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Abstract The liver has been characterized as a frontline lymphoid organ with complex immunological features
such as liver immunity and liver tolerance. Liver tolerance plays an important role in liver diseases including acute
inflammation, chronic infection, autoimmune disease, and tumors. The liver contains a large proportion of natural
killer (NK) cells, which exhibit heterogeneity in phenotypic and functional characteristics. NK cell activation, well
known for its role in the immune surveillance against tumor and pathogen-infected cells, depends on the balance
between numerous activating and inhibitory signals. In addition to the innate direct “killer” functions, NK cell
activity contributes to regulate innate and adaptive immunity (helper or regulator). Under the setting of liver
diseases, NK cells are of great importance for stimulating or inhibiting immune responses, leading to either
immune activation or immune tolerance. Here, we focus on the relationship between NK cell biology, such as their
phenotypic features and functional diversity, and liver diseases.
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Introduction

The liver, a central immunological organ in the human
body, receives blood from both the arterial system and the
portal vein, which originates from the intestine and
contains a large number of circulating antigens and
microbial products. Notably, the liver maintains immune
nonresponsiveness to harmless antigens derived from the
gastrointestinal tract [1]. The tolerogenic properties of the
liver have also been recognized in liver transplants, in
which liver allografts are accepted in spite of mismatched
major histocompatibility complex [2]. Follow-up study
indicates that tolerance to heart and skin grafts are induced
after liver transplantation [3]. There is evidence that liver
tolerance contributes to chronic infection and malignant
progression in the liver under pathological conditions [4].
Indeed, the exogenous antigens and microbial products
derived from the gut can trigger liver immune responses
[5]. Moreover, the liver also exhibits robust hepatic
immunity in acute viral infection, and sometimes liver

immunity leads to liver injury and autoimmune diseases in
certain microenvironment. Collectively, it is not surprising
that the liver immunology possesses both the properties of
liver tolerance and liver immunity; the balance between
immune tolerance and immune activation is maintained by
the hepatic immune networks under normal circumstances.
However, the underlying immune regulation of the balance
between liver tolerance and liver immunity remains
obscure under pathological conditions, such as important
viral infections, parasitic infections, and tumor and
autoimmune liver diseases.
Meanwhile, the liver is often considered as an innate

immune organ. It is particularly enriched by innate
lymphocytes, such as natural killer (NK) cells. Among
those immune cells, NK cells constitute approximately
31% of the intrahepatic lymphocyte population [6]. NK
cells are important for protection against intracellular
bacterial, viral, and parasitic pathogens and malignant cells
via natural cytotoxicity and cytokine production [7].
Growing evidences also indicate that regulation by NK
cells may shape subsequent immune responses [8,9]. NK
cell activity is involved in liver immunology through
interaction with innate or adaptive immune cells in liver
diseases via their cytokine/chemokine secretion or lytic
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abilities [10–13]. Moreover, NK cells display phenotypic
and functional diversities in different liver diseases.
According to the immune characteristics of the liver, in
which its activation and tolerance are strictly regulated,
together with NK cell regulation [14,15], it may be
concluded that the liver immunology is very likely
influenced by NK cells under pathological conditions.
Here, we focus on recent advances in NK cell biology,

including its phenotypic and functional characteristics, and
outline emerging evidences of NK cell immunology
involved in immune tolerance and immune activation in
the liver under pathological conditions, such as viral
hepatitis, liver inflammation, and autoimmune and malig-
nant liver diseases, contributing to new immunotherapeu-
tics based on NK cells.

Mechanisms under liver immunity and liver
tolerance

The liver is a site of accumulation of abundant adaptive
immune cells. It is also rich in hepatocytes, hepatic stellate
cells, and dendritic cells (DCs). Among these liver-resident
cells, some populations are endowed with antigen-
presenting activity, which facilitates liver immunity or
liver tolerance. Under appropriate stimulations, these cells
are responsible for effective immune responses against
viruses, intracellular bacteria, parasites, and malignant
cells. Robust immune responses result in immune-
mediated liver inflammation with lymphocyte infiltration
and may lead to autoimmune liver disease once hepatic
self-tolerance is broken. Interestingly, the liver can also
provide a local site to prime T cells [16]. In particular,
portal-associated lymphoid tissue (PALT) has been
induced as a local immunological compartment or
pathological niche in inflamed liver, in which myeloid
DCs are recruited and modulate T cell immune responses
[17,18]. On the other hand, liver-resident cells are
implicated in the maintenance of liver tolerance by
inducing T cell tolerance [19], demonstrating that local
primed T cells result in the inactivation or apoptosis of
hepatic T cells [20,21].
In addition, the liver has well-developed lymphatic

networks. Liver-draining lymph nodes (LNs), which drain
lymphatic fluid from the liver, have been considered for
inducing effective immune responses against virus-
infected or tumor cells and may also lead to immune
tolerance [22,23]. Thus, the liver-draining LNs appear to
play a key role in maintaining liver tolerance character-
istics and inducing rapid liver immune activation in
response to acute infection or autoimmunity. However, it
remains unclear how the liver-draining LNs affect the
balance between immune tolerance and immune activation
in the liver under pathological conditions. Thus, the
immune responses that occur in the liver-draining LNs and

the hepatic tolerogenic environment could be further
compared to consider the differences in the regulation of
liver immunology in the context of liver diseases.

NK cell subsets are divided by phenotypic
and functional characteristics

Traditionally, human NK cells can be dissected into
CD56brightCD16– and CD56dimCD16+ NK subsets. The
CD56brightCD16– NK cell subpopulation is predominant in
the spleen and LNs, which produces a large amount of
cytokines; by contrast, the CD56dimCD16+ population is
predominant in the peripheral blood and exhibits higher
cytotoxic activity than the CD56brightCD16– subset [24].
The CD56dimCD16+ NK cell population is further
subdivided with respect to the surface density of CD94/
NKG2A, KIR, CD57, or CD62L [25–28]. Human NK
cells have been reported to differentiate into two
subpopulations, NK1 and NK2 cells, according to different
cytokine production [29]. Four NK subsets are described
by their relative surface expressions of CD11b and CD27
in mice [30,31]. The four subsets are shown with different
abilities in producing cytokines and cytotoxicity [32].
Previous researches have demonstrated the existence of
multiple lineages of NK cells, in different organs, such as
the liver, skin, uterus, and kidneys [33–38]. In humans, NK
cells are enriched and constitute a large proportion of
lymphocytes in the liver, with a higher percentage than
those observed in the peripheral blood and the spleen
[39,40]. Strikingly, NK cells accumulate largely in the
murine liver in contrast to the peripheral blood and spleen.
Murine intrahepatic NK cells can be classified into
circulating conditional NK cells and liver-resident NK
cells based on the relative expression of CD49a and DX5
[41]. Conventional liver NK cells secrete IFN-g and
release perforin and granzymes to mediate cytotoxicity
[42]. However, liver-resident NK cells are reported to
constitutively express TRAIL or NKG2A and inhibit anti-
CD8+ T cell immunity [43,44], suggesting their potential
regulatory role.
The distinct phenotypic features of NK cells are

associated with their functional properties [45]. NK cells
were functionally identified in the 1970s based on their
distinctive cytotoxicity against allogeneic tumor cells
without the need of previous sensitization. Besides
cytotoxicity, activated NK cells have been implicated in
secreting certain cytokines involved in regulating immune
responses [46]. Under pathological conditions, human NK
cells exhibit cytotoxic, regulatory, and tolerant functions
according to the distinctive activities [30]. Strikingly, the
“NK-reg” subset is proposed to have a negative regulatory
effect on immune responses, which is similar to that of
Treg cells [47]. NK cell exhaustion has been described
with high expression of certain inhibitory receptors in
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some chronic diseases [48]. In reality, numerous germline-
encoded activating and inhibitory receptors transmit
signals for NK cell function and dysfunction through
sensing infected or malignant cells [49]. For example, NK
cells are activated by decreased inhibitory signals or
increased activating signals [50]. Activating receptors are
involved in NK cell function, including the NCR family;
NKG2D; the SLAM-related receptors 2B4, NTB-A, and
CRACC; and other receptors such as DNAM-1, NKp80,
and CD16 [8]. A number of inhibitory receptors expressed
by NK cells are involved in stringent negative regulation of
NK cell activation, including the human KIR family; the
mouse Ly49 family; the heterodimeric receptor CD94/
NKG2A in both humans and mice; and ITIM-containing
receptors such as LILR, KLRG1, and NKR-P1 in human
NK cells [51].
Although NK cells exhibit unique organ-specific proper-

ties, it is still unclear how the phenotype of NK cells is
linked to their particular functions under pathogenic
conditions. Thus, further studies of certain liver NK cell
subsets with specific functions are needed to improve our
understanding of liver diseases.

NK cells in liver diseases

As key innate lymphocytes, NK cells are of great
importance in early defenses against infected and malig-
nant cells through cytotoxicity or cytokine secretion. In
addition, studies have revealed that NK cells can shape
innate and adaptive immunity through direct or indirect
regulation [47,52], which demonstrates that NK cell
activity contributes to either immunosuppression or
immunoactivation. Generally, adaptive immunity, espe-
cially cellular adaptive immune responses, are considered
to play a dominant role in controlling the final outcome of
liver diseases [53–55]. Studies on liver diseases have
shown that immunoregulatory disorder exists and con-
tributes to the immune tolerance in chronic liver disease
and liver cancer and over-reactive immune responses in
liver inflammation and autoimmune liver disease [56]. NK
cells can amplify anti-viral immune responses with higher
IFN-g production and cytotoxicity to control early viral
infection [57,58]; however, evidences also indicate that
NK cells are defective in secreting IFN-g in chronic viral
infection [59,60]. Studies have demonstrated that high
frequencies and numbers of NK cells with increased
expression of IL-8 in the destruction of autologous biliary
epithelial cells are observed in patients with primary biliary
cirrhosis (PBC), indicating NK cell dysfunction in liver
autoimmune disorders [61,62]. On the other hand,
dysfunctional NK cells also show decreased levels of
IFN-g secretion and cytotoxic activity in hepatocellular
carcinoma (HCC) patients [63]. The above evidences
demonstrate that NK cell functional dichotomy exists in

liver diseases. However, it still remains unclear how liver
NK cell subsets influence the outcome of liver disease. In
addition, the ultimate outcome of intrahepatic diseases is
largely dependent on antigen-specific T cell immune
responses. Thus, it is possible that liver NK cell subsets
influence the phenotype and function of numerous immune
cell types through diverse immune regulatory mechanisms,
which together promote or limit antigen-specific T cell
immune responses [64,65] and ultimately affect the
outcome of liver diseases.

NK cell effector function in liver immunity

NK cell-associated receptors are observed in liver diseases.
Previous studies have highlighted that normalization of
NK cell phenotype and function contributes to direct
antiviral-mediated clearance of hepatitis C virus (HCV)
[66]. During acute hepatitis B virus (HBV) infection,
effective NK cell function is displayed by increased
NKp46 and decreased NKG2A expressions [67]. NK cells
contribute to the inhibition of HCV replication through the
cytotoxic ability of NKp30 [68]. NK cells are also reported
to protect against HCV infection through the interaction of
KIR2DL3 and its ligands [69]. By modulating NKG2D
and NKG2A expressions, NK cell cytotoxicity is augmen-
ted against HCC [70], and NK cells stimulated by
interferons lead to strong antitumor responses after cancer
surgery [71]. The over-activated NK cell function could
also lead to liver inflammation through a variety of
molecular mechanisms [72]. For example, TRAIL+-
CD56bright and Perforin+CD56dim NK cells contribute to
liver injury in chronic hepatitis B (CHB) patients [73].
Moreover, NK cell-derived cytokine milieus are involved
in immune-mediated liver damage. Recent studies indicate
that activated NK cells with increased expressions of
CD69, CD107a, IFN-g, and TNF-α are positively
associated with hepatic inflammation in patients chroni-
cally infected with HBV [74]. Additionally, many studies
have also indicated that NK cells attenuate liver fibrosis in
vivo via Toll-like receptor-9 [75] or through TRAIL-,
FasL-, and NKG2D-dependent mechanisms [76,77].
Autoimmune liver diseases are induced when self-

tolerance in the liver is broken [78,79]. NK cells have been
implicated in this kind of disease as well. Increased
number of NK cells with perforin expression is found in
patients with PBC [80]. Furthermore, hepatic NK cells
possess cytotoxic activity via TLR4 ligation in patients
with PBC [61]. They are also found to kill cells by TRAIL
in patients with PBC [81]. Therefore, NK cell receptors are
directly involved in acute liver diseases and autoimmune
liver diseases.
As NK cells have shown regulatory effects on multiple

aspects of immune responses, T cell immunity is promoted
directly or indirectly by NK cells through hepatic
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immunity [56]. In particular, NK cells can directly or
indirectly enhance T cell responses through cytokine and
chemokine secretion, cytotoxicity, or antigen-presenting
cell (APC) regulatory functions [46,82]. For instance, NK
cells are recruited to the draining LN and promote naïve
CD4+ T cell differentiation into TH1 cells [83]. In a mouse
model mimicking acute HBV infection, liver conventional
NK cells promote anti-HBV CD8+ T cell immunity via
secreting IFN-g [84]. In addition, CD8+ T cells are primed
by NK cells even without the requirement of CD4+ T cells
[85]. By contrast, the lack of NK cell function results in
impaired tumor-specific CD8+ T cell immune responses
and tumor progression [86]. In addition, T cell immune
responses are enhanced in a NK cell-dependent manner by
indirect mechanisms. NK cell-derived IFN-g contributes to
DC accumulation and enhanced T cell recruitment [87,88].
NK cells may affect T cell immunity and control infections
through interaction with B cells [89]. They exhibit
cytotoxic activity against target cells, and the release of
antigens for cross presentation leads to enhanced T cell
immune responses [90]. Taken together, the above results
demonstrate that the effective NK cell function is often
mediated by high expressions of activating receptors and is
associated with liver immunity through the positive
regulation of T cells in liver diseases.

NK cell dysfunction in liver tolerance

NK cell dysregulation in liver tolerance

Liver tolerance is often induced in chronic hepatic
infection and hepatic tumor [91]. Meanwhile, accumulat-
ing studies have suggested that the NK cell activity in
chronic liver diseases is compromised [92]. A recent study
indicated that the CD11b–CD27– NK cell subset is
associated with NK cell dysfunction and tumor progression
in HCC patients [93]. Functional impairment of intrahe-
patic NK cells, indicated by the decreased production of
TNF-α and IFN-g, was reported in HCC patients [94].
Additionally, numerous studies have shown that the
imbalanced NK cell receptors contribute to NK cell
dysfunction in chronic viral infection and HCC [95–99].
For example, activating receptors CD16, NKG2D, and
NKp30 are downregulated, whereas NK cells show
increased expression of NKG2A and Tim-3 in CHB
patients [59,100–103]. In patients with chronic hepatitis C
(CHC), NK cell function is negatively regulated by
KLRG1 [104], whereas the elevated expression of Tim-3
contributes to the increased cytotoxicity of NK cells [105].
Similarly, decreased intrahepatic NK cell cytotoxic activity
is observed in CHC infected patients with decreased
expression of TRAIL, which leads to impaired intrahepatic
NK cell cytotoxicity and virus persistency [96]. On the
other hand, NK cell function can be restored after blockade

of immunosuppressive cytokines [106]. For instance, a
recent study has demonstrated that increased NKG2A
expression is observed in HCC patients, and NKG2A
blockade facilitates the recovery of immune responses
[107]. Collectively, these findings indicate that NK cell
dysfunction is often associated with imbalanced NK cell
inhibitory and activating receptors in chronic infections
and tumor conditions.
Incomplete activation and abortive immune function of

hepatic T cells are observed in chronic infections [64].
Several studies highlight that NK cell cytotoxic activity
contributes to the cytolysis of T cells [108,109]. In
lymphocytic choriomeningitis virus-infected mice
mimicking human immunodeficiency virus and HCV
infections in humans, NKG2D can mediate regulatory
functions of NK cells that affect CD8+ T cell immunity by
producing perforin, whereas NK cell depletion triggers
strong CD8+ T cell immune responses and viral control
[110]. Furthermore, NK cells exhibit cytolytic killing of
antiviral CD8+ T cells by upregulating a death receptor in
chronic HBV-infected patients [43]. These results have
implicated that impaired T cell responses are regulated by
NK cells through their cytolytic ability. In line with these
findings, several investigations have also pointed out that
cytokines secreted by NK cells may trigger regulatory
functions of NK cells. A regulatory IL-10-producing NK
cell subpopulation is shown with significant inhibitory
effect on T cell proliferation [111]. Further studies have
demonstrated that the lack of NK cells can restore T cell
expansion in ifnar1–/– mice [112,113], and type I IFNs
protect T cells from attacks by NK cells through down-
regulating NCR1 ligands [112]. In addition, NK cell-
derived IFN-g limits T cell proliferation [114] and
differentiation [115].
The regulation by NK cells also indirectly contributes to

impaired T cell immunity through interaction with APCs
[116]. For example, NK cells express highly levels of
programmed death ligand 1 to limit DCs activation and
reduce their ability to prime CD8+ T cells [117]. In
addition, CD48– mature DCs can also be killed by self-
HLA class I specific inhibitory NK receptors defective NK
cells [118], which may lead to impaired adaptive immune
responses. Interestingly, NK-gd T cell cocultures also
enhance NK cell cytotoxicity against autologous DCs
[119]. On the basis of these data, NK cells may diminish
DCs, which results in reduced antigen presentation that
limits CD4+ T and CD8+ T cell responses, which in turn
induce persistent viral infections [120]. As NK cells
eliminate antigen presentation of APCs, which results in
reduced CD8+ T cell responses in chronic infections, early
NK cell depletion can enhance T cell responses and viral
control [121]. On behalf of the regulation of the immune
responses by NK cells, it is of utmost importance for
determining whether there are distinct NK cell subpopula-
tions that exhibit positive and negative regulatory
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activities. Therefore, “regulatory NK cells” (NKreg
subpopulation) are proposed to exist and show a regulatory
effect on innate and adaptive immunity through secreting
high levels of regulatory mediators including IL-10 [47].
Collectively, the regulation of Tcell responses by NK cells,
both directly and indirectly, shows the negative impact on
T cell immunity involved in liver tolerance. To validate the
regulatory role of NK cells, further studies are required to
characterize the specific NK cell phenotype with positive
or negative regulatory function at the molecular and
cellular levels under liver pathogenic environment.

NK cell exhaustion in liver tolerance

NK cells become functionally exhausted in chronic
infections [48]. In SIV-infected nonhuman primate models,
continuous NK cell activation leads to the upregulation of
Tim-3 and failure to lyse target cells [122]. NK cell
exhaustion in tumor and tumor models has been also
observed [107,123,124]. Another research has indicated
that blockade of Tim-3 reverses exhausted NK cell
phenotype in patients with metastatic melanoma [125].
Chronic infection and tumors are also characterized by T
cell exhaustion [126]. Further studies have also indicated
that IL-10 produced by NK cells promotes T cell
exhaustion and peripheral tolerance [127,128]. However,
the mechanism underlying T cell exhaustion is currently
unknown, and whether there is a relationship between NK
cell exhaustion and T cell exhaustion merits further
research. Similar to T cell exhaustion, NK cell exhaustion
shows increased expression of inhibitory receptors and

decreased expression of activating receptors and transcrip-
tion factors, resulting in impaired control of chronic
infection and tumor growth. Generally, NK cell activation
is a prelude of CD8+ T cell activation under certain liver
diseases. Thus, it is possible that NK cell exhaustion may
occur prior to CD8+ T cell exhaustion, suggesting that
reversing impaired NK cell function may be considered as
a strategy for preventing CD8+ T cell exhaustion (Fig. 1).
Further studies that focus on functional exhausted NK cells
with specific exhausted phenotype are needed as they will
help us to reverse NK cell exhaustion using blockade of the
immune checkpoint molecule in chronic liver disease and
liver tumor.
More importantly, the human liver also consists of a

large number of intrahepatic CD56bright NK cells, which
specifically express CD49a, CXCR6, and Eomeshigh

T-betlow distinct from peripheral blood NK cells
[129,130]. Further studies have demonstrated that human
liver-resident CD56bright NK cell expression of CD69,
CCR5, and CXCR6 is responsible for liver-resident
CD56bright NK cell retention within liver sinusoids [131].
A recent study suggested that these liver-resident
CD56bright NK cells possess long-lived characteristics
[132]. Regarding the functions of liver-resident NK cells,
they can induce memory-like immune responses toward
virus and haptens [38,133,134]. Moreover, they produce
specific cytokines such as TNF and GM-CSF [135].
Therefore, liver-resident NK cells appear to play an
important role in regulating liver immunology. However,
additional studies are required to determine the role of
liver-resident NK cells in liver diseases.

Fig. 1 NK cell exhaustion may be the prelude of CD8+ Tcell exhaustion. In chronic infection and HCC, effector NK cells become exhausted
with increased expressions of inhibitory receptors, such as Tim-3, NKG2A, and PD-1; decreased expressions of activating receptors including
NKG2D and NKp30; and decreased expressions of transcription factors, such as Eomes and T-bet. And exhausted NK cells may lead to CD8+

T cell exhaustion in chronic infection and tumor conditions.
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Conclusions

Altogether, given the tremendous data suggesting NK cell
activity in orchestrating liver immunology, it is thus
possible that NK cells are of great importance in affecting
hepatic immunoactivation and immunotolerance. With the
increased expression of activating receptors and decreased
expression of inhibitory receptors, NK cell activity
contributes to T cell activation through direct or indirect
regulatory mechanisms, which contribute to liver immu-
nity in acute infection, liver inflammation, and autoim-
mune liver diseases. However, NK cells are also implicated
in liver tolerance by inducing T cell anergy under
pathologic conditions, such as chronic infection and liver
cancer. In addition, functional exhaustion of NK cells may
lead to liver tolerance possibly depending on the induction
of T cell exhaustion (Fig. 2).
As upstream regulators of immune responses, NK cells

play an important role in controlling chronic infection and
cancer and display the potential to be used as new
immunotherapeutics [136–138]. For example, functional
NK cell responses are associated with the success of
antiviral therapies in HCV infection [139]. Through the

engagement of their surface receptors, the NKp30/B7-H6
axis could be a target for cancer immunotherapy [140].
However, in the context of liver diseases, NK cell activity
appears to exhibit a paradoxical function in influencing the
balance between liver tolerance and liver immunity,
indicating that heterologous NK cell populations should
be considered in liver diseases. Therefore, dissecting NK
cell subsets with different phenotypes and functions will
help us understand the interplay between immune
tolerance and immune activation involved in liver diseases.
How to use NK cell biology to target chronic liver
infection and tumors or to prevent liver inflammation and
autoimmune diseases merits further research and investi-
gations.
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negatively regulate T cell immunity and induce anergic T cells and Treg cells via direct or indirect mechanisms, which maintain liver
tolerance. And NK cell exhaustion may be involved in liver tolerance and associated with exhausted CD8+ Tcells in chronic liver disease.
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