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Abstract Peritoneal dialysis (PD) is an established form of renal replacement therapy. Long-term PD leads to
morphologic and functional changes to the peritoneal membrane (PM), which is defined as peritoneal fibrosis, a
known cause of loss of peritoneal ultrafiltration capacity. Inflammation and angiogenesis are key events during the
pathogenesis of peritoneal fibrosis. This review discusses the pathophysiology of peritoneal fibrosis and recent
research progress on key fibrogenic molecular mechanisms in peritoneal inflammation and angiogenesis, including
Toll-like receptor ligand-mediated, NOD-like receptor protein 3/interleukin-1β, vascular endothelial growth
factor, and angiopoietin-2/Tie2 signaling pathways. Furthermore, novel strategies targeting peritoneal
inflammation and angiogenesis to preserve the PM are discussed in depth.
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Introduction

Peritoneal dialysis (PD) is an established form of renal
replacement therapy for patients with end stage renal
disease (ESRD). PD relies on the peritoneal membrane
(PM) as a semipermeable barrier for ultrafiltration and
diffusion [1]. PM consists of two layers, namely,
mesothelial monolayer and submesothelial compact zone
comprising connective tissue, wherein fibroblasts, immune
cells such as macrophages and mast cells, peritoneal
lymphatic vessels, and capillaries are found (Fig. 1) [1].
Until now, there are more than 272 000 patients receiving
PD worldwide, representing approximately 11% of global
dialysis patients with ESRD [2].
Long-term PD leads to morphologic and functional

changes to the PM, which is defined as peritoneal fibrosis,
a leading cause of peritoneal ultrafiltration failure. The
most important features of peritoneal fibrosis are the loss of
MCs, thickening of the submesothelial layer, and angio-
genesis (Fig. 1). As differences between fibrosis, sclerosis,
and encapsulation have not been clearly elucidated,
defining peritoneal fibrosis is difficult [3]. It could vary

from mild submesothelial thickening to the rare and fatal
cases of encapsulating peritoneal sclerosis [4]. According
to data from peritoneal biopsies in PD patients, the
prevalence of peritoneal fibrosis is almost universal at
midterm duration of PD with bioincompatible PD solutions
[5]. Uremia, bioincompatible PD solutions (high glucose,
low pH, glucose degradation products [GDP], and
advanced glycation end products [AGEs]), and peritonitis
are known contributors to peritoneal fibrosis [6–8].
Peritoneal inflammation and angiogenesis are key events
during the development of peritoneal fibrosis. Inflamma-
tion is characterized by the enhanced production of
proinflammatory factors, such as C-reactive protein,
tumor necrosis factor-α (TNF-α), and various interleukins
(ILs). Angiogenesis, on the other hand, results from
increased production of vascular endothelial growth factor
(VEGF) and other proangiogenic factors that stimulate the
formation of new capillaries in the PM [9].
The present review will discuss the recent research

progress on the pathophysiology of peritoneal fibrosis. In
particular, we will focus on the individual and interactive
molecule mechanisms of peritoneal inflammation and
angiogenesis in the pathogenesis of peritoneal fibrosis.
Meanwhile, selective strategies targeting peritoneal inflam-
mation and angiogenesis for the preservation of the PM are
introduced in detail.
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Pathophysiology of peritoneal fibrosis

Peritoneal Inflammation

Peritoneal injury causes activation of macrophages,
neutrophils, endothelial cells (ECs), and MCs, which are
the principle sources of proinflammatory cytokines and
fibrotic mediators in response to external signals [10,11].
Once activated, they are able to recognize the bacterial
pathogens through Toll-like receptors (TLRs), resulting in
the activation of nuclear factor-kB (NF-kB) signaling
pathways and subsequent secretion of numerous inflam-
matory cytokines, including IL-6, IL-1β, IL-8, TNF-α,
monocyte chemoattractant protein-1 (MCP-1), and macro-
phage inflammatory protein 2 [12–14]. Overexpression of
these cytokines leads to acute inflammatory response,
neutrophil accumulation, mononuclear cell recruitment,
and activation of resident fibroblasts, termed “myofibro-
blast,” which play a vital role in peritoneal fibrosis by
secreting extracellular matrix [8]. Apart from resident
fibroblasts, myofibroblasts are also derived from MCs and
fibrocytes [15]. Peritoneal inflammation is finally followed
by EMT of MCs triggered by inflammation and results in
peritoneal fibrosis and angiogenesis.
A number of factors potentially trigger the inflammatory

response. First of all, peritonitis remains a main complica-
tion in PD patients, leading to MC damage and fibrosis.
Moreover, uremic toxins, such as asymmetric dimethylar-
ginine, homocysteine, and modified proteins (i.e., AGE);
mechanical stress of the vascular wall (as a result of
hypertension); comorbidities such as advanced age and
diabetes; and extra-osseous calcification all contribute to

peritoneal inflammation [16]. AGEs, derived from glucose
and GDPs contained in the PD solution, bind to receptors
for AGEs (RAGE) and then stimulate the upregulation of
NF-kB, MCP-1, and proinflammatory cytokines, such as
IL-6 and TNF-α [17]. RAGE activation mediates the
activation of TGF-β-Smad signaling, which is an essential
signaling pathway involved in peritoneal fibrosis [18]. On
the other hand, bioincompatible PD solution is also
associated with production of proinflammatory and
profibrotic cytokines. In a retrospective study, we showed
that high peritoneal glucose exposure is associated with
increased incidence of relapsing/recurrent peritonitis in PD
patients, and high glucose may conduct proinflammatory
and profibrotic reactions in the peritoneal cavity [19]. It can
also upregulate IL-6 synthesis in Met-5A cells (immorta-
lized human MCs derived from pleural fluids obtained
from non-cancerous individuals) [20].
IL-6 is a key player in modulating peritoneal inflamma-

tion. Our previous studies indicate that intraperitoneal IL-6
and IL-6 polymorphisms were associated with increasing
peritoneal solute transport rate [21,22]. IL-6 and soluble
IL-6 receptor induce the synthesis and secretion of MCP-1,
which attracts monocytes and lymphocytes. In addition,
IL-6 also induces the formation of MCP-3 and IL-8, which
are involved in the pathogenesis of peritoneal inflamma-
tion [23]. High dialysate glucose concentration resulted in
proportionate increase of intraperitoneal IL-6 production
[19]. Chemokines such as MCP-1/CCL2 and IL-8/
CXCL8; granulocyte colony-stimulating factor, which
mobilizes neutrophils from the bone marrow and promotes
their survival; and CCL5, which is a strong chemoattrac-
tant for mononuclear leukocytes, can be synthesized by
peritoneal fibroblasts [24,25].

Fig. 1 Schematic diagram showing the structure of normal peritoneum and peritoneal fibrosis. The left side of the figure: The
peritoneum of a healthy subject is lined with a continuous monolayer of mesothelial cells (MCs, ) with multiple microvilli on the apical
surface. The submesothelium is composed of connective tissue with blood vessels ( ) and few resident fibroblasts ( ). The right side
of the figure: Peritoneal fibrosis is characterized by mesothelial denudation, decreased microvilli density, thickening of the
submesothelium attributed to increased matrix protein deposition, infiltration of myofibroblasts, and neoangiogenesis. In this process,
peritoneal inflammation and the release of inflammatory factors ( ) are observed. Myofibroblasts may originate from activated fibroblasts
( ), MCs that have undergone epithelial mesenchymal transdifferentiation (EMT) ( ), or circulating cells such as fibrocytes

( ).

350 Inflammation and angiogenesis in PD-related PF



Selective molecular mechanisms of peritoneal inflam-
mation

Toll-like receptor ligand-mediated signaling pathways

TLRs can be expressed by non-classical immune cells,
such as ECs and MCs. TLRs expressed by MCs play an
important role in peritoneal inflammation. Human MCs
express Gram-positive and Gram-negative TLRs, includ-
ing TLR1, TLR2, and TRL5 but not TLR4 [26]. When
binding to ligands, TLRs induce MyD88-dependent
signaling pathway, which leads to the activation of
downstream molecules of ERK1/2, p38 MAPKs, NF-kB,
and c-Jun N-terminal kinase (JNK) and induction of
proinflammatory cytokines, including TNF-α and IL-6
(Fig. 2) [27].
The activation of NF-kB typically involves phosphor-

ylation of nuclear factor of k light polypeptide gene
enhancer in B cell inhibitor (IkB) by the inhibitor of NF-
kB kinase complex. The phosphorylation of IkB leads to
its ubiquitylation and subsequent degradation, which
allows the release of NF-kB and its translocation to the

nucleus. Furthermore, MAPKs pass the signals to p38 and
JNKs to activate cAMP-responsive element and activator
protein-1 transcription factors inducing the transcription of
inflammatory cytokines and chemokines [28].
In MCs, inhibition of the ERK1/2 pathway attenuated

EMT, which was mediated by TGF-β1 in combination with
IL-1β. Moreover, blockade of ERK1/2 promoted mesench-
ymal-to-epithelial transition in MCs that had undergone
EMT in vivo [29]. The p38 MAPK pathway plays a role in
the control of cell differentiation and apoptosis [30]. p38
activity maintains E-cadherin expression in MCs, and the
p38 MAPK pathway modulates the mesenchymal conver-
sion of MCs by a feedback mechanism based on the
downregulation of 25ERK1/2 and TAK-1/NF-kB activities
[31]. NF-kB controls Snail expression and cooperates with
Snail in inducing fibronectin transcription [32,33]. Inhibi-
tion of NF-kB partially reverses EMT in MCs collected
from PD patients [29]. Interestingly, NF-kB nuclear
translocation and transcriptional activity are enhanced by
MEK-ERK1/2 pathways but inhibited by the p38 MAPK
pathway [31]. Similar to ERK1/2 inhibition, JNK inhibi-
tion is also associated with E-cadherin maintenance and
blockade of EMT in MCs [33,34].

Fig. 2 Selective molecular mechanisms of peritoneal inflammation and angiogenesis and their contribution to peritoneal fibrosis. TLR
ligands activate redundant pathways leading to the activation of ERK1/2, MAPKs, NF-kB, and JNK and inflammation. Activation of
NLRP3 inflammasome triggers IL-1β release and inflammation. VEGF, when bound to VEGFR-2, induces the phosphorylation of
phospholipase (PL) C-g, PI3K, MAPK, and the Src family and expression of COX-2, which are involved in angiogenesis. Angiopoietin-1
and angiopoietin-2 bind to Tie1/Tie2 and activate the PI3K/Akt and ABIN-2 pathways. They play an important role in angiogenesis.
NLRP3, NOD-like receptor protein 3; IL, interleukin; ERK, extracellular signal-regulated kinase; JNK, c-Jun N-terminal kinase; NF-kB,
nuclear factor-kB; COX-2, cyclooxygenase-2; PI3K, phosphatidylinositol-3-kinase; m-TOR, mammalian target of rapamycin; Angs,
angiopoietins; ABIN-2, A20 binding inhibitor of NF-kB-2; P, phosphate.
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NOD-like receptor protein 3/interleukin-1β signaling

Recently, the role of inflammasomes in peritonitis has
attracted the attention of researchers. We demonstrated that
NOD-like receptor protein 3 (NLRP3) inflammasome
mediated contrast-induced acute kidney injury through
modulating the apoptotic pathway, which provided a
potential therapeutic target for its treatment [35].
Hautem and colleagues demonstrated that the NLRP3

inflammasome is activated during peritonitis in patients on
PD and in mouse model of peritonitis [36]. Activated
NLRP3 is directly involved in PD-related inflammatory
response, which leads to structural and functional impair-
ment in the PM. An early report demonstrated that the IL-
1β pathway was involved in enhancing the EMT of MCs
because an additive morphologic effect of TGFβ1 in
combination with IL-1β could be observed in MCs [37]. In
co-treatment with TGFβ1 and IL-1β, EMT was enhanced
in primary MCs [38]. NLRP3 knockout and administration
of IL-1β receptor antagonist anakinra could treat peritoneal
morphologic alterations and transport defects during acute
peritonitis, which revealed novel therapeutic perspectives
for peritonitis in PD patients [36]. When exposed to high
glucose-based PD solutions, human peritoneal MCs
produce increased ROS, which further triggers NLRP3
inflammasome activation and leads to increased IL-1β
secretion (Fig. 2) [39]. These data provide a basis for
further development of therapeutic strategy for protecting
the peritoneum membrane during long-term PD.

Angiogenesis

Angiogenesis and vasculopathy are observed in the
peritoneum of patients in long-term PD, and the degree
of vascularization correlates with the area of fibrotic tissue,
suggesting the involvement of angiogenesis in the
progression of peritoneal fibrosis.
Angiogenesis is defined as the formation of new blood

vessels. Catheterization, uremia, glucose, GDPs, AGEs,
and peritonitis are risk factors that contribute to angiogen-
esis. In a uremic rat model, we demonstrated peritoneal
angiogenesis and fibrosis following PD therapy, which is
accompanied with increased expression of angiopoietin
(Ang)-2 and reduced expression of Ang receptor Tie2 [40].
The significance of Ang-2/Tie2 signaling in peritoneal
angiogenesis will be discussed in depth later. VEGF
possesses a dominant role in mediating EC sprouting,
migration, and network formation. Effluent VEGF con-
centration increases along with PD duration [41], and it
decreases when patients change to glucose-free PDF,
which indicates that high glucose is associated with
increased production of VEGF [42]. Moreover, AGEs
and IL-6 can promote the production of VEGF by MCs.
The molecular mechanisms of VEGF in mediating

peritoneal angiogenesis will be discussed in the following
text.
Many other factors are involved in the formation of new

blood vessels. Prostaglandin E2 is involved in angiogen-
esis by enhancing EC migration and contributing to cell
survival [43]. MCP-1 has been shown to be involved in
angiogenesis. Stimulating ECs with MCP-1 enhances cell
migration and the induction of angiogenesis-related genes
which resulted in capillary-like tube formation [44].
Overexpression of IL-1β leads to sustained angiogenesis
and submesothelial thickening and fibrosis in vivo [45]. In
addition, IL-1β increases vessel-like structures through
enhancing VEGF production and downregulation of
Ang-1 and augments EC proliferation [46]. IL-6 stimulates
endothelial progenitor cell proliferation and migration, and
IL-6 trans-signaling induces VEGF synthesis. However,
IL-8 enhances EC survival, proliferation, and capillary
tube formation [20,47–49]. TNF-α causes capillary-like
blood vessel formation induction in vitro and in vivo [50].

Selective molecular mechanisms of angiogenesis

Vascular endothelial growth factor signaling

VEGF belongs to a gene family that includes VEGFA,
placental growth factor, VEGFB, VEGFC, and VEGFD.
VEGF is a key player in peritoneal angiogenesis.
Bioincompatible PD solution, growth factors (epidermal
growth factor and TGF-β1), and inflammatory cytokines
(IL-1α, IL-6) are major inducers of VEGF production
instead of release [51,52].
Even though the molecular mechanism of VEGF-

inducing angiogenesis is not fully explained, inhibiting
the expression of VEGF could reduce pathological
angiogenesis in a wide variety of tumor models [53].
Recently, in a mice PD model, inhibiting the synthesis of
VEGF reduced angiogenesis and lymphangiogenesis in the
peritoneum [54]. Inhibition of VEGF expression or VEGF
signaling can prevent angiogenesis in the omentum and
parietal peritoneum in PD patients [43,53].
VEGFA binds two related receptor tyrosine kinases

(RTKs), VEGFR-1 and VEGFR-2, which are expressed on
the cell surface of vascular ECs. VEGFR-1 signaling is
involved in the release of vascular-bed specific growth
factors, and VEGFR-2 signaling is a major mediator of EC
proliferation, migration, survival, and angiogenesis. When
binding to VEGFR-2, VEGFA can induce the phosphor-
ylation of PL C-g, phosphatidylinositol-3-kinase (PI3K),
MAPK, and the Src family, which then mediates the
proliferation, migration, survival, and angiogenesis in ECs
(Fig. 2) [55]. VEGFC and VEGFD bind to VEGFR-3,
which is a member of the same family of RTKs,
modulating angiogenesis mostly in lymphatic ECs [56].
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Angiopoietin-2/Tie2 signaling

Angs belong to a family of growth factors that are critically
involved in blood vessel formation during developmental
and pathological angiogenesis.
Ang-1 and Ang-2 are best characterized among the Ang

family [57]. They bind to Tie receptors with similar
affinities and play a vital role in angiogenesis (Fig. 2). Tie
receptors, including Tie1 and Tie2, were originally
described as members of an orphan RTK subfamily.
Tie1, as an orphan receptor, regulates the effects of Ang-1
and Ang-2 on Tie2 in vitro and in vivo, which can both
negatively and positively regulate Tie2 signaling during
angiogenesis, depending on the cellular context [58]. For
example, in the presence of Tie1, Ang-2 becomes a Tie2
antagonist under inflammatory conditions, whereas it acts
as a Tie2 agonist under pathogen-free conditions, although
the precise mechanism by which Tie1 alters Ang/Tie2
signaling is still unclear [58].
Ang-1 is the first identified Tie2 ligand and responsible

for baseline Tie2 activation in resting state [59]. Ang-2 was
originally described as a competitive antagonist of Ang-1/
Tie2 signaling. It acts as a context-dependent agonist/
antagonist for Tie2 [60]. For instance, inflammation shifts
the effects of Ang-2 from agonist to antagonist [60].
Activated Tie2 receptor stimulates a number of intracel-
lular signaling pathways, including PI3K/Akt, MAPK, and
ABIN-2 (A20 binding inhibitor of NF-kB-2) pathways
[61]. Engagement of Tie2 by Ang-1 is responsible for
receptor phosphorylation and the induction of survival
signals in ECs, mediating vessel sprouting and migration.
Ang-1 can stabilize the interactions between endothelial
and pericytes/smooth muscle cells. In Ang-1 mutant mice,
the association of ECs with support cells is evidently
decreased [62,63]. Collaborating functions have been
described for Ang-2. Ang-2 can be upregulated by
VEGF or hypoxia, which results in vessel destabilization.
Binding of Tie2 by Ang-2 antagonizes receptor phosphor-
ylation in transgenic animals, thereby disrupting contacts
between endothelial and peri-endothelial support and
smooth muscle cells. This process is fundamental for the
initiation of vessel sprouting or regression [43].
Our previous study investigated the relationship

between Ang/Tie2 and peritoneal angiogenesis. We
demonstrated increased levels of Ang-2 and Tie2 in
conditions of uremia and PD therapy, which were
correlated with peritoneal angiogenesis and functional
deterioration [64]. Consistent with our findings, Zareie
et al. showed an increase in the number of blood vessels in
the omentum, mesentery, and parietal peritoneum upon PD
treatment [65]. Furthermore, supplementation with
sTie2/Fc partially inhibited tube formation and migration
in human omental tissue microvascular ECs [60]. The
findings were further confirmed in a rat PD model [66,67].

In addition, Ang-2 levels are associated with systemic
markers/mediators of micro-inflammation, and elevated
Ang-2 levels are strong predictors of long-term mortality in
CKD patients, independent of arterial stiffness index or
vascular calcification [67].

Preventive strategies for peritoneal fibrosis

Strategies targeting peritoneal inflammation

As peritoneal inflammation is a main mechanism involved
in peritoneal fibrosis, its inhibition may be effective for
preventing peritoneum damage during long-term PD
(Fig. 2).

Blockade of Toll-like receptors

Given the fundamental role of TLRs in peritoneal
inflammation, Raby and colleagues assessed the potential
effect of blocking TLRs in PD-associated fibrosis. They
found that proinflammatory genes were markedly down-
regulated by soluble TLR2, a negative modulator of TLRs.
Meanwhile, Gram-positive and Gram-negative bacteria-
induced fibrosis in vivo was reduced, and fibrotic gene
expressions were inhibited. These findings revealed the
significance of peritoneal TLR2 and TLR4 in PD-
associated fibrosis and suggested a novel therapeutic
strategy against peritoneal fibrosis [68,69].

Macrophage depletion

As macrophages are major inducers of proinflammatory
factors, targeting infiltrating macrophages can be a
potential therapeutic intervention. When liposome-encap-
sulated clodronate was administrated in rat PD model to
deplete macrophages, peritoneal fibrosis was attenuated
significantly, with decrease in the number of cytokeratin
and stained α-smooth muscle actin (α-SMA)-positive
MCs, and reduced expressions of TGF-β1 and collagen
types I and II [70].

Biocompatible peritoneal dialysis solutions

Biocompatible PD solutions with physiologic pH,
bicarbonate–lactate buffers, and lower GDPs using non-
glucose osmotic agents such as amino acid and icodextrin
have been developed in recent years. Neutral pH and low
GDP solution were associated with significant improve-
ment in the effluent biomarkers of PM integrity and
peritoneal UF, such as CA125, hepatocyte growth factor,
and IL-6, and decreased effluent circulating AGE levels
and markers of EMT inMCs from PD patients [71,72]. The
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plasma and dialysate IL-6 and TGF-β1 levels were
decreased in CAPD patients treated with biocompatible
PD solutions. Meanwhile, inflammation and high perito-
neal small-solute transport rate have also been improved
[73].

Others

Alanyl-glutamine (Ala-Gln), a dipeptide with immunomo-
dulatory effects, improved resistance of MCs to PD fluids.
Supplementation of PD fluid with Ala-Gln resulted in
reduced peritoneal thickness, α-SMA expression, and
angiogenesis in rat and mouse PD models. The addition
of Ala-Gln also attenuated IL-17 expression induced by
PD, reflected by substantial reduction or normalization of
peritoneal levels of IL-17, TGF-β1, and IL-6 [74].
Additionally, immunosuppressants (glucocorticoid,

azathioprine, and cyclosporine) prevented peritoneal
fibrosis through downregulation of cytokine production
and infiltration of macrophages in rat encapsulating
peritoneal sclerosis models [75]. Mycophenolate mofetil
and mizoribine showed similar inhibitory effects on
peritoneal fibrosis [76,77].

Strategies targeting angiogenesis

Tyrosine kinase inhibitor

Sunitinib is a tyrosine kinase inhibitor and is involved in
the inhibition of VEGF signaling. Tapiawala and collea-
gues showed that sunitinib prevented new vessel formation
in the omentum and mesentery after five weeks of PD
treatment in rats [78]. Furthermore, it significantly
abrogated peritoneal overexpression of TGF-β1, MCP-1,
and VEGF in encapsulated peritoneal sclerosis rats [79].
Similarly, VEGF blockade and EGFR inhibitor inhibited
angiogenesis and suppressed the progression of peritoneal
fibrosis in rat PD model [80,81].

Celecoxib

Cyclooxygenase (COX) enzymes are involved in prosta-
glandin synthesis. COX-2 is known to be an angiogenesis
stimulator by upregulating VEGF mRNA transcription and
protein production [51]. Furthermore, it enhances the
production of prostaglandin E2 [52]. Celecoxib, a COX-2
inhibitor, prevented PD-induced angiogenesis in the
omentum and parietal peritoneum of PD rats. Although
prostaglandin E2 levels were reduced, VEGF levels were
not affected by celecoxib. Most importantly, UF was
restored upon celecoxib treatment [82]. Therefore, cel-
ecoxib may be effective in the prevention of peritoneal
angiogenesis in PD patients.

TNP-470

TNP-470 is a known angiogenesis inhibitor by inhibiting
EC proliferation [83]. It shows effects in attenuating
peritoneal fibrosis, indicated by reduction of blood vessels
and VEGF-expressing cells and suppression of myofibro-
blast proliferation [83].

Biocompatible peritoneal dialysis solutions

Hekking et al. demonstrated reduced neovascularization
and fibrosis in PD rats after 9–10 weeks treatment of
bicarbonate/lactate-buffered PDF compared with lactate-
buffered PDF [84]. Compared with conventional solution,
neutral pH and low-GDP-containing PD solution was
associated with higher levels of urine output and residual
renal function after 12 months [85,86]. However, because
it still uses glucose as osmotic agent, the density of blood
capillaries was significantly increased compared with
biocompatible solution.
Icodextrin improves UF compared with glucose-based

solutions, resulting in better control of fluid balance [87].
However, it showed no apparent benefits in preserving
residual renal function and peritoneal abilities after two
years [88]. Amino acid-based solution showed better effect
in the preservation of MCs [82]. However, markers of
angiogenesis or predictors of morphological changes of
PM were not detected in this study [89]. Peritoneal
biopsies from patients receiving biocompatible PD solu-
tions showed less hyalinizing vasculopathy and subme-
sothelial thickness and better MC preservation compared
with patients treated with conventional PD solutions [90].
After treatment with biocompatible PD solutions, the
plasma and dialysate VEGF and TGF-β1 levels were
significantly decreased, and peritoneal angiogenesis and
high peritoneal small-solute transport rate were also
improved in CAPD patients [73].

Others

Rapamycin shows antifibrotic and antiproliferative effects
on blood and lymphatic vessels in the peritoneum [54]. It
also inhibits EMT in MCs [91]. Fasudil, a Rho-kinase
inhibitor, prevented peritoneal fibrosis and angiogenesis by
downregulating the expression of TGF-β1, fibronectin, α-
SMA, and VEGF [91,92]. Endostatin also demonstrated
antiangiogenic and antifibrotic effects in mouse PD model
[93]. Bosentan and macitentan, vasoconstrictor peptide
endothelin-1 receptor antagonists, markedly attenuated
PD-induced EMT, fibrosis, angiogenesis, and peritoneal
functional decline [94]. Sulodexide manifested antiangio-
genic effects and attenuated peritoneal fibrosis [95].
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Conclusions

Peritoneal fibrosis is a major complication in long-term PD
patients, which leads to high cost of health care. Peritoneal
inflammation and angiogenesis are the main mechanisms
involved in the pathogenesis of peritoneal fibrosis. Many
attempts have been made to investigate the molecular
mechanisms involved in peritoneal inflammation and
angiogenesis, and a number of therapeutic strategies have
been suggested to preserve the PM. However, their
incidence remains high. Thus, more efforts are needed to
better elucidate the molecular mechanisms in the perito-
neum in response to inflammatory/proangiogenic signals
during PD.
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