostridium cluster XIVa, Eubacterium limosum, Eubac-
terium cellulosolvens, Anaerostipes hadrus, Blautia hydro-
genotrophica, and Butyrivibrio fibrisolvens, and decreased
abundances of Clostridium perfringens, Agathobacter
rectalis, Ruminococcus gnavus, and Akkermansia mucini-
phila. The widely reported microbes or altered functions
with CR intervention are summarized in detail in the
following sections.

Probiotic strains

Studies have shown an overall increased relative abun-
dance of probiotic microbes, such as Bifidobacterium spp.
and Lactobacillus spp. in CR-treated mammals [3,21,35].
Increased relative abundance of probiotic strains may
explain some of the benefits of CR given the acknowl-
edged role of these genera in promoting intestinal
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homeostasis by protecting against pathogen-induced gut
barrier disruption, inhibiting pathogen adhesion to the
intestinal wall, and reducing inflammatory cytokines
[36,37]. The anti-inflammatory effect of Lactobacillus
has been attributed to its surface antigens, which have
structural or enzymatic functions. The increased abun-
dances of Lactobacillus and Bifidobacterium in subjects
under CR conditions correlated with decreases in body
weight, total cholesterol, and triglycerides, and thus
Lactobacillus spp. growth might be correlated to a diet-
dependent effect on lipid metabolism [21,36,38].

Proinflammatory microbes

Some harmful microbes inducing inflammation were
inhibited with CR treatment. Desulfovibrionaceae, Strep-
tococcaceae, and TM7 induced mild inflammation, which
is positively associated with obesity, diabetes, and
inflammatory mucosal processes in inflammatory bowel
diseases [39–41]. After CR intervention (45-day 25%-
restricted diet for mice and 28-day 800 kcal/day diet for
humans), the circulating lipopolysaccharide (LPS) binding
protein (LBP) was reduced [3,27]. LBP is an important
biomarker because it can bind to antigens produced by

Gram-positive bacteria; thus, the levels of LBP can reflect
the antigen load in the circulation and the inflammatory
response of the host [42]. With CR intervention, the
antigen translocation from the gut to the blood might be
considerably reduced due to the decreased abundance of
Gram-positive bacteria [39,43].

Butyrate-producing microbes

The growth of some butyrate-producing microbial strains,
such as Coprobacillus, Holdemania, Eubacterium cellu-
losolvens, and Clostridium saccharolyticum was increased
with CR [34]. Meanwhile, metagenomic data showed an
increase in the metabolic capacity of Kyoto Encyclopedia
of Genes and Genomes (KEGG) orthologs for butyrate
fermentation after six months of very low carbohydrate
diet in humans [34]. Butyrate is a short-chain fatty acid
produced in the colon from fermented dietary fiber by gut
microbiota. It is the main energy source of enterocytes and
has been reported to have an anti-inflammatory effect by
decreasing gut permeability [44]. Moreover, studies in
murine models showed that the butyrate activation of
intestinal glucagon-like peptide 1 (GLP-1) in enteroendo-
crine cells improved glycemic and insulin responses. In

Fig. 1 Phylogenetic tree of all reported taxa. The abundance of taxa in red indicates increased abundance, blue indicates decreased
abundance, and black indicates controversial alteration after CR intervention. The taxa in gray have not been reported in CR-related
studies.
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animals, butyrate-producing bacteria were reported to
prevent diet-induced obesity [45] and alleviate NAFLD
[46]. Some studies did not reveal significant differences in
fecal butyrate content after CR intervention, which was
explained by low prebiotic substrate levels in the diet
[34,47].

Microbes with amino acid degradation function

The metabolic functional changes in gut microbiota with
CR intervention were also observed for bacteria associated
with amino acid metabolism [28]. Increased lysine
biosynthesis along with decreased phenylalanine and
tryptophan synthesis and branched amino acid degradation
were observed in the microbial metabolism of essential
amino acids.

CR and the global metabolome

The global metabolome experiences a dramatic shift with
CR intervention, as evidenced by metabolomics and
transcript analyses in blood, urine, liver, and muscle
(summarized in Table 1). The metabolism rapidly switched
from lipid biosynthesis to fatty acid catabolism and
stimulated downstream β-oxidation. In addition, CR
induced increased glycogenolysis and gluconeogenesis
[48,49]. Most importantly, due to the 25% restricted
dietary CR impact on the composition of gut microbiota,
gut microbial metabolites were subsequently changed [8].
Important published metabolites and metabolic pathways
are summarized in the following sections.
The global metabolism is more affected by diet

composition than by energy supply alone. High dietary
protein-to-carbohydrate ratio (low P/C ratio (7:1): 10%
protein, 20% fat, and 70% carbohydrate; high P/C ratio
(1.3:1): 32% protein, 22% fat, and 46% carbohydrate) was
positively associated with improvement in glycemic
control [50]. In contrast, some studies suggested that
increased protein intake may be ineffective and even
detrimental to the maintenance of glucose homeostasis
[51,52] because increased levels of a single type of amino
acid, that is, branched-chain amino acids (BCAA),
produced from dietary protein were positively associated
with insulin resistance [53,54]. Thus, the investigations of
the CR effect with different diet compositions were
inconsistent. Moreover, to evaluate the CR impact on the
metabolism, not only caloric intake but also dietary
macronutrient composition should be considered. The
effect of CR varies among the metabolomes of various
biofluids and tissues in the body. For instance, the urinary
metabolome showed more fluctuations than the metabo-
lomes of other biofluids, such as blood and saliva,
indicating that urine samples were more sensitive to
differences in diet than other body fluids [55]. Gender

difference in metabolism alteration was observed in several
studies [56,57]. Some other significant factors that have
been investigated in the studies of CR and gut microbiota,
such as age and baseline body weight, should also be
included in studies of CR-induced changes in the
metabolome.

Host-microbial co-metabolites

Metabolites with aromatic chemical structures,
including indoles and benzoic acids, are main metabolites
derived from biochemical degradation reactions involving
Clostridium scatalogens, C. difficile, or certain Lactoba-
cillus strains [58,59]. Such host microbial co-metabolites,
including hippurate, p-cresol, dimethylglycine, phenyla-
cetylglycine,and 4-hydroxyphenylacetic acid [8,22,60,61],
were associated with gut microbial homeostasis that was
modulated by diet [62,63], although with observed
differences in the alteration trend for diverse species and
ages. Interestingly, increased levels of hippurate and
dimethylgycine have been considered as age-induced
biomarkers [64,65]. Their decreased levels in aged
mammals resulting from a 40% restricted dietary CR
treatment for 12 weeks may be the effect of modulated gut
microbiota activity and improved nutrient digestibility,
thereby providing supporting evidence for the beneficial
effect of CR as anti-aging and causing increased longevity
[66].
The CR intervention (20% and 40% restricted diet for

five days) was associated with elevated plasma levels of
trimethylamine-N-oxide (TMAO) and reduced levels of
trimethylamine (TMA), choline, and glycerophosphocho-
line [67]. Consistently, changes in the levels of aliphatic
amines, including TMA, dimethylamine (DMA), and
TMAO occurred in the urine [22]. Choline and methyla-
mines (TMA and DMA) are metabolites derived from
host-microbial interactions in the large intestine; choline
can be metabolized by gut microbiota to DMA and TMA,
and liver flavin monooxygenases ultimately metabolizes
TMA to TMAO [68]. Therefore, changes in the levels of
these compounds may indicate the relative abundance of
methylamine-producing bacterial resulting from CR-
induced changes in gut microbial community and activity.

Lipids

Alterations in blood lipoproteins has been widely shown in
the studies of CR in mouse, rat, dog, and monkey models
[13,69–71], as well as in human clinical studies [14,72].
Changes in lipoproteins were manifested by the increase in
blood and fecal high density lipoprotein (HDL) levels and
reduction in low density lipoprotein (LDL) and very low-
density lipoprotein (VLDL) levels [13,15,22,48,49,67].
Lower levels of LDL and VLDL are associated with a
lowered risk of cardiovascular disease. Increasing the
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beneficial lipoprotein, HDL, has been closely related to
attenuation of age-related disorders, metabolic dependent
diseases, and cardiovascular diseases [73].
Glyceryl derivatives of lipids and phospholipid choline

in liver [60] and serum [16,71] were significantly
decreased after CR intervention, such as phosphatidylcho-
line (PC) (18:0/20:4), sphingomyelin (SM) (d18:0/16:1),
and some lysoPCs (C16:1, C16:0, C17:0, C18:2, C18:1,
C18:0, C20:4, C20:3, and C22:6). Many of these
compounds are involved in fatty acid catabolism, where
triacylglycerols and phospholipids become hydrolyzed
into non-esterified fatty acids, glycerol, and phosphocho-
line [67]. Such metabolic phenotypes were observed in
some pathological models. In db/db mice, reduction in the
levels of most glycerolipids [diacylglycerol (DG) and TG]
and related hepatic enzymes were observed [4]. In
NAFLD, the CR-induced reduction of liver triglyceride
(TG) may have contributed to the prevention of further
hepatic alterations associated with insulin resistance (IR)
[66]. Notably, the decreased level of SM (d18:0/16:1) was
observed in overweight and obese women after eight
weeks of CR intervention [74], whereas the proportion of
plasma SM increased with age and was elevated in obese
models [75,76].

Free fatty acids

CR induced lipolysis in liver and adipose tissues and
increased free fatty acid (FFA) release into circulation [4].
Enhanced autophagy induced by CR has been reported to

increase lipolysis [77]. A controversial study showed that
increased circulating fatty acids were positively associated
with the development of IR. This result was explained by
the fact that IR can be induced not only by FFA elevation
but increased TG concentration [78]. Thus, the beneficial
effect of CR in lipid metabolism may be due to decreased
lipid storage and increased FFA in the circulation.
The CR-induced alteration in the levels of unsaturated

fatty acids (UFA), polyunsaturated fatty acids (PUFA),
monounsaturated fatty acids (MUFA), and saturated fatty
acids (SFA) was inconsistent in several studies. In one
murine study, CR increased MUFA levels in the liver,
whereas PUFA levels decreased and no changes were
observed in SFA levels [60]. In contrast, a clinical study
[79] with obese subjects participating in a very low
carbohydrate diet intervention presented with overall UFA
levels, MUFA, and n-6 PUFAs that were decreased after
dietary intervention, whereas SFAs and n-3 PUFA
increased remarkably. Among these FFAs, four UFA
levels were associated with improved metabolic markers,
including palmitoleic acid (PA) (C16:1 n7), heptadecenoic
acid (HA) (C17:1 n7), gamma-linolenic acid (GLA)
(C18:3 n6) and dihomo-gamma-linolenic acid (DGLA).
The consistent findings within these studies were lower
PUFA levels, especially n-6 PUFA levels after CR
intervention. The lower levels of n-6 PUFAwere believed
to be due to decreased inflammation and susceptibility to
oxidation of the cellular membranes [60].
FFA related metabolites were also altered after CR

intervention. FFA oxidation is the major fuel for ketone

Table 1 CR related metabolites
Metabolite types Increased after CR Decreased after CR Inconsistent in the reports

Host-microbial co-metabolites Trimethylamine-N-oxide (TMAO) Hippurate, dimethylgycine,
trimethylamine (TMA)

p-Cresol, phenylacetylglycine, 4-
hydroxyphenylacetic acid

Lipoprotein High density lipoprotein (HDL) Low density lipoprotein (LDL), very
low-density lipoprotein (VLDL)

Glyceryl derivatives of lipids and
phospholipid choline

　 Choline, glycerophosphocholine, phos
phatidylcholine (PC) (18:0/20:4),
sphingomyelin (SM) (d18:0/16:1),
lysoPCs (C16:1, C16:0, C17:0, C18:2,
C18:1, C18:0, C20:4, C20:3, and
C22:6), diacylglycerol lipids, triacyl
glycerol lipids

　

Free fatty acids n-6 polyunsaturated fatty acids,
palmitoleic acid (C16:1 n7),
heptadecenoic acid (C17:1 n7),
γ-linolenic acid (C18:3 n6),
dihomo-γ-linolenic acid

n-3 polyunsaturated fatty acids, mono
unsaturated fatty acids, saturated fatty
acids

Ketone bodies Acetoacetate, 3-hydroxybutyrate 　 　

Bile acids Taurocholic acid, taurodeoxycholic
acid, deoxycholic acid, lithocholic
acid, w-muricholic acid, hyodeoxy
cholic acid

Amino acids Glutamate, methionine, glutamine,
alanine

Branched-chain amino acids, aromatic
amino acids

　

Others Carnitine, gluconate Pyruvate 　
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bodies and increased levels of the circulating ketone
bodies, acetoacetate and 3-hydroxybutyrate were observed
to be simultaneously elevated after CR and were high in
the subjects with higher percentage of weight loss
[15,48,67,71,80]. The serum level of carnitine was also
increased with CR intervention (40% dietary reduction for
12 weeks), greatly influencing fatty acid oxidation in vivo
[70].

Bile acids

Bile acids (BAs) are downstream metabolites of choles-
terol that are synthesized in the liver and secreted from the
gall bladder into the intestine to aid lipid uptake by the
intestine. Hepatic cholesterol accumulation can be alle-
viated through the production of bile acids [81]. Bile-acid-
activated signaling pathways have become attractive
therapeutic targets for metabolic disorders, such as obesity,
type 2 diabetes, hypertriglyceridemia, and atherosclerosis,
as well as other associated chronic diseases, such as non-
alcoholic steatohepatitis [82,83]. The results have shown
that a 40% CR increased the BA pool size (162%) and total
BAs in gallbladder, small intestinal contents, and serum,
with contributions mainly from taurocholic acid (TCA)
and some secondary BAs, such as taurodeoxycholic acid,
deoxycholic acid, lithocholic acid (LCA), w-muricholic
acid, and hyodeoxycholic acid [84–86]. Increases in these
CR-induced BAs might be due to an increase in the rate of
BA synthesis, conjugation in liver and intracellular
transport in the ileum. This interpretation has been
supported by the observation of increased expression of
BA-synthetic (cytochrome P450 7a1 (Cyp7a1)), conjugat-
ing enzyme bile acid-CoA ligase (BAL) and the ileal BA
binding protein (Ibabp) levels [84,87]. Hepatic bile acids
can spill into the circulation and induce energy expenditure
and glucose homeostasis [87,88]. Recent studies showed
that bile acids play an important role in CR-induced
longevity. One bile acid, LCA, was found to be an anti-
aging compound in yeast [89], where it influenced various
longevity-related processes.

Pyruvate and TCA cycle

The levels of pyruvate in blood were significantly
decreased after CR and fasting intervention [67,90].
Pyruvate kinase enzyme levels decreased in liver samples
of mice with 30% restricted CR undergoing a step-down
feeding regime [60]. Pyruvate is a key metabolic
intermediate at the intersection between glycolysis and
the TCA metabolic cycles [67]. CR promotes the TCA
cycle and reduces glucose levels in contrast to metabolic
phenotypes with high calorie intake; these phenotypes are
characterized by elevated glucose levels and depleted
levels of the TCA cycle intermediates, citrate, succinate, 2-
ketoglutarate, and cis-aconitate. Therefore, such metabolic

characteristics of CR can potentially be used to prevent the
development of insulin resistance, diabetes, and hypergly-
cemia [22].

Pentose phosphate pathway (PPP)

Increased levels of gluconate [13], which is a key
metabolite of the PPP, and increased flux through the
PPP, were observed under CR. This increase may be
attributed to the CR-induced upregulation of peroxisome
proliferator-activated receptor α (PPARα) expression [91].
Moreover, aging was associated with decline in the
expression levels of PPP genes, although this association
was counteracted by CR [91, 92]. The PPP is involved in
the biosynthesis of nicotinamide adenine dinucleotide
phosphate which is essential for various reductive
biosynthetic processes, such as lipogenesis, cholesterol
synthesis, and nucleotide production. The PPP also plays a
substantial role in the regulation of β-oxidation in muscles,
hepatic glucose output and systemic insulin sensitivity
[93]. Thus, CR may upregulate PPARα expression in
skeletal muscles [91] and may increase insulin sensitivity
in the liver and peripheral tissues by increasing glucose
flux through the PPP and enhancing fatty acid synthesis
[94].

Amino acids

The levels of some amino acids, such as phenylalanine and
tyrosine, were considerably reduced after CR
[67,80,95,96], confirming that decreased levels of
branched-chain and aromatic amino acids are significantly
associated with weight loss and decreased homeostasis
model assessment of insulin resistance (HOMA-IR) scores
in overweight or obese subjects [97]. Studies of BCAA
supplementation in humans [51] and animals [98] demon-
strated that circulating branched chain and aromatic amino
acids directly promoted IR through the obstruction of
insulin signaling in skeletal muscles.
High levels of some amino acids were observed in CR

animals, such as serine and glutamate, implying the
maintenance of protein turnover rate after CR intervention
[99]. These amino acids are known to be important for
neurotransmitter biosynthesis and preservation of neuro-
logical function [100]. Plasma levels of the glucogenic
amino acids, methionine, glutamine, alanine, and valine
were also increased, promoting a CR-induced switch in
energy metabolism toward energy conservation and
gluconeogenesis [48].

Prospective

Early microbial biomarkers predictive of the clinical
benefits associated with CR treatment might serve as
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diagnostic tools for identifying overfeeding-related dys-
biosis. A recent study showed that some strains have the
capability to predict the personal effects of CR treatment
[101]. Individuals with a high baseline abundance of A.
muciniphila before CR showed improved clinical out-
comes after CR, such as improvement in glucose home-
ostasis, blood lipids, and body composition. The
abundance of A. muciniphila in these participants was
reduced during CR, however, it still remained considerably
higher than in those with lower abundance pre-CR [101].
Thus, the levels of A. muciniphila could potentially be used
for predicting the effect of CR. Another study [21]
suggested that Lactobacillus served as a marker of dietary
intervention in experimental animal models because the
increased relative abundance of Lactobacillus correlated
with the lowering of cholesterol and triglycerides shortly
after dietary restriction. Additionally, its high abundance
persisted after long-term CR treatment.
The calorie restricted diet could be supplemented with

some beneficial microbes; thus, the CR impact could be
more effective. Some studies [21] have applied a calorie
restriction diet with L. fermentum CRL1446 and found that
such a diet accelerated the microbiota replacement and
promoted the presence of the probiotics, Bifidobacterium
and Lactobacillus, in the intestine.

Conclusions

Calorie restriction is a strong environmental force that
alters the gut microbiota and global metabolome. Further
verification of the direct link between gut microbiota and
metabolome as well as, the observation of host phenotypes
that correlated with a particular gut microbe composition,
metabolite concentrations and physiological parameters
would benefit patients at risk for developing metabolic
disease. These findings would provide essential metabolic
information associated with gut microbial composition
under CR conditions for the consideration of tailored
therapeutic treatments to a specific metabolic condition
[102–106]. More importantly, the causality between gut
microbiota, global metabolism, and CR-induced pheno-
types should be evaluated. Strategies have been proposed
for identifying causative factors through functional micro-
biome-wide association studies and mechanistic investiga-
tions. Given the potential key role of these factors in
mediating the health-promoting actions of CR, improved
gut microbiota composition and its resulting metabolome
may become a novel biomarker for identifying effective
dietary interventions for age-related and metabolic dis-
eases.

Acknowledgements

This work is supported by the National Natural Science Foundation
of China (No. 31500954).

Compliance with ethics guidelines

Xiaojiao Zheng, Shouli Wang, and Wei Jia declare that they have no
conflicts of interest. This manuscript is a review article and does not

involve a research protocol requiring approval by the relevant
institutional review board or ethics committee.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the
appropriate credit is given to the original author(s) and the source,

and a link is provided to the Creative Commons license, which
indicates if changes are made.

References

1. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka
KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz
JW, Weindruch R. Caloric restriction delays disease onset and
mortality in rhesus monkeys. Science 2009; 325(5937): 201–204

2. Fontana L, Klein S. Aging, adiposity, and calorie restriction.
JAMA 2007; 297(9): 986–994

3. Zhang C, Li S, Yang L, Huang P, LiW,Wang S, Zhao G, ZhangM,
Pang X, Yan Z, Liu Y, Zhao L. Structural modulation of gut
microbiota in life-long calorie-restricted mice. Nat Commun 2013;
4(1): 2163

4. Kim KE, Jung Y, Min S, Nam M, Heo RW, Jeon BT, Song DH, Yi
CO, Jeong EA, Kim H, Kim J, Jeong SY, Kwak W, Ryu H,
Horvath TL, Roh GS, Hwang GS. Caloric restriction of db/db mice
reverts hepatic steatosis and body weight with divergent hepatic
metabolism. Sci Rep 2016; 6(1): 30111

5. Qu B, Halliwell B, Ong CN, Lee BL, Li QT. Caloric restriction
prevents oxidative damage induced by the carcinogen clofibrate in
mouse liver. FEBS Lett 2000; 473(1): 85–88

6. Longo VD, Mattson MP. Fasting: molecular mechanisms and
clinical applications. Cell Metab 2014; 19(2): 181–192

7. Koubova J, Guarente L. How does calorie restriction work? Genes
Dev 2003; 17(3): 313–321

8. Wang Y, Lawler D, Larson B, Ramadan Z, Kochhar S, Holmes E,

Nicholson JK. Metabonomic investigations of aging and caloric
restriction in a life-long dog study. J Proteome Res 2007; 6(5):
1846–1854

9. Kealy RD, Lawler DF, Ballam JM, Mantz SL, Biery DN, Greeley
EH, Lust G, Segre M, Smith GK, Stowe HD. Effects of diet
restriction on life span and age-related changes in dogs. J Am Vet
Med Assoc 2002; 220(9): 1315–1320

10. Masoro EJ. Food restriction in rodents: an evaluation of its role in
the study of aging. J Gerontol 1988; 43(3): B59–B64

11. Smilowitz JT, Wiest MM, Watkins SM, Teegarden D, Zemel MB,
German JB, Van Loan MD. Lipid metabolism predicts changes in
body composition during energy restriction in overweight humans.
J Nutr 2009; 139(2): 222–229

12. López-Lluch G, Hunt N, Jones B, Zhu M, Jamieson H, Hilmer S,
Cascajo MV, Allard J, Ingram DK, Navas P, de Cabo R. Calorie
restriction induces mitochondrial biogenesis and bioenergetic

640 Caloric restriction, microbiota, and metabolome



efficiency. Proc Natl Acad Sci USA 2006; 103(6): 1768–1773

13. Rezzi S, Martin FP, Shanmuganayagam D, Colman RJ, Nicholson
JK, Weindruch R. Metabolic shifts due to long-term caloric
restriction revealed in nonhuman primates. Exp Gerontol 2009; 44
(5): 356–362

14. Su HY, Lee HC, Cheng WY, Huang SY. A calorie-restriction diet
supplemented with fish oil and high-protein powder is associated

with reduced severity of metabolic syndrome in obese women. Eur
J Clin Nutr 2015; 69(3): 322–328

15. Schmedes MS, Yde CC, Svensson U, Håkansson J, Baby S,
Bertram HC. Impact of a 6-week very low-calorie diet and weight
reduction on the serum and fecal metabolome of overweight
subjects. Eur Food Res Technol 2015; 240(3): 583–594

16. Kim M, Lee SH, Lee JH. Global metabolic profiling of plasma
shows that three-year mild-caloric restriction lessens an age-related
increase in sphingomyelin and reduces L-leucine and L-phenyla-
lanine in overweight and obese subjects. Aging Dis 2016; 7(6):
721–733

17. Guarente L. Mitochondria—a nexus for aging, calorie restriction,
and sirtuins? Cell 2008; 132(2): 171–176

18. Zheng X, Zhao A, Xie G, Chi Y, Zhao L, Li H, Wang C, Bao Y, Jia
W, Luther M, SuM, Nicholson JK, Jia W. Melamine-induced renal
toxicity is mediated by the gut microbiota. Sci Transl Med 2013; 5
(172): 172ra22

19. Goodman AL, Gordon JI. Our unindicted coconspirators: human
metabolism from a microbial perspective. Cell Metab 2010; 12(2):
111–116

20. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE,
Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA,
Biddinger SB, Dutton RJ, Turnbaugh PJ. Diet rapidly and
reproducibly alters the human gut microbiome. Nature 2014; 505
(7484): 559–563

21. Fraumene C, Manghina V, Cadoni E, Marongiu F, Abbondio M,

Serra M, Palomba A, Tanca A, Laconi E, Uzzau S. Caloric
restriction promotes rapid expansion and long-lasting increase of
Lactobacillus in the rat fecal microbiota. Gut Microbes 2018; 9(2):
104–114

22. Wu J, Yang L, Li S, Huang P, Liu Y, Wang Y, Tang H.
Metabolomics insights into the modulatory effects of long-term
low calorie intake in mice. J Proteome Res 2016; 15(7): 2299–
2308

23. Zheng X, Chen T, Zhao A, Wang X, Xie G, Huang F, Liu J, Zhao
Q, Wang S, Wang C, Zhou M, Panee J, He Z, Jia W. The brain
metabolome of male rats across the lifespan. Sci Rep 2016; 6(1):
24125

24. Xie G, Zheng X, Qi X, Cao Y, Chi Y, Su M, Ni Y, Qiu Y, Liu Y, Li
H, Zhao A, Jia W. Metabonomic evaluation of melamine-induced
acute renal toxicity in rats. J Proteome Res 2010; 9(1): 125–133

25. Zheng X, Xie G, Jia W. Metabolomic profiling in colorectal
cancer: opportunities for personalized medicine. Per Med 2013; 10
(7): 741–755

26. Xu H, Zheng X, Jia W, Yin S. Chromatography/mass spectro-
metry-based biomarkers in the field of obstructive sleep apnea.
Medicine (Baltimore) 2015; 94(40): e1541

27. Ott B, Skurk T, Hastreiter L, Lagkouvardos I, Fischer S, Büttner J,
Kellerer T, Clavel T, Rychlik M, Haller D, Hauner H. Effect of
caloric restriction on gut permeability, inflammation markers, and

fecal microbiota in obese women. Sci Rep 2017; 7(1): 11955

28. Pataky Z, Genton L, Spahr L, Lazarevic V, Terraz S, Gaïa N,
Rubbia-Brandt L, Golay A, Schrenzel J, Pichard C. Impact of
hypocaloric hyperproteic diet on gut microbiota in overweight or
obese patients with nonalcoholic fatty liver disease: a pilot study.
Dig Dis Sci 2016; 61(9): 2721–2731

29. Ruiz A, Cerdó T, Jáuregui R, Pieper DH, Marcos A, Clemente A,

García F, Margolles A, Ferrer M, Campoy C, Suárez A. One-year
calorie restriction impacts gut microbial composition but not its
metabolic performance in obese adolescents. Environ Microbiol
2017; 19(4): 1536–1551

30. Bartley JM, Zhou X, Kuchel GA, Weinstock GM, Haynes L.
Impact of age, caloric restriction, and influenza infection on mouse
gut microbiome: an exploratory study of the role of age-related
microbiome changes on influenza responses. Front Immunol 2017;

8: 1164

31. Henderson AL, Cao WW, Wang RF, Lu MH, Cerniglia CE. The
effect of food restriction on the composition of intestinal microflora
in rats. Exp Gerontol 1998; 33(3): 239–247

32. Mai V, Colbert LH, Perkins SN, Schatzkin A, Hursting SD.

Intestinal microbiota: a potential diet-responsive prevention target

in ApcMin mice. Mol Carcinog 2007; 46(1): 42–48

33. Santacruz A, Marcos A, Wärnberg J, Martí A, Martin-Matillas M,
Campoy C, Moreno LA, Veiga O, Redondo-Figuero C, Garagorri
JM, Azcona C, Delgado M, García-Fuentes M, Collado MC, Sanz
Y; EVASYON Study Group. Interplay between weight loss and gut
microbiota composition in overweight adolescents. Obesity (Silver
Spring) 2009; 17(10): 1906–1915

34. Damms-Machado A, Mitra S, Schollenberger AE, Kramer KM,
Meile T, Königsrainer A, Huson DH, Bischoff SC. Effects of
surgical and dietary weight loss therapy for obesity on gut
microbiota composition and nutrient absorption. BioMed Res Int
2015; 2015: 806248

35. Russo M, Fabersani E, Abeijón-Mukdsi MC, Ross R, Fontana C,
Benítez-Páez A, Gauffin-Cano P, Medina RB. Lactobacillus
fermentum CRL1446 ameliorates oxidative and metabolic para-

meters by increasing intestinal feruloyl esterase activity and
modulating microbiota in caloric-restricted mice. Nutrients 2016; 8
(7): E415

36. Bernardeau M, Guguen M, Vernoux JP. Beneficial lactobacilli in
food and feed: long-term use, biodiversity and proposals for
specific and realistic safety assessments. FEMS Microbiol Rev
2006; 30(4): 487–513

37. Zareie M, Johnson-Henry K, Jury J, Yang PC, Ngan BY, McKay
DM, Soderholm JD, Perdue MH, Sherman PM. Probiotics prevent
bacterial translocation and improve intestinal barrier function in
rats following chronic psychological stress. Gut 2006; 55(11):
1553–1560

38. Sun J, Buys N. Effects of probiotics consumption on lowering
lipids and CVD risk factors: a systematic review and meta-analysis
of randomized controlled trials. Ann Med 2015; 47(6): 430–440

39. Zhang C, ZhangM,Wang S, Han R, Cao Y, HuaW,Mao Y, Zhang
X, Pang X, Wei C, Zhao G, Chen Y, Zhao L. Interactions between
gut microbiota, host genetics and diet relevant to development of
metabolic syndromes in mice. ISME J 2010; 4(2): 232–241

40. Price LB, Liu CM, Melendez JH, Frankel YM, Engelthaler D, Aziz
M, Bowers J, Rattray R, Ravel J, Kingsley C, Keim PS, Lazarus

Xiaojiao Zheng et al. 641



GS, Zenilman JM. Community analysis of chronic wound bacteria
using 16S rRNA gene-based pyrosequencing: impact of diabetes
and antibiotics on chronic wound microbiota. PLoS One 2009; 4
(7): e6462

41. Kuehbacher T, Rehman A, Lepage P, Hellmig S, Fölsch UR,
Schreiber S, Ott SJ. Intestinal TM7 bacterial phylogenies in active
inflammatory bowel disease. J Med Microbiol 2008; 57(Pt 12):
1569–1576

42. Zweigner J, Schumann RR, Weber JR. The role of lipopolysac-
charide-binding protein in modulating the innate immune response.
Microbes Infect 2006; 8(3): 946–952

43. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D,
Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmée E,
Cousin B, Sulpice T, Chamontin B, Ferrières J, Tanti JF, Gibson
GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R. Metabolic

endotoxemia initiates obesity and insulin resistance. Diabetes
2007; 56(7): 1761–1772

44. Brahe LK, Astrup A, Larsen LH. Is butyrate the link between diet,
intestinal microbiota and obesity-related metabolic diseases? Obes
Rev 2013; 14(12): 950–959

45. Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in

control of body weight and insulin sensitivity. Nat Rev Endocrinol
2015; 11(10): 577–591

46. Endo H, Niioka M, Kobayashi N, Tanaka M, Watanabe T.
Butyrate-producing probiotics reduce nonalcoholic fatty liver
disease progression in rats: new insight into the probiotics for the
gut-liver axis. PLoS One 2013; 8(5): e63388

47. Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA, Donus C,
Hardt PD. Microbiota and SCFA in lean and overweight healthy
subjects. Obesity (Silver Spring) 2010; 18(1): 190–195

48. Selman C, Kerrison ND, Cooray A, Piper MD, Lingard SJ, Barton
RH, Schuster EF, Blanc E, Gems D, Nicholson JK, Thornton JM,
Partridge L, Withers DJ. Coordinated multitissue transcriptional
and plasma metabonomic profiles following acute caloric restric-
tion in mice. Physiol Genomics 2006; 27(3): 187–200

49. Richards SE, Wang Y, Lawler D, Kochhar S, Holmes E, Lindon
JC, Nicholson JK. Self-modeling curve resolution recovery of
temporal metabolite signal modulation in NMR spectroscopic data
sets: application to a life-long caloric restriction study in dogs.
Anal Chem 2008; 80(13): 4876–4885

50. Margolis LM, Rivas DA, Ezzyat Y, Gaffney-Stomberg E, Young
AJ, McClung JP, Fielding RA, Pasiakos SM. Calorie restricted

high protein diets downregulate lipogenesis and lower intrahepatic
triglyceride concentrations in male rats. Nutrients 2016; 8(9): E571

51. Krebs M, Krssak M, Bernroider E, Anderwald C, Brehm A,
Meyerspeer M, Nowotny P, Roth E, Waldhäusl W, Roden M.
Mechanism of amino acid-induced skeletal muscle insulin
resistance in humans. Diabetes 2002; 51(3): 599–605

52. Solon-Biet SM, Mitchell SJ, Coogan SC, Cogger VC, Gokarn R,
McMahon AC, Raubenheimer D, de Cabo R, Simpson SJ, Le
Couteur DG. Dietary protein to carbohydrate ratio and caloric
restriction: comparing metabolic outcomes in mice. Cell Reports
2015; 11(10): 1529–1534

53. Huffman KM, Shah SH, Stevens RD, Bain JR, Muehlbauer M,
Slentz CA, Tanner CJ, Kuchibhatla M, Houmard JA, Newgard CB,
Kraus WE. Relationships between circulating metabolic inter-
mediates and insulin action in overweight to obese, inactive men

and women. Diabetes Care 2009; 32(9): 1678–1683

54. Shaham O, Wei R, Wang TJ, Ricciardi C, Lewis GD, Vasan RS,
Carr SA, Thadhani R, Gerszten RE, Mootha VK. Metabolic
profiling of the human response to a glucose challenge reveals
distinct axes of insulin sensitivity. Mol Syst Biol 2008; 4: 214

55. Walsh MC, Brennan L, Malthouse JP, Roche HM, Gibney MJ.
Effect of acute dietary standardization on the urinary, plasma, and

salivary metabolomic profiles of healthy humans. Am J Clin Nutr
2006; 84(3): 531–539

56. Mellert W, Kapp M, Strauss V, Wiemer J, Kamp H, Walk T,
Looser R, Prokoudine A, Fabian E, Krennrich G, Herold M, van
Ravenzwaay B. Nutritional impact on the plasma metabolome of
rats. Toxicol Lett 2011; 207(2): 173–181

57. Simón E, Portillo MP, Fernández-Quintela A, Zulet MA, Martínez
JA, Del Barrio AS. Responses to dietary macronutrient distribution
of overweight rats under restricted feeding. Ann Nutr Metab 2002;
46(1): 24–31

58. Selmer T, Andrei PI. p-Hydroxyphenylacetate decarboxylase from
Clostridium difficile. A novel glycyl radical enzyme catalysing the
formation of p-cresol. Eur J Biochem 2001; 268(5): 1363–1372

59. Lees HJ, Swann JR, Wilson ID, Nicholson JK, Holmes E.
Hippurate: the natural history of a mammalian-microbial cometa-
bolite. J Proteome Res 2013; 12(4): 1527–1546

60. Jové M, Naudí A, Ramírez-Núñez O, Portero-Otín M, Selman C,
Withers DJ, Pamplona R. Caloric restriction reveals a metabolomic
and lipidomic signature in liver of male mice. Aging Cell 2014; 13
(5): 828–837

61. Zheng H, Lorenzen JK, Astrup A, Larsen LH, Yde CC, Clausen
MR, Bertram HC. Metabolic effects of a 24-week energy-restricted

intervention combined with low or high dairy intake in overweight
women: an NMR-based metabolomics investigation. Nutrients
2016; 8(3): 108

62. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W,

Pettersson S. Host-gut microbiota metabolic interactions. Science
2012; 336(6086): 1262–1267

63. Zheng X, Xie G, Zhao A, Zhao L, Yao C, Chiu NH, Zhou Z, Bao
Y, Jia W, Nicholson JK, Jia W. The footprints of gut microbial-
mammalian co-metabolism. J Proteome Res 2011; 10(12): 5512–
5522

64. Williams RE, Lenz EM, Lowden JS, Rantalainen M, Wilson ID.

The metabonomics of aging and development in the rat: an
investigation into the effect of age on the profile of endogenous
metabolites in the urine of male rats using 1H NMR and HPLC-
TOF MS. Mol Biosyst 2005; 1(2): 166–175

65. Schnackenberg LK, Sun J, Espandiari P, Holland RD, Hanig J,
Beger RD. Metabonomics evaluations of age-related changes in
the urinary compositions of male Sprague Dawley rats and effects
of data normalization methods on statistical and quantitative

analysis. BMC Bioinformatics 2007; 8(Suppl 7): S3

66. Hennebelle M, Roy M, St-Pierre V, Courchesne-Loyer A, Fortier
M, Bouzier-Sore AK, Gallis JL, Beauvieux MC, Cunnane SC.
Energy restriction does not prevent insulin resistance but does
prevent liver steatosis in aging rats on a Western-style diet.
Nutrition 2015; 31(3): 523–530

67. Nestor G, Eriksson J, Sandström C, Malmlöf K. Nuclear magnetic
resonance-based blood metabolic profiles of rats exposed to short-
term caloric restriction. Anal Lett 2015; 48(16): 2613–2625

642 Caloric restriction, microbiota, and metabolome



68. al-Waiz M, Mikov M, Mitchell SC, Smith RL. The exogenous

origin of trimethylamine in the mouse. Metabolism 1992; 41(2):
135–136

69. De Guzman JM, Ku G, Fahey R, Youm YH, Kass I, Ingram DK,
Dixit VD, Kheterpal I. Chronic caloric restriction partially protects
against age-related alteration in serum metabolome. Age (Dordr)
2013; 35(4): 1091–1104

70. Zhang Y, Yan S, Gao X, Dai W, Liu S, Jin H, Zhang W, Mei C.
Metabonomic investigation on the protective effects of rosiglita-
zone and caloric restriction for renal senescence in a rat model.
Aging Clin Exp Res 2012; 24(5): 430–438

71. Meidenbauer JJ, Ta N, Seyfried TN. Influence of a ketogenic diet,
fish-oil, and calorie restriction on plasma metabolites and lipids in
C57BL/6J mice. Nutr Metab (Lond) 2014; 11(1): 23

72. Malandrucco I, Pasqualetti P, Giordani I, Manfellotto D, De Marco
F, Alegiani F, Sidoti AM, Picconi F, Di Flaviani A, Frajese G,
Bonadonna RC, Frontoni S. Very-low-calorie diet: a quick
therapeutic tool to improve β cell function in morbidly obese
patients with type 2 diabetes. Am J Clin Nutr 2012; 95(3): 609–613

73. Szapary PO, Rader DJ. The triglyceride-high-density lipoprotein
axis: an important target of therapy? Am Heart J 2004; 148(2):
211–221

74. Cazzola R, Rondanelli M, Trotti R, Cestaro B. Effects of weight
loss on erythrocyte membrane composition and fluidity in
overweight and moderately obese women. J Nutr Biochem 2011;
22(4): 388–392

75. Samad F, Hester KD, Yang G, Hannun YA, Bielawski J. Altered
adipose and plasma sphingolipid metabolism in obesity: a potential

mechanism for cardiovascular and metabolic risk. Diabetes 2006;
55(9): 2579–2587

76. Weir JM, Wong G, Barlow CK, Greeve MA, Kowalczyk A,
Almasy L, Comuzzie AG, Mahaney MC, Jowett JB, Shaw J,
Curran JE, Blangero J, Meikle PJ. Plasma lipid profiling in a large
population-based cohort. J Lipid Res 2013; 54(10): 2898–2908

77. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M,
Tanaka K, Cuervo AM, Czaja MJ. Autophagy regulates lipid
metabolism. Nature 2009; 458(7242): 1131–1135

78. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome.
Lancet 2005; 365(9468): 1415–1428

79. Ni Y, Zhao L, Yu H, Ma X, Bao Y, Rajani C, Loo LW, Shvetsov

YB, Yu H, Chen T, Zhang Y,Wang C, Hu C, SuM, Xie G, Zhao A,
Jia W, Jia W. Circulating unsaturated fatty acids delineate the
metabolic status of obese individuals. EBioMedicine 2015; 2(10):
1513–1522

80. Wijeyesekera A, Selman C, Barton RH, Holmes E, Nicholson JK,
Withers DJ. Metabotyping of long-lived mice using 1H NMR
spectroscopy. J Proteome Res 2012; 11(4): 2224–2235

81. Javitt NB. Bile acid synthesis from cholesterol: regulatory and
auxiliary pathways. FASEB J 1994; 8(15): 1308–1311

82. Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in
gastrointestinal inflammation and carcinogenesis. Nat Rev Gastro-
enterol Hepatol 2017; 15(2): 111–128

83. Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K.
Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug
Discov 2008; 7(8): 678–693

84. Fu ZD, Klaassen CD. Increased bile acids in enterohepatic
circulation by short-term calorie restriction in male mice. Toxicol

Appl Pharmacol 2013; 273(3): 680–690

85. Straniero S, Rosqvist F, Edholm D, Ahlström H, Kullberg J,
Sundbom M, Risérus U, Rudling M. Acute caloric restriction
counteracts hepatic bile acid and cholesterol deficiency in morbid
obesity. J Intern Med 2017; 281(5): 507–517

86. Green CL, Mitchell SE, Derous D, Wang Y, Chen L, Han JJ,
Promislow DEL, Lusseau D, Douglas A, Speakman JR. The effects

of graded levels of calorie restriction: IX. Global metabolomic
screen reveals modulation of carnitines, sphingolipids and bile
acids in the liver of C57BL/6 mice. Aging Cell 2017; 16(3): 529–
540

87. Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA,
Gill S, Leblanc M, Chaix A, Joens M, Fitzpatrick JA, Ellisman
MH, Panda S. Time-restricted feeding without reducing caloric
intake prevents metabolic diseases in mice fed a high-fat diet. Cell

Metab 2012; 15(6): 848–860

88. Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW,
Sato H, Messaddeq N, Harney JW, Ezaki O, Kodama T,
Schoonjans K, Bianco AC, Auwerx J. Bile acids induce energy
expenditure by promoting intracellular thyroid hormone activation.
Nature 2006; 439(7075): 484–489

89. Ferbeyre G. Bile acids in the fountain of youth. Aging (Albany
NY) 2010; 2(7): 383–384

90. MacDonald M, Neufeldt N, Park BN, Berger M, Ruderman N.
Alanine metabolism and gluconeogenesis in the rat. Am J Physiol
1976; 231(2): 619–626

91. Lee CK, Klopp RG, Weindruch R, Prolla TA. Gene expression

profile of aging and its retardation by caloric restriction. Science
1999; 285(5432): 1390–1393

92. Lee CK, Weindruch R, Prolla TA. Gene-expression profile of the
ageing brain in mice. Nat Genet 2000; 25(3): 294–297

93. Wu C, Kang JE, Peng LJ, Li H, Khan SA, Hillard CJ, Okar DA,
Lange AJ. Enhancing hepatic glycolysis reduces obesity: differ-

ential effects on lipogenesis depend on site of glycolytic
modulation. Cell Metab 2005; 2(2): 131–140

94. Lee CH, Olson P, Hevener A, Mehl I, Chong LW, Olefsky JM,
Gonzalez FJ, Ham J, Kang H, Peters JM, Evans RM. PPARδ
regulates glucose metabolism and insulin sensitivity. Proc Natl
Acad Sci USA 2006; 103(9): 3444–3449

95. Gu Y, Zhao A, Huang F, Zhang Y, Liu J, Wang C, Jia W, Xie G,

Jia W. Very low carbohydrate diet significantly alters the serum
metabolic profiles in obese subjects. J Proteome Res 2013; 12(12):
5801–5811

96. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien
LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, Rochon J, Gallup
D, Ilkayeva O, Wenner BR, Yancy WS Jr, Eisenson H, Musante G,
Surwit RS, Millington DS, Butler MD, Svetkey LP. A branched-
chain amino acid-related metabolic signature that differentiates

obese and lean humans and contributes to insulin resistance. Cell
Metab 2009; 9(4): 311–326

97. Shah SH, Crosslin DR, Haynes CS, Nelson S, Turer CB, Stevens
RD, Muehlbauer MJ, Wenner BR, Bain JR, Laferrère B,
Gorroochurn P, Teixeira J, Brantley PJ, Stevens VJ, Hollis JF,
Appel LJ, Lien LF, Batch B, Newgard CB, Svetkey LP. Branched-
chain amino acid levels are associated with improvement in insulin
resistance with weight loss. Diabetologia 2012; 55(2): 321–330

98. Nilsson M, Holst JJ, Björck IM. Metabolic effects of amino acid

Xiaojiao Zheng et al. 643



mixtures and whey protein in healthy subjects: studies using
glucose-equivalent drinks. Am J Clin Nutr 2007; 85(4): 996–1004

99. Tavernarakis N, Driscoll M. Caloric restriction and lifespan: a role
for protein turnover? Mech Ageing Dev 2002; 123(2-3): 215–229

100. Ingram DK, Young J, Mattison JA. Calorie restriction in nonhuman
primates: assessing effects on brain and behavioral aging.
Neuroscience 2007; 145(4): 1359–1364

101. Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E,
Verger EO, Kayser BD, Levenez F, Chilloux J, Hoyles L; MICRO-
Obes Consortium, Dumas ME, Rizkalla SW, Doré J, Cani PD,
Clément K. Akkermansia muciniphila and improved metabolic
health during a dietary intervention in obesity: relationship with
gut microbiome richness and ecology. Gut 2016; 65(3): 426–436

102. Griffin NW, Ahern PP, Cheng J, Heath AC, Ilkayeva O, Newgard
CB, Fontana L, Gordon JI. Prior dietary practices and connections
to a human gut microbial metacommunity alter responses to diet
interventions. Cell Host Microbe 2017; 21(1): 84–96

103. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G,
Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P, Li J,
Burgdorf K, Grarup N, Jørgensen T, Brandslund I, Nielsen HB,
Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S,

Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clément K,

Doré J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-
Ponten T, de Vos WM, Zucker JD, Raes J, Hansen T; MetaHIT
consortium, Bork P, Wang J, Ehrlich SD, Pedersen O. Richness of
human gut microbiome correlates with metabolic markers. Nature
2013; 500(7464): 541–546

104. Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier
E, Almeida M, Quinquis B, Levenez F, Galleron N, Gougis S,
Rizkalla S, Batto JM, Renault P; ANR MicroObes consortium,
Doré J, Zucker JD, Clément K, Ehrlich SD. Dietary intervention

impact on gut microbial gene richness. Nature 2013; 500(7464):
585–588

105. Stefka AT, Feehley T, Tripathi P, Qiu J, McCoy K, Mazmanian
SK, Tjota MY, Seo GY, Cao S, Theriault BR, Antonopoulos DA,
Zhou L, Chang EB, Fu YX, Nagler CR. Commensal bacteria
protect against food allergen sensitization. Proc Natl Acad Sci
USA 2014; 111(36): 13145–13150

106. Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger
A, Ben-Yacov O, Lador D, Avnit-Sagi T, Lotan-Pompan M, Suez
J, Mahdi JA, Matot E, Malka G, Kosower N, Rein M, Zilberman-
Schapira G, Dohnalová L, Pevsner-Fischer M, Bikovsky R,
Halpern Z, Elinav E, Segal E. Personalized nutrition by prediction
of glycemic responses. Cell 2015; 163(5): 1079–1094

644 Caloric restriction, microbiota, and metabolome


	Outline placeholder
	bmkcit1
	bmkcit2
	bmkcit3
	bmkcit4
	bmkcit5
	bmkcit6
	bmkcit7
	bmkcit8
	bmkcit9
	bmkcit10
	bmkcit11
	bmkcit12
	bmkcit13
	bmkcit14
	bmkcit15
	bmkcit16
	bmkcit17
	bmkcit18
	bmkcit19
	bmkcit20
	bmkcit21
	bmkcit22
	bmkcit23
	bmkcit24
	bmkcit25
	bmkcit26
	bmkcit27
	bmkcit28
	bmkcit29
	bmkcit30
	bmkcit31
	bmkcit32
	bmkcit33
	bmkcit34
	bmkcit35
	bmkcit36
	bmkcit37
	bmkcit38
	bmkcit39
	bmkcit40
	bmkcit41
	bmkcit42
	bmkcit43
	bmkcit44
	bmkcit45
	bmkcit46
	bmkcit47
	bmkcit48
	bmkcit49
	bmkcit50
	bmkcit51
	bmkcit52
	bmkcit53
	bmkcit54
	bmkcit55
	bmkcit56
	bmkcit57
	bmkcit58
	bmkcit59
	bmkcit60
	bmkcit61
	bmkcit62
	bmkcit63
	bmkcit64
	bmkcit65
	bmkcit66
	bmkcit67
	bmkcit68
	bmkcit69
	bmkcit70
	bmkcit71
	bmkcit72
	bmkcit73
	bmkcit74
	bmkcit75
	bmkcit76
	bmkcit77
	bmkcit78
	bmkcit79
	bmkcit80
	bmkcit81
	bmkcit82
	bmkcit83
	bmkcit84
	bmkcit85
	bmkcit86
	bmkcit87
	bmkcit88
	bmkcit89
	bmkcit90
	bmkcit91
	bmkcit92
	bmkcit93
	bmkcit94
	bmkcit95
	bmkcit96
	bmkcit97
	bmkcit98
	bmkcit99
	bmkcit100
	bmkcit101
	bmkcit102
	bmkcit103
	bmkcit104
	bmkcit105
	bmkcit106



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


