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Abstract Tumor microenvironment (TME) is comprised of cellular and non-cellular components that exist
within and around the tumor mass. The TME is highly dynamic and its importance in different stages of cancer
progression has been well recognized. A growing body of evidence suggests that TME also plays pivotal roles in
cancer treatment responses. TME is significantly remodeled upon cancer therapies, and such change either
enhances the responses or induces drug resistance. Given the importance of TME in tumor progression and
therapy resistance, strategies that remodel TME to improve therapeutic responses are under developing. In this
review, we provide an overview of the essential components in TME and the remodeling of TME in response to
anti-cancer treatments. We also summarize the strategies that aim to enhance therapeutic efficacy by modulating

TME.
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Introduction

Cancer progression is a very complicated process,
involving both malignant cells and surrounding compo-
nents. Although accumulation of genetic and epigenetic
alterations initiates cancer, tumor microenvironment
(TME) is a key regulator of cancer progression. Immune
effector cells that infiltrate and accumulate at TME keep
the malignant cells under surveillance. TME also forms
“barriers” to restrain cancer cell invasion and metastasis.
On the other hand, TME can be subverted by cancer cells
to facilitate the malignant progression of cancer. For
example, TME may develop a number of biochemical and
biophysical characteristics that are conducive to tumor
progression, such as high interstitial fluid pressure,
hypoxia, acidosis, and increased extracellular matrix
(ECM) stiffness [1-4]. Moreover, TME negatively regulate
immune effector cells by recruiting myeloid derived
suppressor cells (MDSCs), tumor associated macrophages
(TAMs), and regulatory T cells (Tregs) to provide an
immunosuppressive niche for cancer [5].

The crucial role of TME in cancer therapeutic responses
has also been recognized. Given the profound crosstalk
that exists between malignant cells and TME, therapies
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that aim to eliminate cancer cells often stimulate the
remodeling of TME. Studies suggest that chemo- and
radiotherapies could modulate TME to be more immuno-
genic and result in a synergistic tumor killing effect [6-8].
In contrast, during treatments, TME could protect tumor
cells by creating “barriers” to prevent drug penetration or
immune effector cell infiltration [9,10]. Furthermore, TME
could also be remodeled to mediate drug resistance by
activating survival pathways in malignant cells upon
treatments [11]. With growing knowledge of TME-
mediated therapy resistance and the developing of
nanotechnologies, approaches that increase therapeutic
efficacy by remodeling TME are under developing. For
instance, immune related therapies that aim to create a
more immunogenic TME to enhance immune responses,
and nanoparticles that modulate TME to increase the drug
delivery efficiency have been successfully employed for
cancer therapy [11,12].

In this review we summarize the major components of
TME and their roles in tumor progression. We then discuss
the treatment-induced remodeling of TME and the
strategies that were applied to modulate TME to improve
cancer therapy.

Microenvironment and tumor progression

Tumors are composed of not only malignant cells but also
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many other non-transformed cells and secreted extracel-
lular components. The crosstalk between malignant and
non-transformed cells constitute the signaling milieu in the
tumor microenvironment (TME), which is critical for
tumor progression [13]. Non-transformed cells in TME
include immune-related cells, fibroblasts, neuronal cells,
endothelial cells and many other specialized stromal cells.
Both the composition of TME and their functions are
highly dynamic and diverse across different cancer types
and disease stages. Here we highlight some of the key
TME components and their positive or negative roles in
tumor progression (Fig. 1). As stromal cells often play
context-dependent, and sometimes even opposite roles in
different cancer types, we do not intend to provide a
comprehensive summary of their diverse role in major
cancer types. Rather, the descriptions below provide
examples to illustrate their important functions in cancer
progression.

Cellular components in the TME that suppress tumor
progression

Tumor-infiltrating lymphocytes (TILs) are often found in
TME, and the levels of TILs are usually correlated with the
prognosis of cancers [14]. Different types of lymphocytes
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Fig. 1 TME components that regulate tumor progression.
Schematic illustration of the major cellular and non-cellular
components of TME that either promote (pink arrows) or inhibit
(green “T” shapes) tumor progression. ECM, extracellular matrix;
MDSC, myeloid derived suppressor cell; TAM, tumor-associated
macrophage; Treg, regulatory T cell; CTL, cytotoxic T lympho-
cyte; NK, natural killer cell; CAF, cancer-associated fibroblast;
TEC, tumor-associated endothelial cell; Th, CD4" T helper
lymphocyte; TIDC, tumor-infiltrating dendritic cell; TAN, tumor-
associated neutrophil; TIL B, tumor-infiltrating lymphocyte B
cell.

have distinct functions in TME. CD8* cytotoxic T
lymphocytes (CTLs) are normally activated by antigens
and capable of killing tumor cells. Their presence at TME
is strongly associated with good prognosis [15]. A meta-
analysis based on research literature in PubMed and
Embase that contain CTLs status and patient survival data
concluded that CD8* CTLs is a good prognosis factor for
survival, with a hazard ratio of 0.71 (95% confidence
interval (CI) 0.62—0.82) [14].

Natural killer (NK) cells are another immune cell
population that is capable of eliminating malignant cells
and infected cells. Previous preclinical study indicated that
in spontaneous leukemia and prostate cancer models, NK
cells depletion accelerated tumor progression [16]. In line
with this, the presence of NK cells in the TME correlated
with clinical outcomes in a variety of cancers. In colorectal
carcinomas, patients with little or moderate NK cells in
TME had significantly worse overall and disease-free
survival rates [17]. Likewise, in squamous cell lung cancer
and several other cancer types, tumor-infiltrating NK cells
were shown as a good prognostic factor [18-21].
Mechanistically, IL-2 has been demonstrated as a critical
factor that mediate the activation of NK cells, leading to
their tumor killing effects [22].

Cellular components in TME that promote
tumor progression

Regulatory T cells (Tregs), which are characterized with
Foxp3 and CD25 expression, are often associated with
poor clinical outcomes [23]. Experimentally, removal of
Tregs with anti-CD25 antibody in mouse models sig-
nificantly increased CD8* CTLs in TME and enhanced the
rejection of tumors [24-26]. Mechanistically, Tregs exert
an immune suppressive function through the production
of IL-10, TGF-B and cytotoxic T lymphocyte-associated
antigen 4 (CTLA-4) [27].

Tumor-associated macrophages (TAMs), which are
commonly identified by expression of CD163, CD204,
or CD206, are prominent immune cells that orchestrate
various stromal responses in TME [28,29]. The function of
TAMs in promoting tumor progression has been well
established. Previous studies indicated that the higher
numbers of TAMs correlated with worse clinical outcomes
in multiple cancer types. Specifically, the accumulation of
CD163* TAMs in malignant pleural effusion in lung
cancer patients was closely correlated with poor prognosis
[30]. CD204" TAM was also reported as an independent
poor prognostic factor in esophageal squamous cell
carcinoma [31] and a high density of infiltrated TAMs is
associated with aggressive features of gastric cancer as
well [32]. Mechanistically, TAMs produce cytokines such
as IL-6/IL-17/IL-23 or mitogens to induce the initiation
and progression of cancer via the NF-kB or STAT3
signaling pathway in tumor cells [33-35].
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Numerous reports describe the presence of myeloid-
derived suppressor cells (MDSCs) in both murine and
human TME [36,37]. The main feature of MDSCs is their
potent immune suppressive activity, which promotes tumor
progression. MDSCs inhibit antigen-nonspecific, CD3/
CD28 mediated T cell proliferation, resulting in the
suppression of immune responses in the TME [38].
Interestingly, elevated suppressive activity of tumor
MDSCs was associated with a significant increase in the
expression of genes associated with fatty acid oxidation
[38], which provide an insight into the mechanisms
underlying MDSCs-mediated immune suppression.

Cancer-associated fibroblasts (CAFs) are highly hetero-
geneous and originate from different cells, such as resident
fibroblasts, epithelia cells, endothelia cells or mesenchy-
mal cells [39]. It is one of the most crucial components of
the TME in promoting tumor growth, invasion, and
metastasis. Studies indicated that CAFs produce and
secrete many growth factors and cytokines such as TGF-
B, hepatocyte growth factor (HGF), and fibroblast secreted
protein-1 (FSP1) to support primary tumor growth [40,41].
CAFs can also promote angiogenesis by secreting stromal
derived factorl (SDF-1) to recruit endothelial cell
precursors (EPCs) [41]. Interestingly, SDF-1a (also
known as CXCL12) binds to CXCR4 in tumors cells to
directly stimulate cancer cell proliferation [42]. Moreover,
CAFs may promote tumor growth through distinct path-
ways in different cancer types. For example, melanoma
cells cannot produce insulin-like growth factor 1 (IGF-1)
themselves to support tumor growth; instead, they rely on
IGF-1 provided by surrounding CAFs [43]. In lung and
prostate cancers, CAFs can respond to androgens to
produce growth factors that induce epithelial proliferation
[43,44]. In addition to secreting growth factors, CAFs can
behave like a mutagen to increase the tumorigenic ability
of cancer cells. For instance, CAFs generate reactive
oxygen species (ROS) under low pH and hypoxia
environment which act as a mutagen to the surrounding
cells [45,46]. On the other hand, CAFs can also affect
cancer cell growth by affecting their metabolic pathways
[47]. Tt has been shown that chronic inflammation and
cancer are closely related [48]. In mouse models of skin,
breast and pancreatic tumors, CAFs express a proinflam-
matory gene signature, which contributes to the support of
tumor growth by enhancing neovascularization and the
recruitment of immune cells [42].

Other than promoting primary tumor growth, CAFs in
TME also increase tumor invasion and metastasis. CAFs
promote cancer invasion by secreting various matrix-
degrading proteases as well as their activators such as uPA
[49]. uPA can cleave matrix metalloproteinase (MMPs) to
activate these proteins, and upregulation of MMPs activity
results in significant extracellular matrix (ECM) degrada-
tion, which contribute to angiogenesis and metastasis [50].

Tumor endothelial cell (TEC) is another TME compo-

nent that demonstrate distinct phenotypes from their
normal counterparts. First, TECs usually have irregular
shape and size [51]; second, TECs have distinct respon-
siveness to EGF, adrenomedullin and VEGF compared
with normal endothelial cells [52—54]. Through a bidirec-
tional interaction between tumor cells, TECs actively
promote cancer metastasis [55]. Previous study also
suggested that TECs isolated from highly metastatic
tumors significantly enhanced the metastatic ability of
weakly metastatic cancer cells in co-transplantation
experiments [55]. Mechanistically, DNA demethylation
in TECs causes upregulation and secretion of biglycan,
which is a small leucine-rich repeat proteoglycan. Tumor
cell migration is then activated by biglycan via NF-kB and
extracellular signal-regulated kinase 1/2 (ERK1/2) [55].

Double-edged cellular components

Previous study suggested that CD8* CTLs are regulated by
CD4" T helper lymphocytes (Th), which are a class of
heterogeneous cytokine secreting T lymphocytes in TME
[15]. Th cells are critical for the immune response
development against infection or malignancy [56]. In
tumor context, Th can develop into Th1 and Th1 subtypes
upon antigen activation, both of which are important for
tumor progression. Thl cells, which are characterized by
the production of IL-2 and IFN-vy, are associated with
favorable clinical outcomes [15]. However, Th2 cells could
have controversial effects on tumor progression [57].
Tumor-infiltrating lymphocyte B (TIL B) cells play
critical roles in regulating tumor progression in cooperat-
ing with other resident cells in the TME. TIL B cells was
previously reported as the second-best immune cell
predictor (after CD8* TILs) of positive disease outcome
in metastatic melanoma [58]. The presence of B cells was
also correlated with reduced relapse rate and increased
survival in cervical cancer and lung cancer, respectively
[59-61]. However, preclinical studies also indicated some
tumor-promoting roles of B cells [62,63]. It is well
characterized that TIL B cells can produce lymphotoxin,
which is a survival factor that induce angiogenesis [64]. In
prostate cancer models, the secreted lymphotoxin activates
non-canonical and canonical NF-kB signaling and STAT3
in cancer cells, resulting in androgen-refractory growth and
tumor progression [65—-67]. Moreover, by upregulating IL-
8, B cells can also promote bladder cancer metastasis
through androgen receptor and MMP signaling pathways
[68]. In summary, the TIL B cells play widely varied roles
in tumor progression, and contribute to either tumor
growth or antitumor immunity in different context.
Dendritic cells (DCs), which can uptake, process and
present antigens, are characterized as one of the most
potent antigen-presenting cells (APCs) [69]. They have
been identified in the TME in many different cancer types
with pivotal roles [70]. The tumor-infiltrating DCs
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(TIDCs) has been found to be correlated with good
prognosis in some cancer types. For example, increased
number of TIDCs infiltration in primary tumors has been
shown to correlate with significantly longer patient
survival and less incidence of metastatic disease in a
variety of different cancer types [71]. However, due to the
complexity of phenotype as well as the methods of
identification, controversial results were shown in different
studies. For instance, in colorectal carcinoma, patients with
lower numbers of TIDCs have both better disease-free and
overall survival [72].

Although the presence of neutrophils in tumors often
associates with poor prognosis, the contribution of tumor-
associated neutrophils (TANs) to disease progression is
unclear. Many studies indicated that TANs play a pro-
tumor role in cancer progression. For instance, Bekes et al.
showed that neutrophils produce MMP9 within the TME
and contributes to angiogenesis, tumor progression, and
metastasis in mouse transplantation models [73]. In
contrast, other studies have suggested that TANs can
play an anti-tumor role by activating the immune response
against tumors and promoting tumor cell clearance [74].
Overall, the studies suggested that TANs display plasticity
and can be polarized into either an anti-tumoral or pro-
tumoral phenotype depending on environmental factors.

Pericytes, also known as perivascular stromal cells, are
an integral component of the tumor vasculature that
provide structural support to blood vessels [75]. During
tumor angiogenesis, the amount of pericytes that cover the
vessels could vary dramatically. Clinical studies suggest
that the pericyte coverage of tumor microvessels is
correlated with cancer progression [76]. In melanoma
and renal cell carcinoma, increased pericyte coverage is
associated with aggressive clinicopathological features,
resistance to therapy, and unfavorable clinical outcome of
patients [77]. However, in bladder and colorectal cancers,
low pericyte coverage of the vasculature correlates with
poor prognosis and increased metastases [76,78]. Con-
sistently, recent studies reported that pericyte ablation
leads to increased vessel permeability and poor vessel
integrity, which inhibited tumor growth but also promoted
blood vessel invasion and metastatic spread [79,80]. These
findings illustrate multi-faceted roles of pericytes in tumor
progression.

Non-cellular components

Other than cytokines, chemokines, and growth factors that
secreted by the cells discussed above, the major non-
cellular component of TME is the ECM. The ECM not
only provides a physical scaffold for transformed and non-
transformed cells but also directly regulates the home-
ostasis of TME and the progression of tumors. ECM is
composed of a variety of proteins with distinct physical
and biochemical properties, such as glycoproteins, pro-

teoglycans, and polysaccharides [81]. All these proteins
are deposited by both malignant and other cellular
components in TME. During the progression of tumor,
ECM changes dynamically in composition [82]. With a
proteomics-based discovery approach, Naba et al. defined
ECM signatures of poorly and highly metastatic mammary
carcinomas [82]. It has been shown that in ER"/PR™ breast
cancer patients, higher expression of ECM proteins LTBP3
and SNEDI in TME is associated with worse prognosis
[82]. On the other hand, ECM proteins that inhibit breast
cancer progression and metastasis, and correlate with good
prognosis in patients have also been identified, such as
IGFBP4 and TINAGL1 [82,83].

Taken together, different TME components have distinct
functions in tumor progression (Fig. 1). Moreover, the
function of each components could be context-dependent
in different cancer types. Therefore, development of
therapeutic approach targeting the TME needs to consider
specific role of each TME component in a particular cancer

type.

Treatment-induced TME remodeling

As mentioned above, TME has a variety of cellular and
non-cellular components, which are dynamically changing
during tumor progression. On the other hand, treatments
aiming at inhibiting tumor progression also modulate the
TME. The treatment-induced TME remodeling could
either synergistically promote tumor cell elimination or
cause therapy resistance and ultimately restore tumor
progression (Fig. 2).

Chemo- and radiotherapies

Although chemo- and radiotherapies have substantial
adverse effects on cancer patients, they are still widely
applied in cancer treatments especially for those diseases
that effective targeted therapy has not been developed,
such as triple-negative breast cancer and pancreatic cancer
[84]. However, most of the cancers develop resistance to
chemo- and radiotherapies at late stages [84,85]. The
mechanisms of the resistance are still largely unknown. A
growing body of evidence suggests that chemo- and
radiotherapies remodel TME, which in turn induces
therapy resistance.

After chemotherapy, the damaged TME could undergo
remodeling processes and become a tumor-promoting
environment. Previous studies indicated that chemother-
apy induces DNA damage-activated NF-kB pathway,
which then upregulates the Wnt family member
WNTI16B. Increased WNT16B in TME activates the
canonical Wnt signaling pathway in tumors and attenuates
the effects of chemotherapy [86]. In mouse model studies,
paclitaxel and doxorubicin treatments have been reported
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Fig. 2 Treatment-induced TME remodeling that inhibits tumor progression or promotes treatment resistance. Top: treatment-induced
TME remodeling with tumor inhibitory effect: chemo-/radio- and some target therapies could increase CTL and NK cell infiltration or
activities, and decrease MDSC number in TME; targeted therapy could downregulate Tregs and the expression of PD-L1 in TME;
hormone therapy could modulate ECM by reducing MMP9 and collagen; and all three therapies could increase immunostimulatory
cytokines in the TME. Bottom: TME remodeling-induced treatment resistance: chemo/radiotherapy could upregulate WNT and Notch
signaling in tumor cells by increasing WNT16B secretion from CAF, or Jagged1 expression in MSC and osteoblasts; chemo/radiotherapy
could also disrupt vessels to induce hypoxia; all three therapies could recruit more TAM into TME; and hormone therapy could increase
expression of resistant-promoting cytokines, such as IL-1B. MSC, mesenchymal stem cell.

to increase the recruitment of TAMs in PyMT-MMTV
mammary carcinoma, which then induces the treatment
resistance [87,88]. Similarly, gemcitabine treatment
recruits more TAMs into TME with immune suppressive
functions in mouse pancreatic cancer model [89]. It has
also been shown recently that chemotherapy agents, such
as paclitaxel and cisplatin, remodel TME by inducing
Jagged] expression in osteoblasts and mesenchymal stem
cells, which feeds back to tumor cells to activate Notch
signaling and promotes chemo-resistance [90].

Similar to chemotherapy-induced treatment resistance,
many aspects of the TME can render a tumor to become
resistant to radiotherapy. Radiotherapy remodels TME by
inducing endothelial cell dysfunction and damaging tumor
vasculature, and therefore, resulting in hypoxia, which is a
key regulatory factor in tumor growth [91,92]. The crucial
role of hypoxia in radiotherapy resistance has been well
characterized [92,93]. Similar to chemotherapy, radio-
therapy also increases TAMs in TME, resulting in
immunosuppression and tumor progression [94].

Therapy-induced TME alterations are not always tumor-

promoting. In some cases, chemo- and radiotherapies
could foster anti-tumor activity by changing the TME.
Gemcitabine and S-fluorouracil (SFU) treatments were
selectively cytotoxic on MDSCs and the elimination of
MDSC:s increased the activity of CD8* cells [6]. Treatment
of eribulin mesylate, which is a tubulin binding drug,
inhibits tumor progression by increasing the vessels
density and NK cell infiltration in TME [8]. Similarly,
tumor irradiation could induce damage responses that
change the predominant TME cytokine profile toward an
immunostimulatory profile, leading to the immunogenic
cell death of cancer cells [7,95].

Targeted therapy

Given that fact that more and more signaling pathways
have been identified to be crucial for cancer progression
and the key molecules in these pathways have been
discovered, targeted therapies have been increasingly
applied in cancer treatments. Many of the key molecule
targets of such therapies are critical for TME assembling
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and remodeling. Changing of the TME could significantly
affect the efficacy of treatments, which either promote
tumor regression or induce resistance.

Sorafenib is a small molecule inhibitor of several
tyrosine protein kinases, such as VEGFR, PDGFR, and
Raf family kinases [96,97], and has been approved for
advanced renal carcinoma, hepatocellular carcinoma
(HCC), and radioactive iodine resistant advanced thyroid
carcinoma. Preclinical study with HCC mouse model
revealed that sorafenib treatment increased the activation
of NK cells in TME, thereby promoting tumor regression
[98]. Similarly, it has been shown that treatment with
sunitinib, another multi-target receptor tyrosine kinase
inhibitor, significantly decreased the number of MDSCs
and Tregs, and increased CTLs in TME [99]. Suh et al.
demonstrated that treatment of afatinib and lapatinib,
which are EGFR and HER2 inhibitors, suppressed both the
PD-L1 expression and expression of cytokines, such as
CCL2, CCL21, and CXCL1, in the TME [100]. Moreover,
studies suggested that PARP inhibitor BMN673 increased
the proportion of cytotoxic immune cells while simulta-
neously decreasing the proportion of immunosuppressive
cells in BRCA-deficient ovarian cancer mouse [101]. Based
on the promising results, there are several ongoing trials
combining PARP and immune checkpoint inhibitors [102].

In contrast to positive synergy shown in the examples
above, target therapies have also been shown to modulate
TME and resulted in a treatment resistant environment. For
example, using the cis-Apc/Smad4 mouse model of locally
invasive intestinal adenocarcinoma, Fujishita e a/. found
that mTOR inhibitors administration induced the activation
of EGFR and MEK/ERK signaling in stromal cells,
leading to treatment resistance [103]. In contrast to
BRCA-deficient ovarian cancer model, olaparib and
talazoparib, which are PARP inhibitors, upregulated PD-
L1 expression via GSK3p signaling and induced an
immune suppressive TME in breast cancer models [104].
In addition, therapeutic mAb cetuximab that targeted
EGFR increased the tumor-promoting TAMs in TME and
attenuated treatment responses [105].

Hormonal therapy

Anti-estrogen hormone therapy is routinely applied as
adjuvant treatment for breast cancer patients with estrogen
receptor-o. (ERa) positive tumors. However, a high
percentage of patients develop resistance, and up to one
third of them have cancer recurrence within 15 years [106].
Previous studies suggest that hormone therapy could
modulate TME which then induces treatment resistance.
Specifically, it has been observed that cytokine profile in
the TME was changed upon ERa suppression, for
example, IL-1P level is significantly unregulated [107].
In presence of IL-1p, tamoxifen acts as an agonist rather
than an antagonist, and promotes tumor progression [108].

Androgen deprivation therapy (ADT) is an effective
treatment for initial suppression of prostate cancer
progression. However, many patients develop ADT
resistance which leads to the development of incurable
disease. A growing body of evidence suggests that
macrophages in TME are critical in promoting ADT
resistance. For example, large numbers of TAMs were
recruited to the TME shortly after ADT [109-111].
Moreover, the TAMs recruitment is associated with an
increase in cancer cell proliferation [111,112]. In contrast,
abiraterone acetate (ABA), which is a steroidal CYP17A1
inhibitor and by extension androgen synthesis inhibitor,
remodels TME to enhance treatment response.
ABA administration blocks the deposition of collagen in
TME in Pten-deficient prostate cancer model [113].
ABA treatment also alters cytokine and chemokine
profiles, such as upregulating metalloproteinase
1 (mTIMP1), keratinocyte-derived chemokine (KC or
termed mCXCL1), chemokine (C-X-C motif) ligand-2
(mCXCL2), thymus and activation regulated chemokine
(TARC or termed mCCL17), and downregulating inter-
feron y-induced protein IP-10 (also called mCXCL10),
macrophage inflammatory protein-lo. (MIP-1a or
mCCL3), macrophage inflammatory protein- 1§ (MIP-1p
or mCCL4), and transforming growth factor Bl (mTGF-
B1) [113]. Furthermore, ABA treatment decreases MMP9
expression in the TME of Pten null tumors in mice, and
inhibits tumor progression [113].

In conclusion, therapies that target cancer cells could
change the TME composition profoundly, which in turn
significantly affects the therapeutic efficacy (Fig. 2). Given
the critical roles of TME in tumor progression, the
remodeling of TME upon treatment should be taken into
consideration during cancer therapy.

Modulating TME to improve cancer therapy

As discussed above, TME is not only involved in tumor
progression but also plays pivotal roles in cancer treatment
responses. Moreover, cancer treatments could modulate
TME to form a therapy-resistant niche and promote tumor
progression. Therefore, there is increasing interest in
targeting or remodeling the TME as a strategy to optimize
therapeutic effects (Fig. 3).

Immune-related strategies

The TME often limits infiltration of effector T cells into the
tumors, and diminishes T cell expansion, or reduces the
viability of CTLs [114]. Thus, TME provides an immune
suppressive niche to help cancer cells escape from immune
surveillance. To counter this, a variety of immunotherapies
that remodel TME components have been developed and
shown promising clinical outcomes.
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Fig. 3 Modulating TME to improve therapeutic responses. Immune-related strategies, such as immune checkpoint blockade, oncolytic
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decreasing the activity of Tregs, and increasing tumor killing cytokines, such as INF-y and TNF-a. Nanoparticles could modulate TME by
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to improve drug delivery and reduce hypoxia. Other strategies such as nanoparticles loaded with laminin-mimic peptide could also mimic
and reinforce ECM to prevent dissemination of tumor cells. TAA, tumor-associated antigen; NPs, nanoparticles.

Immune checkpoint blockade therapy, which employed
antibodies that target CTLA-4 or the programmed cell
death protein 1 pathway (PD-1/PD-L1), has demonstrated
promising responses in many malignancies [115]. Given
that costimulatory signals are critical for the T cell
activation, the binding of B7-1 (CD80) or B7-2 (CD86)
molecules on the antigen-presenting cells with CD28
molecules on the T cell provides such costimulatory signal
to promote the proliferation and activation of T cells [116].
On the other hand, CTLA-4, which is a homolog of CD28
but with higher binding affinity, competes with CD28 to
bind B7 [117,118]. CTLA-4/B7 binding generates inhibi-
tory signals that suppress the stimulatory signals from
CD28/B7 interaction [119]. Similarly, as a member of B7/
CD28 family of costimulatory receptors, PD-1 inhibits the
production of IFN-y, TNF-a, and IL-2, reduces T cell
proliferation and survival upon binding to its ligands (PD-
L1/2) [120]. In contrast to CTLA-4, which mainly
functions to regulate the activation of T cells, PD-1
pathway induces immune suppression by regulating
effector T cell activity. Specifically, PD-1 pathway induces
T cell exhaustion, increases their apoptosis, decreases the
proliferation of activated T cells, enhances the function of
regulatory T cells, and restrains T cell activation and
cytokine production [121].

Preclinical studies suggest that CTLA-4 pathway
blockade decreases tumor growth and improves survival
[122]. Monoclonal antibodies that block CTLA-4 have
been approved for melanoma and lung cancer, and are
under clinical trials for other cancer types [123]. The
mechanism through which anti-CTLA-4 antibodies inhibit
tumor progression is still elusive. However, previous study
suggested that CTLA-4 blockade therapy induced activa-
tion of CD4" and CD8™ effector cells in TME in solid
tumors [124]. For example, melanoma patients treated with

anti-CTLA-4 monoclonal antibody have increased expres-
sion of HLA-DR, which is a marker of T cell activation, in
both CD4" and CD8* cells [125]. Moreover, mouse model
studies indicate that Tregs in CTLA-4 deficient mice have
impaired immune suppressive functions [126,127]. Col-
lectively, immune checkpoint blockade therapy with anti-
CTLA-4 antibodies increases the effector T cell population
and impairs the immune suppressive functions of Tregs in
TME to inhibit tumor progression.

Similar to the success of anti-CTLA-4 therapy, targeting
PD-1 pathway in melanoma and non-small cell lung cancer
(NSCLC) also showed dramatic therapeutic efficacy in
patients [123]. Antibodies against PD-1 or PD-L1 are also
under clinical trials in many other cancer types [128].
Consistent with observations made in preclinical models,
PD-1 immune checkpoint blockade therapy profoundly
remodels the TME in cancer patients. In one of the recent
studies, the authors performed extensive immunogenomic
analyses on melanoma samples treated with anti-PD-1
therapy. 68 patients with advanced melanoma, whose
diseases progressed on anti-CTLA-4 therapy or were anti-
CTLA-4 therapy naive were employed to characterize how
tumor genomic and TME features changed over time after
anti-PD-1 therapy [129]. The authors found that mutation
and neoantigen load were reduced from baseline in TME
among patients who were responding to the therapy [129].
Analysis of TME heterogeneity during therapy demon-
strated differential clonal evolution within tumors and
putative selection against neoantigenic mutations. More-
over, transcriptome analyses before and during anti-PD-1
therapy revealed that immune cell subsets, activation of
specific transcriptional networks, and immune checkpoint
genes were dramatically upregulated in TME of respon-
ders. Temporal changes in intratumoral T cell reporter
repertoire also indicated the expansion of distinct T cell
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clones in the TME in the setting of neoantigen loss [129].
The study demonstrates a dramatic remodeling upon anti-
PD-1 therapy and provides insight into the mechanism of
action.

Other than inhibiting immune inhibitory pathways to
increase the activity of specific immune populations in
TME, strategies that enhance the general immunogenic
property of TME have also been employed, such as
oncolytic viral therapy and vaccine based cancer therapies.
Oncolytic viral therapy, which aims to use virus to infect
cancer cells and destroy them by oncolysis, not only causes
direct tumor cell destruction but also stimulates anti-tumor
immune responses. Talimogene laherparepvec is the first
oncolytic herpes virus that has been approved for the
treatment of advanced inoperable melanoma. Previous
studies demonstrated that oncolytic viruses can be
modified to encode numerous immune enhancing cyto-
kines, including IL-2, IL-12, and IFN-y [130]. On the other
hand, Mastrangelo et al. demonstrated that JX-594, which
is an oncolytic virus expressing granulocyte macrophage
colony-stimulating factor (GM-CSF), significantly
increased the CD4* and CD8™ T infiltration in a phase I
clinical trial in patients with refractory melanoma [131—
133]. In line with the results, intratumoral injection of the
oncolytic herpes simplex virus expressing GM-CSF in
melanoma patients resulted in the generation of systemic
tumor antigen-specific T-lymphocyte responses, as well as
decreases in Tregs [134,135].

In parallel, oncolytic viruses as vectors for expression of
tumor-associated antigen (TAA) have also been employed.
Preclinical studies indicated that intratumoral subcuta-
neous priming and intratumoral boosting was obtained
with the delivery of recombinant vaccinia virus expressing
TAA [136,137]. Several clinical trials are undergoing and
support the advantages of intratumoral poxviruses expres-
sing TAA [138,139]. In summary, the studies indicate that
oncolytic viruses can be used as tools to modify the
immunological components of the TME to improve the
outcomes of cancer therapy.

The concept of vaccine-based cancer therapy is similar
to oncolytic viral therapy. Vaccines are made up of cancer
cells, parts of cells, or pure antigens to transform the TME
to support an improved antigen presentation and genera-
tion of immune responses that are specific to immunogenic
TAA. Sipuleucel-T, which is the first FDA approved
vaccine for metastatic prostate cancer treatment, is a good
example for this category. Sipuleucel-T was designed to
stimulate immune response to prostatic acid phosphatase in
patients, which in turn eliminate prostate cancer cells
[140].

Nanoparticle-based strategies

Due to the fast developing of nanomedicine technology,
strategies that utilize nanoparticles (NPs) to remodel TME

in order to improve the treatment responses are also under
development.

The abnormality of the vascular system is one of the
major features of TME, which promotes tumor progression
and is a major hurdle for effective drug delivery. It has been
well demonstrated that abnormal tumor vessels often grow
rapidly to meet the nutrient demand to maintain tumor
progression [141]. In this regard, disrupting the abnormal
vascular system in TME could deplete the nutrition supply
and induce tumor regression. To this end, technologies that
disrupt tumor vascular system with NPs have been
developed. In a previous study, vinyl azide was loaded
into RGD-modified hollow copper sulfide NPs to generate
a near-IR (NIR) laser-activated “nanobomb.” N2 bubbles
were released from the vinyl azide on NIR irradiation due
to the increased local temperature at the tumor sites. The
bubbles were then exploded in the tumors, resulting in
disruption of the neovasculature, leading to tumor
regression [142]. However, this method could also disrupt
normal vessels and has significant off-target toxicity. To
achieve tumor-specific vascular disruption, PEGylated
gold NPs modified with a tumor neovasculature-targeting
ligand (RGD) have been developed. RGD-guided specific
tumor vascular damage was observed and off-target
toxicity was dramatically reduced [143]. In parallel, NPs
that facilitates drug delivery in solid tumors by normalizing
tumor vessels are also under developing. NPs that
normalize vascular in TME could also change the hypoxia
status, and therefore, inhibit abnormal angiogenesis and
tumor growth [12].

CAFs represent one of the major tumor-promoting
stromal components in TME. Several recent studies have
aimed to design NPs to target CAFs [144-146]. Wntl6
secreted by CAFs has been reported to be critical for the
treatment resistance [144]. To downregulate Wntl6,
liposome—protamine—hyaluronic acid (LPH) NPs loaded
with anti-Wntl6 siRNAs were delivered to TME in a
bladder carcinoma model to inhibit tumor progression
[144]. Quercetin, which is a dietary flavonoid, can also
decrease the expression of Wntl16. Delivery of quercetin
that is loaded on lipid—calcium—phosphate NPs to the TME
also enhanced the therapeutic efficacy [145].

As mentioned above, the tumor ECM, which is
composed of a number of secreted proteins, creates an
integrated 3D macromolecular network to regulate tumor
progression and metastasis. ECM could also behave like a
barrier to prevent drug penetration. Specifically, animal
model experiments showed that mice with ECM-rich A549
tumors have significant less Cy5.5-labled glycol chitosan
NPs infiltration than ECM-less SCC7 tumors [147].
Treatment with hyaluronidase (HAase), which disrupts
ECM, dramatically increased the penetration of Cy5.5-
labled glycol chitosan NPs in ECM-rich A549 tumors
[147]. Inspired by the findings, recombinant human HAase
PH20 was conjugated on the surface of poly (lactic-co-
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glycolic acid) (PLGA) NPs to modulate ECM. The study
revealed that PH20 conjugated NPs treatment achieved
significantly improved distribution of NPs in 4T1 breast
cancer xenograft mice due to ECM degradation and
increased interstitial diffusion in solid tumors [148].
Interestingly, delivery of the NPs could also increase
tumor vessel density, thereby increasing drug delivery
efficacy and enhancing therapeutic effects [149].

ECM serves as a barrier to prevent not only drug
penetration but also tumor cell invasion and metastasis. To
overcome the obstacles of the ECM, tumor cells need to
overexpress certain proteolytic enzymes, such as MMPs
[150]. Based on this observation, several groups are
developing NPs to mimic and reinforce ECM in the TME
to inhibit metastasis. For example, to prevent tumor
invasion and metastasis, a transformable laminin-mimic
peptide (BP-KLVFFKGGDGRYIGSR) was generated
[151]. The BP motif of the peptide could self-assemble
onto NPs due to the strong hydrophobic interactions.
Because of the similarity with natural laminin, the peptides
on the NPs could readily transform into nanofibers around
the solid tumor upon binding to integrins and laminin
receptors to form an artificial ECM [151]. The results
indicated that the artificial ECM remained at the tumor site
for a couple of days which significantly inhibited the lung
metastasis in breast and melanoma tumor models [151].
The clinical utility of such therapeutic strategy remains to
be tested in relevant clinical settings.

Therapy resistance is one of the most significant hurdles
for curative cancer treatment. Given the critical importance
of TME in tumor progression, immune-related and
nanoparticle based strategies have been developed to
modulate TME to minimize resistance and enhance
therapeutic efficacy (Fig. 3). With further optimization,
these new therapeutic strategies may eventually lead to
significant reduction of cancer related death.

Conclusions

Cancer progression is a systematic progress that both
malignant cells and surrounding microenvironment are
involved. Malignant cells and TME have profound impacts
on each other during tumor progression. It has been well
recognized that cancer therapies do not just destroy
malignant cells, but also change the TME which then
contribute to the success or failure of the treatments.
Chemo-, radio-, targeted-, and hormone therapies could
modulate TME in positive or negative ways, leading to
either enhanced anti-tumor activity or, in contrast, a more
favorable environment for tumor growth. Due to the
importance of TME in tumor progression and therapeutic
resistance, strategies that remolding TME have been
developed to improve cancer therapy. Although these
strategies, most notably the immune checkpoint blockade
therapy, have promising outcomes in some cancer types,

there are still many patients who do not response to the
treatment or develop resistance. Moreover, oncolytic virus-
and cancer vaccine-based therapies that aim to boost
immune response in TME could also encounter de novo or
acquired resistance.

Tumor and TME dynamically interact, communicate,
and regulate each other during treatments, which makes it
exceedingly difficult to achieve successful outcome with
mono-therapy. A growing body of evidence indicates that
applying multiple therapeutic approaches could comple-
ment each other to overcome the resistance. Given the
accumulating knowledge on TME remodeling during
tumor progression and treatment, the future looks promis-
ing for combining tumor-specific treatments with TME
targeting agents to achieve effective control or cure of
cancer.

Compliance with ethics guidelines

Minhong Shen and Yibin Kang declare no conflict of interest. This
manuscript is a review article and does not involve a research
protocol requiring approval by the relevant institutional review
board or ethics committee.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the
appropriate credit is given to the original author(s) and the source,
and a link is provided to the Creative Commons license, which
indicates if changes are made.

References

1. Fukumura D, Jain RK. Tumor microenvironment abnormalities:
causes, consequences, and strategies to normalize. J Cell Biochem
2007; 101(4): 937-949

2. Justus CR, Dong L, Yang LV. Acidic tumor microenvironment and
pH-sensing G protein-coupled receptors. Front Physiol 2013; 4:
354

3. Justus CR, Sanderlin EJ, Yang LV. Molecular connections between
cancer cell metabolism and the tumor microenvironment. Int J Mol
Sci 2015; 16(5): 11055-11086

4. Lin CS, Lee HT, Lee MH, Pan SC, Ke CY, Chiu AW, Wei YH.
Role of mitochondrial DNA copy number alteration in human renal
cell carcinoma. Int J Mol Sci 2016; 17(6): ES§14

5. Ruella M, Klichinsky M, Kenderian SS, Shestova O, Ziober A,
Kraft DO, Feldman M, Wasik MA, June CH, Gill S. Overcoming
the immunosuppressive tumor microenvironment of Hodgkin
lymphoma using chimeric antigen receptor T cells. Cancer Discov
2017; 7(10): 1154-1167

6. Liu Q, Liao Q, Zhao Y. Chemotherapy and tumor microenviron-
ment of pancreatic cancer. Cancer Cell Int 2017; 17(1): 68

7. Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P,
Vandenabeele P. Immunogenic cell death and DAMPs in cancer
therapy. Nat Rev Cancer 2012; 12(12): 860-875



Minhong Shen and Yibin Kang

435

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Ito K, Hamamichi S, Abe T, Akagi T, Shirota H, Kawano S, Asano
M, Asano O, Yokoi A, Matsui J, Umeda 10, Fujii H. Antitumor
effects of eribulin depend on modulation of the tumor micro-
environment by vascular remodeling in mouse models. Cancer Sci
2017; 108(11): 2273-2280

. Grantab R, Sivananthan S, Tannock IF. The penetration of

anticancer drugs through tumor tissue as a function of cellular
adhesion and packing density of tumor cells. Cancer Res 2006; 66
(2): 1033-1039

Netti PA, Berk DA, Swartz MA, Grodzinsky AJ, Jain RK. Role of
extracellular matrix assembly in interstitial transport in solid
tumors. Cancer Res 2000; 60(9): 2497-2503

Wu T, Dai Y. Tumor microenvironment and therapeutic response.
Cancer Lett 2017; 387: 61-68

Chen Q, Liu G, Liu S, Su H, Wang Y, Li J, Luo C. Remodeling the
tumor microenvironment with emerging nanotherapeutics. Trends
Pharmacol Sci 2018; 39(1): 59-74

Whiteside TL. The tumor microenvironment and its role in
promoting tumor growth. Oncogene 2008; 27(45): 5904-5912
Gooden MJ, de Bock GH, Leffers N, Daemen T, Nijman HW. The
prognostic influence of tumour-infiltrating lymphocytes in cancer:
a systematic review with meta-analysis. Br J Cancer 2011; 105(1):
93-103

Fridman WH, Pages F, Sautés-Fridman C, Galon J. The immune
contexture in human tumours: impact on clinical outcome. Nat Rev
Cancer 2012; 12(4): 298-306

Guerra N, Tan YX, Joncker NT, Choy A, Gallardo F, Xiong N,
Knoblaugh S, Cado D, Greenberg NM, Raulet DH. NKG2D-
deficient mice are defective in tumor surveillance in models of
spontaneous malignancy. Immunity 2008; 28(4): 571-580

Coca S, Perez-Piqueras J, Martinez D, Colmenarejo A, Saez MA,
Vallejo C, Martos JA, Moreno M. The prognostic significance of
intratumoral natural killer cells in patients with colorectal
carcinoma. Cancer 1997; 79(12): 2320-2328

Villegas FR, Coca S, Villarrubia VG, Jiménez R, Chillon MJ,
Jarefio J, Zuil M, Callol L. Prognostic significance of tumor
infiltrating natural killer cells subset CD57 in patients with
squamous cell lung cancer. Lung Cancer 2002; 35(1): 23-28
Taketomi A, Shimada M, Shirabe K, Kajiyama K, Gion T,
Sugimachi K. Natural killer cell activity in patients with
hepatocellular carcinoma: a new prognostic indicator after
hepatectomy. Cancer 1998; 83(1): 58—63

Ishigami S, Natsugoe S, Tokuda K, Nakajo A, Che X, Iwashige H,
Aridome K, Hokita S, Aikou T. Prognostic value of intratumoral
natural killer cells in gastric carcinoma. Cancer 2000; 88(3): 577—
583

Takeuchi H, Maehara Y, Tokunaga E, Koga T, Kakeji Y,
Sugimachi K. Prognostic significance of natural killer cell activity
in patients with gastric carcinoma: a multivariate analysis. Am J
Gastroenterol 2001; 96(2): 574-578

Larsen SK, Gao Y, Basse PH. NK cells in the tumor
microenvironment. Crit Rev Oncog 2014; 19(1-2): 91-105
Shang B, Liu Y, Jiang SJ, Liu Y. Prognostic value of tumor-
infiltrating FoxP3 " regulatory T cells in cancers: a systematic
review and meta-analysis. Sci Rep 2015; 5(1): 15179

Shimizu J, Yamazaki S, Sakaguchi S. Induction of tumor immunity
by removing CD257CD4 ™" T cells: a common basis between tumor

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

immunity and autoimmunity. J Immunol 1999; 163(10): 5211—
5218

Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama
E. Tumor rejection by in vivo administration of anti-CD25
(interleukin-2 receptor o) monoclonal antibody. Cancer Res
1999; 59(13): 3128-3133

Yamaguchi T, Sakaguchi S. Regulatory T cells in immune
surveillance and treatment of cancer. Semin Cancer Biol 2006;
16(2): 115-123

Campbell DJ, Koch MA. Treg cells: patrolling a dangerous
neighborhood. Nat Med 2011; 17(8): 929-930

Quail DF, Joyce JA. Microenvironmental regulation of tumor
progression and metastasis. Nat Med 2013; 19(11): 1423-1437
Chen Y, Zhang S, Wang Q, Zhang X. Tumor-recruited M2
macrophages promote gastric and breast cancer metastasis via M2
macrophage-secreted CHI3L1 protein. J] Hematol Oncol 2017; 10
(1): 36

Yang L, Wang F, Wang L, Huang L, Wang J, Zhang B, Zhang Y.
CDI163™ tumor-associated macrophage is a prognostic biomarker
and is associated with therapeutic effect on malignant pleural
eftusion of lung cancer patients. Oncotarget 2015; 6(12): 10592—
10603

Shigeoka M, Urakawa N, Nakamura T, Nishio M, Watajima T,
Kuroda D, Komori T, Kakeji Y, Semba S, Yokozaki H. Tumor
associated macrophage expressing CD204 is associated with tumor
aggressiveness of esophageal squamous cell carcinoma. Cancer Sci
2013; 104(8): 1112-1119

Kim KJ, Wen XY, Yang HK, Kim WH, Kang GH. Prognostic
implication of M2 macrophages are determined by the proportional
balance of tumor associated macrophages and tumor infiltrating
lymphocytes in microsatellite-unstable gastric carcinoma. PLoS
One 2015; 10(12): e0144192

Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B,
Jauch D, Taniguchi K, Yu GY, Osterreicher CH, Hung KE, Datz C,
Feng Y, Fearon ER, Oukka M, Tessarollo L, Coppola V,
Yarovinsky F, Cheroutre H, Eckmann L, Trinchieri G, Karin M.
Adenoma-linked barrier defects and microbial products drive IL-
23/IL-17-mediated tumour growth. Nature 2012; 491(7423): 254—
258

Greten FR, Karin M. The IKK/NF-kB activation pathway—a
target for prevention and treatment of cancer. Cancer Lett 2004;
206(2): 193-199

Kong L, Zhou Y, Bu H, Lv T, Shi Y, Yang J. Deletion of
interleukin-6 in monocytes/macrophages suppresses the initiation
of hepatocellular carcinoma in mice. J Exp Clin Cancer Res 2016;
35(1): 131

Ueha S, Shand FH, Matsushima K. Myeloid cell population
dynamics in healthy and tumor-bearing mice. Int Inmunopharma-
col 2011; 11(7): 783-788

Damuzzo V, Pinton L, Desantis G, Solito S, Marigo I, Bronte V,
Mandruzzato S. Complexity and challenges in defining myeloid-
derived suppressor cells. Cytometry B Clin Cytom 2015; 88(2):
77-91

Hossain F, Al-Khami AA, Wyczechowska D, Hernandez C, Zheng
L, Reiss K, Valle LD, Trillo-Tinoco J, Maj T, Zou W, Rodriguez
PC, Ochoa AC. Inhibition of fatty acid oxidation modulates
immunosuppressive functions of myeloid-derived suppressor cells



436

Complex interplay between tumor microenvironment and cancer therapy

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51

52.

53.

and enhances cancer therapies. Cancer Immunol Res 2015; 3(11):
1236-1247

Xing F, Saidou J, Watabe K. Cancer associated fibroblasts (CAFs)
in tumor microenvironment. Front Biosci (Landmark Ed) 2011,
15:166-179

Grum-Schwensen B, Klingelhofer J, Berg CH, El-Naaman C,
Grigorian M, Lukanidin E, Ambartsumian N. Suppression of
tumor development and metastasis formation in mice lacking the
S100A4(mts1) gene. Cancer Res 2005; 65(9): 3772-3780

Goh PP, Sze DM, Roufogalis BD. Molecular and cellular
regulators of cancer angiogenesis. Curr Cancer Drug Targets
2007; 7(8): 743758

Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay
T, Naeem R, Carey VI, Richardson AL, Weinberg RA. Stromal
fibroblasts present in invasive human breast carcinomas promote
tumor growth and angiogenesis through elevated SDF-1/CXCL12
secretion. Cell 2005; 121(3): 335-348

Li G, Satyamoorthy K, Meier F, Berking C, Bogenrieder T, Herlyn
M. Function and regulation of melanoma-stromal fibroblast
interactions: when seeds meet soil. Oncogene 2003; 22(20):
3162-3171

Cunha GR, Hayward SW, Wang YZ. Role of stroma in
carcinogenesis of the prostate. Differentiation 2002; 70(9-10):
473-485

Bindra RS, Glazer PM. Genetic instability and the tumor
microenvironment: towards the concept of microenvironment-
induced mutagenesis. Mutat Res 2005; 569(1-2): 75-85

Yuan J, Glazer PM. Mutagenesis induced by the tumor
microenvironment. Mutat Res 1998; 400(1-2): 439-446
Koukourakis MI, Giatromanolaki A, Harris AL, Sivridis E.
Comparison of metabolic pathways between cancer cells and
stromal cells in colorectal carcinomas: a metabolic survival role for
tumor-associated stroma. Cancer Res 2006; 66(2): 632-637
Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420
(6917): 860-867

Camps JL, Chang SM, Hsu TC, Freeman MR, Hong SJ, Zhau HE,
von Eschenbach AC, Chung LW. Fibroblast-mediated acceleration
of human epithelial tumor growth in vivo. Proc Natl Acad Sci USA
1990; 87(1): 75-79

Imai K. Matrix metalloproteinases and cancer cell invasion and
metastasis. Tanpakushitsu Kakusan Koso 1997; 42(10 Suppl):
1694-1700 (in Japanese)

Akino T, Hida K, Hida Y, Tsuchiya K, Freedman D, Muraki C,
Ohga N, Matsuda K, Akiyama K, Harabayashi T, Shinohara N,
Nonomura K, Klagsbrun M, Shindoh M. Cytogenetic abnormal-
ities of tumor-associated endothelial cells in human malignant
tumors. Am J Pathol 2009; 175(6): 2657-2667

Amin DN, Hida K, Bielenberg DR, Klagsbrun M. Tumor
endothelial cells express epidermal growth factor receptor
(EGFR) but not ErbB3 and are responsive to EGF and to EGFR
kinase inhibitors. Cancer Res 2006; 66(4): 2173-2180

Tsuchiya K, Hida K, Hida Y, Muraki C, Ohga N, Akino T, Kondo
T, Miseki T, Nakagawa K, Shindoh M, Harabayashi T, Shinohara
N, Nonomura K, Kobayashi M. Adrenomedullin antagonist
suppresses tumor formation in renal cell carcinoma through
inhibitory effects on tumor endothelial cells and endothelial
progenitor mobilization. Int J Oncol 2010; 36(6): 1379—-1386

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Matsuda K, Ohga N, Hida Y, Muraki C, Tsuchiya K, Kurosu T,
Akino T, Shih SC, Totsuka Y, Klagsbrun M, Shindoh M, Hida K.
Isolated tumor endothelial cells maintain specific character during
long-term culture. Biochem Biophys Res Commun 2010; 394(4):
947-954

Maishi N, Ohba Y, Akiyama K, Ohga N, Hamada J, Nagao-
Kitamoto H, Alam MT, Yamamoto K, Kawamoto T, Inoue N,
Taketomi A, Shindoh M, Hida Y, Hida K. Tumour endothelial cells
in high metastatic tumours promote metastasis via epigenetic
dysregulation of biglycan. Sci Rep 2016; 6(1): 28039

Knutson KL, Disis ML. Tumor antigen-specific T helper cells in
cancer immunity and immunotherapy. Cancer Immunol Immun-
other 2005; 54(8): 721-728

Yoon NK, Maresh EL, Shen D, Elshimali Y, Apple S, Horvath S,
Mah V, Bose S, Chia D, Chang HR, Goodglick L. Higher levels of
GATA3 predict better survival in women with breast cancer. Hum
Pathol 2010; 41(12): 1794-1801

Erdag G, Schaefer JT, Smolkin ME, Deacon DH, Shea SM, Dengel
LT, Patterson JW, Slingluff CL Jr. Immunotype and immunohis-
tologic characteristics of tumor-infiltrating immune cells are
associated with clinical outcome in metastatic melanoma. Cancer
Res 2012; 72(5): 1070-1080

Nedergaard BS, Ladekarl M, Nyengaard JR, Nielsen K. A
comparative study of the cellular immune response in patients
with stage IB cervical squamous cell carcinoma. Low numbers of
several immune cell subtypes are strongly associated with relapse
of disease within 5 years. Gynecol Oncol 2008; 108(1): 106—111
Riemann D, Wenzel K, Schulz T, Hofmann S, Neef H,
Lautenschlager C, Langner J. Phenotypic analysis of T lympho-
cytes isolated from non-small-cell lung cancer. Int Arch Allergy
Immunol 1997; 114(1): 38-45

Al-Shibli KI, Donnem T, Al-Saad S, Persson M, Bremnes RM,
Busund LT. Prognostic effect of epithelial and stromal lymphocyte
infiltration in non-small cell lung cancer. Clin Cancer Res 2008; 14
(16): 5220-5227

Andreu P, Johansson M, Affara NI, Pucci F, Tan T, Junankar S,
Korets L, Lam J, Tawfik D, DeNardo DG, Naldini L, de Visser KE,
De Palma M, Coussens LM. FcRy activation regulates inflamma-
tion-associated squamous carcinogenesis. Cancer Cell 2010; 17(2):
121-134

de Visser KE, Korets LV, Coussens LM. De novo carcinogenesis
promoted by chronic inflammation is B lymphocyte dependent.
Cancer Cell 2005; 7(5): 411-423

Yuen GJ, Demissie E, Pillai S. B lymphocytes and cancer: a love-
hate relationship. Trends Cancer 2016; 2(12): 747757
Ammirante M, Luo JL, Grivennikov S, Nedospasov S, Karin M. B-
cell-derived lymphotoxin promotes castration-resistant prostate
cancer. Nature 2010; 464(7286): 302-305

Luo JL, Tan W, Ricono JM, Korchynskyi O, Zhang M, Gonias SL,
Cheresh DA, Karin M. Nuclear cytokine-activated IKKa controls
prostate cancer metastasis by repressing Maspin. Nature 2007; 446
(7136): 690-694

Woo JR, Liss MA, Muldong MT, Palazzi K, Strasner A,
Ammirante M, Varki N, Shabaik A, Howell S, Kane CJ, Karin
M, Jamieson CA. Tumor infiltrating B-cells are increased in
prostate cancer tissue. J Transl Med 2014; 12(1): 30

Ou Z, Wang Y, Liu L, Li L, Yeh S, Qi L, Chang C. Tumor



Minhong Shen and Yibin Kang

437

69.

70.

71.

72.

73.

74.

75.

76.

71.

78.

79.

80.

81.

82.

microenvironment B cells increase bladder cancer metastasis via
modulation of the IL-8/androgen receptor (AR)/MMPs signals.
Oncotarget 2015; 6(28): 26065-26078

Rossi M, Young JW. Human dendritic cells: potent antigen-
presenting cells at the crossroads of innate and adaptive immunity.
J Immunol 2005; 175(3): 1373-1381

Tran Janco JM, Lamichhane P, Karyampudi L, Knutson KL.
Tumor-infiltrating dendritic cells in cancer pathogenesis. J
Immunol 2015; 194(7): 2985-2991

Ma Y, Shurin GV, Peiyuan Z, Shurin MR. Dendritic cells in the
cancer microenvironment. J Cancer 2013; 4(1): 3644

Jochems C, Schlom J. Tumor-infiltrating immune cells and
prognosis: the potential link between conventional cancer therapy
and immunity. Exp Biol Med (Maywood) 2011; 236(5): 567-579
Bekes EM, Schweighofer B, Kupriyanova TA, Zajac E, Ardi VC,
Quigley JP, Deryugina EI. Tumor-recruited neutrophils and
neutrophil TIMP-free MMP-9 regulate coordinately the levels of
tumor angiogenesis and efficiency of malignant cell intravasation.
Am J Pathol 2011; 179(3): 14551470

Eruslanov EB, Bhojnagarwala PS, Quatromoni JG, Stephen TL,
Ranganathan A, Deshpande C, Akimova T, Vachani A, Litzky L,
Hancock WW, Conejo-Garcia JR, Feldman M, Albelda SM,
Singhal S. Tumor-associated neutrophils stimulate T cell responses
in early-stage human lung cancer. J Clin Invest 2014; 124(12):
5466-5480

Armulik A, Genové G, Betsholtz C. Pericytes: developmental,
physiological, and pathological perspectives, problems, and
promises. Dev Cell 2011; 21(2): 193-215

O’Keeffe MB, Devlin AH, Burns AJ, Gardiner TA, Logan ID,
Hirst DG, McKeown SR. Investigation of pericytes, hypoxia, and
vascularity in bladder tumors: association with clinical outcomes.
Oncol Res 2008; 17(3): 93—-101

Gee MS, Procopio WN, Makonnen S, Feldman MD, Yeilding NM,
Lee WM. Tumor vessel development and maturation impose limits
on the effectiveness of anti-vascular therapy. Am J Pathol 2003;
162(1): 183-193

Yonenaga Y, Mori A, Onodera H, Yasuda S, Oe H, Fujimoto A,
Tachibana T, Imamura M. Absence of smooth muscle actin-
positive pericyte coverage of tumor vessels correlates with
hematogenous metastasis and prognosis of colorectal cancer
patients. Oncology 2005; 69(2): 159-166

Sennino B, Falcon BL, McCauley D, Le T, McCauley T, Kurz JC,
Haskell A, Epstein DM, McDonald DM. Sequential loss of tumor
vessel pericytes and endothelial cells after inhibition of platelet-
derived growth factor B by selective aptamer AX102. Cancer Res
2007; 67(15): 7358-7367

Cooke VG, LeBleu VS, Keskin D, Khan Z, O’Connell JT, Teng Y,
Duncan MB, Xie L, Maeda G, Vong S, Sugimoto H, Rocha RM,
Damascena A, Brentani RR, Kalluri R. Pericyte depletion results in
hypoxia-associated epithelial-to-mesenchymal transition and
metastasis mediated by met signaling pathway. Cancer Cell
2012; 21(1): 66-81

Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic
niche in cancer progression. J Cell Biol 2012; 196(4): 395406
Naba A, Clauser KR, Lamar JM, Carr SA, Hynes RO. Extracellular
matrix signatures of human mammary carcinoma identify novel
metastasis promoters. eLife 2014; 3e01308

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

9s.

96.

Korpal M, Ell BJ, Buffa FM, Ibrahim T, Blanco MA, Celia-
Terrassa T, Mercatali L, Khan Z, Goodarzi H, Hua Y, Wei Y, Hu
G, Garcia BA, Ragoussis J, Amadori D, Harris AL, Kang Y. Direct
targeting of Sec23a by miR-200s influences cancer cell secretome
and promotes metastatic colonization. Nat Med 2011; 17(9): 1101—
1108

Andrén-Sandberg A. Pancreatic cancer: chemotherapy and radio-
therapy. N Am J Med Sci 2011; 3(1): 1-12

O’Reilly EA, Gubbins L, Sharma S, Tully R, Guang MH, Weiner-
Gorzel K, McCaffrey J, Harrison M, Furlong F, Kell M, McCann
A. The fate of chemoresistance in triple negative breast cancer
(TNBC). BBA Clin 2015; 3: 257-275

Sun Y, Campisi J, Higano C, Beer TM, Porter P, Coleman I, True
L, Nelson PS. Treatment-induced damage to the tumor micro-
environment promotes prostate cancer therapy resistance through
WNT16B. Nat Med 2012; 18(9): 1359-1368

DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL,
Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA,
Rugo HS, Hwang ES, Jirstrom K, West BL, Coussens LM.
Leukocyte complexity predicts breast cancer survival and
functionally regulates response to chemotherapy. Cancer Discov
2011; 1(1): 54-67

Ruffell B, Coussens LM. Macrophages and therapeutic resistance
in cancer. Cancer Cell 2015; 27(4): 462472

Takeuchi S, Baghdadi M, Tsuchikawa T, Wada H, Nakamura T,
Abe H, Nakanishi S, Usui Y, Higuchi K, Takahashi M, Inoko K,
Sato S, Takano H, Shichinohe T, Seino K, Hirano S. Chemother-
apy-derived inflammatory responses accelerate the formation of
immunosuppressive myeloid cells in the tissue microenvironment
of human pancreatic cancer. Cancer Res 2015; 75(13): 2629-2640
Zheng H, Bae Y, Kasimir-Bauer S, Tang R, Chen J, Ren G, Yuan
M, Esposito M, Li W, Wei Y, Shen M, Zhang L, Tupitsyn N, Pantel
K, King C, Sun J, Moriguchi J, Jun HT, Coxon A, Lee B, Kang Y.
Therapeutic antibody targeting tumor- and osteoblastic niche-
derived jaggedl sensitizes bone metastasis to chemotherapy.
Cancer Cell 2017; 32(6): 731-747.736

Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D,
Haimovitz-Friedman A, Cordon-Cardo C, Kolesnick R. Endothe-
lial apoptosis as the primary lesion initiating intestinal radiation
damage in mice. Science 2001; 293(5528): 293-297

Barker HE, Paget JT, Khan AA, Harrington KJ. The tumour
microenvironment after radiotherapy: mechanisms of resistance
and recurrence. Nat Rev Cancer 2015; 15(7): 409-425

Moeller BJ, Cao Y, Li CY, Dewhirst MW. Radiation activates
HIF-1 to regulate vascular radiosensitivity in tumors: role of
reoxygenation, free radicals, and stress granules. Cancer Cell 2004;
5(5): 429441

Laoui D, Van Overmeire E, De Baetselier P, Van Ginderachter JA,
Raes G. Functional relationship between tumor-associated macro-
phages and macrophage colony-stimulating factor as contributors
to cancer progression. Front Immunol 2014; 5: 489

Zhou L, Zhang X, Li H, Niu C, Yu D, Yang G, Liang X, Wen X, Li
M, Cui J. Validating the pivotal role of the immune system in low-
dose radiation-induced tumor inhibition in Lewis lung cancer-
bearing mice. Cancer Med 2018; 7(4): 1338-1348

Smalley KS, Xiao M, Villanueva J, Nguyen TK, Flaherty KT,
Letrero R, Van Belle P, Elder DE, Wang Y, Nathanson KL, Herlyn



438 Complex interplay between tumor microenvironment and cancer therapy
M. CRAF inhibition induces apoptosis in melanoma cells with G, Fradet Y, Lacombe L, Jung ME, Huang J, Wu L. CSF1 receptor
non-V600E BRAF mutations. Oncogene 2009; 28(1): 85-94 targeting in prostate cancer reverses macrophage-mediated resis-

97. Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, tance to androgen blockade therapy. Cancer Res 2015; 75(6): 950—
Lynch M. Preclinical overview of sorafenib, a multikinase inhibitor 962
that targets both Raf and VEGF and PDGF receptor tyrosine kinase 110. Qian BZ, Pollard JW. Macrophage diversity enhances tumor
signaling. Mol Cancer Ther 2008; 7(10): 3129-3140 progression and metastasis. Cell 2010; 141(1): 39-51

98. Sprinzl MF, Reisinger F, Puschnik A, Ringelhan M, Ackermann K, 111. De Palma M, Lewis CE. Macrophage regulation of tumor
Hartmann D, Schiemann M, Weinmann A, Galle PR, Schuchmann responses to anticancer therapies. Cancer Cell 2013; 23(3): 277—
M, Friess H, Otto G, Heikenwalder M, Protzer U. Sorafenib 286
perpetuates cellular anticancer effector functions by modulating the 112. Liu Y, Fan L, Wang Y, Li P, Zhu J, Wang L, Zhang W, Zhang Y,
crosstalk between macrophages and natural killer cells. Hepatol- Huang G. Tumor-associated macrophages promote tumor cell
ogy 2013; 57(6): 23582368 proliferation in nasopharyngeal NK/T-cell lymphoma. Int J Clin

99. Ozao-Choy J, Ma G, Kao J, Wang GX, Meseck M, Sung M, Exp Pathol 2014; 7(9): 5429-5435
Schwartz M, Divino CM, Pan PY, Chen SH. The novel role of  113. Yang Y, Bai Y, He Y, Zhao Y, Chen J, Ma L, Pan Y, Hinten M,
tyrosine kinase inhibitor in the reversal of immune suppression and Zhang J, Karnes RJ, Kohli M, Westendorf JJ, Li B, Zhu R, Huang
modulation of tumor microenvironment for immune-based cancer H, Xu W. PTEN loss promotes intratumoral androgen synthesis
therapies. Cancer Res 2009; 69(6): 2514-2522 and tumor microenvironment remodeling via aberrant activation of

100. Suh KJ, Sung JH, Kim JW, Han SH, Lee HS, Min A, Kang MH, RUNX2 in castration-resistant prostate cancer. Clin Cancer Res
Kim JE, Kim JW, Kim SH, Lee JO, Kim YJ, Lee KW, Kim JH, 2018; 24(4): 834-846
Bang SM, Im SA, Lee JS. EGFR or HER2 inhibition modulates the ~ 114. Wang D, DuBois RN. Immunosuppression associated with chronic
tumor microenvironment by suppression of PD-L1 and cytokines inflammation in the tumor microenvironment. Carcinogenesis
release. Oncotarget 2017; 8(38): 63901-63910 2015; 36(10): 1085-1093

101. HuangJ, Wang L, Cong Z, Amoozgar Z, Kiner E, Xing D, Orsulic 115. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint
S, Matulonis U, Goldberg MS. The PARP1 inhibitor BMN 673 blockade: a common denominator approach to cancer therapy.
exhibits immunoregulatory effects in a Brcal(—/—) murine model Cancer Cell 2015; 27(4): 450461
of ovarian cancer. Biochem Biophys Res Commun 2015; 463(4):  116. Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: similarities,
551-556 differences, and implications of their inhibition. Am J Clin Oncol

102. Evans T, Matulonis U. PARP inhibitors in ovarian cancer: 2016; 39(1): 98-106
evidence, experience and clinical potential. Ther Adv Med Oncol 117. Chambers CA, Kuhns MS, Egen JG, Allison JP. CTLA-4-
2017; 9(4): 253-267 mediated inhibition in regulation of T cell responses: mechanisms

103. Fujishita T, Kojima Y, Kajino-Sakamoto R, Taketo MM, Aoki M. and manipulation in tumor immunotherapy. Annu Rev Immunol
Tumor microenvironment confers mTOR inhibitor resistance in 2001; 19(1): 565-594
invasive intestinal adenocarcinoma. Oncogene 2017; 36(46): 118. Collins AV, Brodie DW, Gilbert RJ, Iaboni A, Manso-Sancho R,
6480-6489 Walse B, Stuart DI, van der Merwe PA, Davis SJ. The interaction

104. Jiao S, Xia W, Yamaguchi H, Wei Y, Chen MK, Hsu JM, Hsu JL, properties of costimulatory molecules revisited. Immunity 2002;
Yu WH, Du Y, Lee HH, Li CW, Chou CK, Lim SO, Chang SS, 17(2): 201-210
Litton J, Arun B, Hortobagyi GN, Hung MC. PARP inhibitor  119. Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein
upregulates PD-L1 expression and enhances cancer-associated I, Kobayashi SV, Linsley PS, Thompson CB, Riley JL. CTLA-4
immunosuppression. Clin Cancer Res 2017; 23(14): 3711-3720 and PD-1 receptors inhibit T-cell activation by distinct mechan-

105. Pander J, Heusinkveld M, van der Straaten T, Jordanova ES, Baak- isms. Mol Cell Biol 2005; 25(21): 9543-9553
Pablo R, Gelderblom H, Morreau H, van der Burg SH, Guchelaar  120. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands
HJ, van Hall T. Activation of tumor-promoting type 2 macro- in tolerance and immunity. Annu Rev Immunol 2008; 26(1): 677—
phages by EGFR-targeting antibody cetuximab. Clin Cancer Res 704
2011; 17(17): 5668-5673 121. HeJ, Hu Y, Hu M, Li B. Development of PD-1/PD-L1 pathway in

106. Recouvreux S, Sampayo R, Bessone MI, Simian M. Microenvir- tumor immune microenvironment and treatment for non-small cell
onment and endocrine resistance in breast cancer: friend or foe? lung cancer. Sci Rep 2015; 5(1): 13110
World J Clin Oncol 2015; 6(6): 207-211 122. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor

107. Smith JA, Das A, Butler JT, Ray SK, Banik NL. Estrogen or immunity by CTLA-4 blockade. Science 1996; 271(5256): 1734~
estrogen receptor agonist inhibits lipopolysaccharide induced 1736
microglial activation and death. Neurochem Res 2011; 36(9):  123. Postow MA, Callahan MK, Wolchok JD. Immune checkpoint
1587-1593 blockade in cancer therapy. J Clin Oncol 2015; 33(17): 1974-1982

108. Keeton EK, Brown M. Cell cycle progression stimulated by 124, Maker AV, Attia P, Rosenberg SA. Analysis of the cellular
tamoxifen-bound estrogen receptor-o and promoter-specific effects mechanism of antitumor responses and autoimmunity in patients
in breast cancer cells deficient in N-CoR and SMRT. Mol treated with CTLA-4 blockade. J Immunol 2005; 175(11): 7746
Endocrinol 2005; 19(6): 15431554 7754

109. Escamilla J, Schokrpur S, Liu C, Priceman SJ, Moughon D, Jiang 125.

Z, Pouliot F, Magyar C, Sung JL, Xu J, Deng G, West BL, Bollag

Quezada SA, Peggs KS, Curran MA, Allison JP. CTLA4 blockade
and GM-CSF combination immunotherapy alters the intratumor



Minhong Shen and Yibin Kang

439

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

balance of effector and regulatory T cells. J Clin Invest 2006; 116
(7): 1935-1945

Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J,
Sakaguchi N, Mak TW, Sakaguchi S. Immunologic self-tolerance
maintained by CD25(4)CD4(+) regulatory T cells constitutively
expressing cytotoxic T lymphocyte-associated antigen 4. J Exp
Med 2000; 192(2): 303-310

Hodi FS, Mihm MC, Soiffer RJ, Haluska FG, Butler M, Seiden
MV, Davis T, Henry-Spires R, MacRae S, Willman A, Padera R,
Jaklitsch MT, Shankar S, Chen TC, Korman A, Allison JP, Dranoff
G. Biologic activity of cytotoxic T lymphocyte-associated antigen
4 antibody blockade in previously vaccinated metastatic melanoma
and ovarian carcinoma patients. Proc Natl Acad Sci USA 2003;
100(8): 47124717

Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK,
Iyer AK. PD-1 and PD-L1 checkpoint signaling inhibition for
cancer immunotherapy: mechanism, combinations, and clinical
outcome. Front Pharmacol 2017; 8: 561

Riaz N, Havel JJ, Makarov V, Desrichard A, Urba WJ, Sims JS,
Hodi FS, Martin-Algarra S, Mandal R, Sharfman WH, Bhatia S,
Hwu WIJ, Gajewski TF, Slingluff CL Jr, Chowell D, Kendall
SMChang H, Shah R, Kuo F, Morris LGT, Sidhom JW, Schneck
JP, Horak CE, Weinhold N, Chan TA. Tumor and microenviron-
ment evolution during immunotherapy with nivolumab. Cell 2017,
171(4): 934-949.e915

Lichty BD, Breitbach CJ, Stojdl DF, Bell JC. Going viral with
cancer immunotherapy. Nat Rev Cancer 2014; 14(8): 559-567
Mastrangelo MJ, Maguire HC Jr, Eisenlohr LC, Laughlin CE,
Monken CE, McCue PA, Kovatich AJ, Lattime EC. Intratumoral
recombinant GM-CSF-encoding virus as gene therapy in patients
with cutaneous melanoma. Cancer Gene Ther 1999; 6(5): 409—422
de Vries CR, Kaufman HL, Lattime EC. Oncolytic viruses:
focusing on the tumor microenvironment. Cancer Gene Ther 2015;
22(4): 169-171

Park BH, Hwang T, Liu TC, Sze DY, Kim JS, Kwon HC, Oh SY,
Han SY, Yoon JH, Hong SH, Moon A, Speth K, Park C, Ahn Y],
Daneshmand M, Rhee BG, Pinedo HM, Bell JC, Kirn DH. Use of a
targeted oncolytic poxvirus, JX-594, in patients with refractory
primary or metastatic liver cancer: a phase I trial. Lancet Oncol
2008; 9(6): 533542

Kaufman HL, DeRaffele G, Divito J, Horig H, Lee D, Panicali D,
Voulo M. A phase I trial of intralesional rV-Tricom vaccine in the
treatment of malignant melanoma. Hum Gene Ther 2001; 12(11):
1459-1480

Kaufman HL, Kim DW, DeRaffele G, Mitcham J, Coffin RS, Kim-
Schulze S. Local and distant immunity induced by intralesional
vaccination with an oncolytic herpes virus encoding GM-CSF in
patients with stage Illc and IV melanoma. Ann Surg Oncol 2010;
17(3): 718-730

Kudo-Saito C, Schlom J, Hodge JW. Intratumoral vaccination and
diversified subcutaneous/ intratumoral vaccination with recombi-
nant poxviruses encoding a tumor antigen and multiple costimu-
latory molecules. Clin Cancer Res 2004; 10(3): 1090-1099

de Vries CR, Monken CE, Lattime EC. The addition of
recombinant vaccinia HER2/neu to oncolytic vaccinia-GMCSF
given into the tumor microenvironment overcomes MDSC-
mediated immune escape and systemic anergy. Cancer Gene

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

Ther 2015; 22(3): 154-162

Gulley JL, Heery CR, Madan RA, Walter BA, Merino MJ, Dahut
WL, Tsang KY, Schlom J, Pinto PA. Phase I study of intraprostatic
vaccine administration in men with locally recurrent or progressive

prostate cancer. Cancer Immunol Immunother 2013; 62(9): 1521—
1531

Madan RA, Heery CR, Gulley JL. Poxviral-based vaccine elicits
immunologic responses in prostate cancer patients. Oncoimmu-
nology 2014; 3e28611

Anassi E, Ndefo UA. Sipuleucel-T (provenge) injection: the first
immunotherapy agent (vaccine) for hormone-refractory prostate
cancer. P T 2011; 36(4): 197-202

Ojha T, Pathak V, Shi Y, Hennink WE, Moonen CTW, Storm G,
Kiessling F, Lammers T. Pharmacological and physical vessel
modulation strategies to improve EPR-mediated drug targeting to
tumors. Adv Drug Deliv Rev 2017; 119: 44-60

Gao W, Li S, Liu Z, Sun Y, Cao W, Tong L, Cui G, Tang B.
Targeting and destroying tumor vasculature with a near-infrared
laser-activated “nanobomb” for efficient tumor ablation. Biomater-
ials 2017; 139: 1-11

Kunjachan S, Detappe A, Kumar R, Ireland T, Cameron L, Biancur
DE, Motto-Ros V, Sancey L, Sridhar S, Makrigiorgos GM,
Berbeco RI. Nanoparticle mediated tumor vascular disruption: a
novel strategy in radiation therapy. Nano Lett 2015; 15(11): 7488—
7496

Miao L, Wang Y, Lin CM, Xiong Y, Chen N, Zhang L, Kim WY,
Huang L. Nanoparticle modulation of the tumor microenvironment
enhances therapeutic efficacy of cisplatin. J Control Release 2015;
217: 2741

Hu K, Miao L, Goodwin TJ, Li J, Liu Q, Huang L. Quercetin
remodels the tumor microenvironment to improve the permeation,
retention, and antitumor effects of nanoparticles. ACS Nano 2017,
11(5): 4916-4925

Miao L, Liu Q, Lin CM, Luo C, Wang Y, Liu L, Yin W, Hu S, Kim
WY, Huang L. Targeting tumor-associated fibroblasts for ther-
apeutic delivery in desmoplastic tumors. Cancer Res 2017; 77(3):
719-731

Lee S, Han H, Koo H, Na JH, Yoon HY, Lee KE, Lee H, Kim H,
Kwon IC, Kim K. Extracellular matrix remodeling in vivo for
enhancing tumor-targeting efficiency of nanoparticle drug carriers
using the pulsed high intensity focused ultrasound. J Control
Release 2017; 263: 68—78

Zhou H, Fan Z, Deng J, Lemons PK, Arhontoulis DC, Bowne WB,
Cheng H. Hyaluronidase embedded in nanocarrier PEG shell for
enhanced tumor penetration and highly efficient antitumor efficacy.
Nano Lett 2016; 16(5): 3268-3277

Gong H, Chao Y, Xiang J, Han X, Song G, Feng L, Liu J, Yang G,
Chen Q, Liu Z. Hyaluronidase to enhance nanoparticle-based
photodynamic tumor therapy. Nano Lett 2016; 16(4): 2512-2521
Shay G, Lynch CC, Fingleton B. Moving targets: emerging roles
for MMPs in cancer progression and metastasis. Matrix Biol 2015;
44— 46: 200-206

Hu XX, He PP, Qi GB, Gao YJ, Lin YX, Yang C, Yang PP, Hao H,
Wang L, Wang H. Transformable nanomaterials as an artificial
extracellular matrix for inhibiting tumor invasion and metastasis.
ACS Nano 2017; 11(4): 4086—4096



	Outline placeholder
	bmkcit1
	bmkcit2
	bmkcit3
	bmkcit4
	bmkcit5
	bmkcit6
	bmkcit7
	bmkcit8
	bmkcit9
	bmkcit10
	bmkcit11
	bmkcit12
	bmkcit13
	bmkcit14
	bmkcit15
	bmkcit16
	bmkcit17
	bmkcit18
	bmkcit19
	bmkcit20
	bmkcit21
	bmkcit22
	bmkcit23
	bmkcit24
	bmkcit25
	bmkcit26
	bmkcit27
	bmkcit28
	bmkcit29
	bmkcit30
	bmkcit31
	bmkcit32
	bmkcit33
	bmkcit34
	bmkcit35
	bmkcit36
	bmkcit37
	bmkcit38
	bmkcit39
	bmkcit40
	bmkcit41
	bmkcit42
	bmkcit43
	bmkcit44
	bmkcit45
	bmkcit46
	bmkcit47
	bmkcit48
	bmkcit49
	bmkcit50
	bmkcit51
	bmkcit52
	bmkcit53
	bmkcit54
	bmkcit55
	bmkcit56
	bmkcit57
	bmkcit58
	bmkcit59
	bmkcit60
	bmkcit61
	bmkcit62
	bmkcit63
	bmkcit64
	bmkcit65
	bmkcit66
	bmkcit67
	bmkcit68
	bmkcit69
	bmkcit70
	bmkcit71
	bmkcit72
	bmkcit73
	bmkcit74
	bmkcit75
	bmkcit76
	bmkcit77
	bmkcit78
	bmkcit79
	bmkcit80
	bmkcit81
	bmkcit82
	bmkcit83
	bmkcit84
	bmkcit85
	bmkcit86
	bmkcit87
	bmkcit88
	bmkcit89
	bmkcit90
	bmkcit91
	bmkcit92
	bmkcit93
	bmkcit94
	bmkcit95
	bmkcit96
	bmkcit97
	bmkcit98
	bmkcit99
	bmkcit100
	bmkcit101
	bmkcit102
	bmkcit103
	bmkcit104
	bmkcit105
	bmkcit106
	bmkcit107
	bmkcit108
	bmkcit109
	bmkcit110
	bmkcit111
	bmkcit112
	bmkcit113
	bmkcit114
	bmkcit115
	bmkcit116
	bmkcit117
	bmkcit118
	bmkcit119
	bmkcit120
	bmkcit121
	bmkcit122
	bmkcit123
	bmkcit124
	bmkcit125
	bmkcit126
	bmkcit127
	bmkcit128
	bmkcit129
	bmkcit130
	bmkcit131
	bmkcit132
	bmkcit133
	bmkcit134
	bmkcit135
	bmkcit136
	bmkcit137
	bmkcit138
	bmkcit139
	bmkcit140
	bmkcit141
	bmkcit142
	bmkcit143
	bmkcit144
	bmkcit145
	bmkcit146
	bmkcit147
	bmkcit148
	bmkcit149
	bmkcit150
	bmkcit151



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


