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Abstract Non-alcoholic fatty liver disease (NAFLD) is a major cause of liver cirrhosis and hepatocellular
carcinoma and is a considerable threat to public health. miRNAs are important post-transcriptional regulators of
gene expression, and the dysregulation of miRNAs is involved in various biological processes in the liver, including
lipid homeostasis, inflammation, apoptosis, and cell proliferation. Recently, a number of studies have described the
association between miRNAs and NAFLD progression and have shown that circulating miRNAs reflect
histological changes in the liver. Therefore, circulating miRNAs have potential use for the evaluation of NAFLD
severity. In this review, we discuss the involvement of miRNAs in NAFLD pathogenesis and the key role of
miRNAs in the screening, diagnosis, and staging of NAFLD.
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Introduction

Non-alcoholic fatty liver disease (NAFLD) is defined as
the presence of hepatic steatosis (>5%–10% of hepato-
cytes are fatty) in people without history of excessive
alcohol consumption (>21 drinks/week in men and >14
drinks/week in women) and other disease etiologies that
result in fatty liver [1]. NAFLD is one of the most common
liver disorders in the world, and its global prevalence in the
general population is 6.3% to 33%, with a median
prevalence of 20% [2]. Furthermore, the prevalence of
non-alcoholic steatohepatitis (NASH) is 2%–3%, and up to
15% of NASH subjects progress to cirrhosis [3]. Although
the initial histological change of NAFLD is simple
steatosis, NAFLD is a spectrum disease that develops
from NASH and fibrosis to cirrhosis and hepatocellular
carcinoma (HCC) [4]. Therefore, NAFLD is a considerable
threat to human health worldwide, and research on its
pathogenesis, early diagnosis, and treatment is necessary.
Similar to other complex diseases, multiple factors are
involved in NAFLD development, including lipotoxicity,
insulin resistance, endoplasmic reticulum stress, adipose
tissue, gut microbiota, and genetics [5]. Our understanding
of the pathogenesis of this disease remains limited because
of its broad range and complexity. Furthermore, although

histological assessment remains the gold standard for
diagnosing NAFLD, this approach cannot be applied to the
general population and has limited use for the early
detection of NAFLD in high-risk patients. Therefore,
further elucidation of the pathogenesis and natural history
of NAFLD is necessary.

MicroRNAs are small (21–23 nucleotides), non-coding,
highly conserved endogenous RNAs that regulate gene
expression at the post-transcriptional level. Mature
miRNA synthesis involves a series of steps. Pri-micro-
RNAs are transcribed from microRNA genes by RNA
polymerase II and then cleaved by a microprocessor
complex in the nucleus, thus resulting in pre-microRNAs.
The pre-microRNAs are then transported from the nucleus
to the cytoplasm by Exportin 5 and then cleaved into
double-stranded miRNAs via Dicer. The mature guide
strand is installed into the RNA-induced silencing
complex, which interacts with the target mRNAs while
the passenger strand is degraded. Approximately 30% of
human genes are regulated by miRNAs. The wide
modulation of human genes by miRNAs indicates the
key role of miRNAs in multiple physiological processes
and diseases, including NAFLD [6].

Dysregulation of miRNA expression is a key pathogenic
factor in many liver diseases, including viral hepatitis,
alcoholic fatty liver disease, and hepatocellular cancer.
Furthermore, evidence has demonstrated that miRNA
expression changes with NAFLD progression [7].
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Circulating miRNAs are extremely stable and resistant to
plasma RNase-mediated degradation in body fluids. Many
studies have shown that an altered pattern of circulating
miRNAs reflects histological changes and molecular
events in the liver and responses to different NAFLD
stages, thus suggesting that serum miRNAs may serve as
constructive biomarkers of NAFLD [8]. Therefore,
describing the altered expression of miRNAs in NAFLD
is important to determine the exact mechanism of NAFLD
and provide the early diagnosis and severity evaluation of
NAFLD. The objectives of this review are to provide
descriptions of altered miRNA profiles in NAFLD, assess
the underlying mechanisms of the most-studied miRNAs
in NAFLD progression, and explore the role of circulating
miRNAs as biomarkers for the early diagnosis and
evaluation of NAFLD to support the therapeutic strategies
and monitoring of NAFLD treatment.

miRNAs involved in NAFLD pathogenesis

Evidence indicates that miRNAs are the key regulators of
energy homeostasis and liver functions; therefore, the
altered expression of miRNA profiles needs to be further
studied to provide a foundation for exploring the particular
mechanisms of miRNAs with respect to NAFLD (Fig. 1).
An early study evaluated 4 upregulated miRNAs (miR-
103, miR-31, miR-107, and miR-126-3p) and 2 down-
regulated miRNAs (miR-100 and miR-29c) in the liver
tissue of ob/ob mice and streptozotocin-induced diabetic
mice [9]. A microarray analysis of NASH patients also

identified 46 differentially expressed miRNAs, among
which miR-126 and miR-122 were downregulated and
miR-21, miR-100, and miR-34a were upregulated [10].
Similarly, a study explored the expression profiles of
miRNAs in NASH-related fibrosis mice induced by a
methionine–choline deficient (MCD) diet. A total of 9
upregulated and 18 downregulated miRNAs were identi-
fied in this study. Among these miRNAs, miR-146a-5p
was significantly downregulated and was shown to play a
role in the activation of hepatic stellate cells (HSCs), as
mediated by Wnt1 and Wnt5a [11].
Furthermore, a longitudinal study discovered that

miRNAs are associated with dynamic progression from
hepatic steatosis to HCC. This study also explored the
dynamic expression levels of miRNAs during NAFLD
progression in mice treated with a long-term high-fat diet
(HFD). Four miRNAs (miR-340-5p, miR-484, miR-574-
3p, and miR-720) were discovered to be involved in liver
damage and tumorigenesis, and two miRNAs (miR-125a-
5p and miR-182) were found to be dysregulated in early-
stage NAFLD. Accordingly, miRNA profiles were differ-
entially expressed in different NAFLD stages, thus
suggesting that different pathological changes involve
diverse miRNAs [12].

miR-122

miR-122 accounts for 70% of all miRNAs in the liver and
is involved in a variety of biological processes. Therefore,
miR-122 has been the focus of previous studies. Mice fed

Fig. 1 miRNAs involved in the pathogenesis of NAFLD.
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with a methyl-deficient diet had significantly decreased
miR-122 levels [10], which were observed in NASH
patients but not in simple steatosis patients or normal
subjects [8]. Furthermore, mice carrying Mir122a deletion
developed steatosis, which progressed to NASH, fibrosis,
and HCC over the long term, thus suggesting the key
role of miR-122 in the initiation and progression of
NAFLD [13].
miR-122 modulates fatty acids, triglycerides, and

cholesterol metabolism. Mice with Mir122a deletion
exhibited lower serum cholesterol and triglyceride levels
than WT mice and presented increased cholesterol and
triglyceride contents in the liver. The distinct effect of miR-
122 on cholesterol and triglyceride levels in the serum and
liver may be attributed to the decreased expression of
microsomal triglyceride transfer protein, which is related to
very low-density lipoprotein (VLDL) assembly and
secretion [13]. Furthermore, silencing miR-122 in cultured
cells induced the overexpression of key genes involved in
the regulation of lipid metabolism, including sterol
regulatory element binding protein-1c (SREBP1c), sterol
regulatory element binding protein-2 (SREBP2), fatty acid
synthase (FASN), and HMG CoA reductase (HMGCR),
whereas miR-122 overexpression yielded the opposite
results [14]. However, another study found that antagoniz-
ing miR-122 with antisense oligonucleotide in HFD and
normal-diet mice reduced the expression of lipogenic
genes and increased hepatic fatty acid oxidation, as
mediated by the activation of adenosine 5'-monopho-
sphate-activated protein kinase (AMPK), thus resulting in
improvement of hepatocyte steatosis [15]. This conflict has
been observed in different studies, and the cause remains
unclear because of distinct models and inhibition patterns.
Therefore, additional direct targets involved in the effects
of miR-122 must be identified to provide information on its
underlying mechanism of action.
In addition to the involvement of miR-122 in lipid

homeostasis, miR-122 also participates in the signaling
pathways of NAFLD-related fibrosis and HCC. A relative
deficiency of miR-122 concomitantly activated three
targets, including mitogen activated protein kinase kinase
kinase 3, vimentin, and hypoxia inducible factor-1α (HIF-
1α). All three targets are related to epithelial–mesenchymal
transition, which plays a key role in chronic inflammation,
various fibrosis diseases, and cancer metastasis [16].
Moreover, Tsai et al. [13] found that mice lacking
Mir122a had reduced phosphatase and tensin homolog
(PTEN) expression and elevated Akt signaling activation,
which is significantly associated with cell proliferation and
cell invasion in cancer.
In general, the involvement of miR-122 in different

stages of NAFLD demonstrates that miR-122 may serve as
an indicator of NAFLD severity and provide additional
insight on the diagnosis and staging of NAFLD in clinical
practice.

miR-33a/b

SREBPs are transcriptional regulators of lipid homeostasis
and play a vital role in the metabolism of cholesterol, fatty
acids, and triglycerides, which are involved in the
occurrence of NAFLD [17,18]. miR-33a and miR-33b
are separately located in the intronic regions of host genes
srebp2 and srebp1, thus suggesting the co-transcription of
miR-33 and SREBPs [19]. miR-33 contributes to the
modulation of fatty acid metabolism and insulin signaling
pathways, as well as the dysregulation of cholesterol
synthesis and high-density lipoprotein (HDL) levels.
In fact, miR-33 overexpression inhibited the expression

of genes involved in fatty acid oxidation (carnitine O-
octaniltransferase, carnitine palmitoyltransferase 1A, and
hydroxyacyl-CoA-dehydrogenase), whereas miR-33 inhi-
bition enhanced this pathway in hepatocytes [20]. Another
study demonstrated similar effects in a non-human primate
model, and also found that silencing miR-33 reduced the
expression of genes associated with fatty acid synthesis
(SREBP1, FASN, ATP citrate lyase, and acetyl-CoA
carboxylase α) and concomitantly elevated plasma HDL
levels [21]. Interestingly, the chronic inhibition of miR-33
facilitated lipid accumulation and increased plasma
triglyceride levels in mice; this condition may have been
caused by the enhanced expression of nuclear transcription
Y subunit γ, which is a co-activator required for SREBP-
responsive genes [22]. For cholesterol metabolism,
adenosine triphosphate binding cassette (ABC) transpor-
ters ABCA1 and ABCG1, which are the target genes of
miR-33, were downregulated in NASH patients and
animals and played key roles in reverse cholesterol
transport and HDL formation [23].
Furthermore, miR-33 is associated with cell prolifera-

tion and G1–S transition. Anti-miR-33 treatment in a
mouse model promoted liver regeneration and increased
the expression of cyclin-dependent kinase 6, a G1/S-
specific cyclin-D1 and a direct target of miR-33. However,
few studies have explored the specific cell proliferative
mechanism of miR-33 in NAFLD [24].
miR-33a/b is primarily responsible for lipid accumula-

tion, which is the first event in NAFLD, and subsequently
contributes to liver damage via lipotoxicity and oxidation
stress. The involvement of miR-33 in cell proliferation
provides additional information on the role of miR-33 in
NAFLD pathogenesis.

miR-34a

miR-34a engages in multiple physiological processes, such
as fatty acid oxidation and synthesis, triglyceride and
cholesterol metabolism, and hepatocyte apoptosis. Several
studies have shown that miR-34a is significantly elevated
in ob/ob mice and NAFLD patients.
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SIRT1 is a direct target of miR-34a and a key mediator
of energy metabolism via multiple signaling pathways.
miR-34a inhibition was found to activate fatty acid
oxidation and attenuate steatosis as a result of the increased
expression of hepatic silent mating type information
regulation 2 homolog 1 (SIRT1), peroxisome prolifera-
tor-activated receptor-α (PPARα), and AMPK [25].
Another study defined the signaling pathways associated
with miR-34a in NAFLD and observed that reduced miR-
34a levels in the liver of a mouse model potentiated two
pathways, namely, the SIRT1/peroxisome proliferator-
activated receptor-g co-activator 1α/PPARα pathway and
the SIRT1/liver kinase B1/AMPK pathway, and decreased
the expression of SREBP1c and its downstream targets
FASN, stearoyl-CoAdesaturase1, and acetyl-CoA carbox-
ylase. The first two pathways together contributed to
decreased malonyl-CoA (mCoA) because of the elevated
level of mCoA decarboxylase and led to CPT1 activation,
which is associated with fatty acid oxidation [26]. The
miR-34a/SIRT1/AMPK pathway also promotes the
expression of HMGCR, an enzyme involved in cholesterol
synthesis. Xu et al. [27] demonstrated that miR-34a
inhibited VLDL secretion from the liver, which ultimately
promoted liver steatosis and hypolipidaemia through
interactions with hepatocyte nuclear factor 4α (HNF4α)
in NASH patients and HFD-fed mice. In fact, HNF4α
controls the expression of genes associated with lipid and
glucose metabolism, and loss of HNF4 function caused
fatty liver and decreased plasma lipid levels in mice
[28,29]. Therefore, the miR-34a-HNF4α pathway is also
involved in NAFLD.
Additionally, miR-34a/SIRT1 is associated with oxida-

tive stress and apoptosis in NAFLD. The overexpression of
miR-34a in the cultured hepatocytes of mouse models
exacerbated FFA-induced apoptosis, whereas the inhibi-
tion of miR-34a via carnosic acid activates SIRT1
expression with a concomitant decrease in p66shc
expression, ultimately attenuates lipid accumulation, and
causes an anti-apoptotic effect in hepatocytes. p66Shc is a
key redox enzyme that is involved in mitochondrial
oxidation and apoptosis. Reduced malondialdehyde and
increased superoxide dismutase (SOD) and manganese
SOD were observed after miR-34a inhibition, thus
indicating the significance of the miR-34a/SIRT1/p66shc
pathway for NAFLD. Furthermore, another study of
NAFLD patients demonstrated that miR-34a positively
increased in the liver with disease severity and was
accompanied by repressed SIRT1 activation and increased
p53 acetylation [30].
Accordingly, miR-34a participates in both the steatosis

and apoptosis of hepatocytes, thus suggesting that miR-
34a level is linked to NAFLD severity and that miR-
34a may serve as a novel biomarker for NAFLD
progression.

miR-21

miR-21 is implicated in NAFLD pathogenesis and
progression to HCC because of the involvement of miR-
21 in multiple physiological processes.
miR-21 is involved in lipid homeostasis. A study

demonstrated that miR-21 is downregulated in response
to palmitic acid/oleic acid-induced hepatocyte steatosis
and indicated that miR-21 mimic decreases serum
triglyceride, free cholesterol, and total cholesterol levels
by targeting the 3′-UTR of hmgcr [31]. Fatty acid binding
protein 7 (FABP7) is a fatty acid binding protein that
promotes fatty acid uptake and is a direct target of miR-21.
Ahn et al. [32] found that miR-21 decreases in the livers of
HFD mice and that lycopene treatment attenuates HFD-
induced lipid accumulation by restoring miR-21 expres-
sion and inhibiting its downstream FABP7 levels.
miR-21 is overexpressed in NASH patients and low-

density lipoprotein receptor-deficient (Ldlr–/–) HFD-fed
mice. miR-21 suppression reduces inflammation, liver
injury, and fibrosis by activating PPARα expression but
does not have an effect on lipid accumulation. The
relationship between activated PPARα and unchanged
lipid levels is inconsistent with the observation that PPARα
induces fatty acid β-oxidation and improves hepatic
steatosis. In fact, PPARα was shown to inhibit the
proinflammatory signaling pathway and reduce liver injury
and fibrosis regardless of its effect on lipid accumulation
[33].
Additionally, inflammation and oxidative stress in

NASH likely contribute to NASH-related fibrosis [34].
Transforming growth factor (TGF-β) signaling participates
in fibrogenesis via HSC activation, which is responsible
for the excess accumulation of extracellular matrix proteins
[35]. A previous study demonstrated that induction of
oxidative stress promoted the translocation of nuclear
factor κB (NF-κB), which was observed to bind to the
miR-21 promoter during NASH in mice and humans; miR-
21 upregulation repressed the expression of Mothers
against decapentaplegic homolog 7 (SMAD7), increased
the expression of TGF-β, and ultimately caused fibrogen-
esis [36].
Moreover, Wu et al. [37] described the elevation of

miR-21 expression in human hepatoma HepG2 cells
with oleic acid treatment, as well as the reduction of
lipid content and cellular proliferation with miR-21
inhibitor treatment. This effect is engaged in the
dysregulation of high-mobility group box transcription
factor 1 (HBP1)–p53 axis. Furthermore, the unsaturated
fatty acid-induced overexpression of miR-21 via NF-κB
diminishes PTEN expression, thereby triggering HCC
development [38].
In general, miR-21 levels are distinct across different

stages of NAFLD, thus indicating that certain miRNAs
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may play different roles in the progression and extent of
NAFLD-related liver injury.

miR-29

miR-29 is related to cell proliferation, extracellular matrix
homeostasis, and gluconeogenesis. Silencing miR-29
contributes to multiple disease pathologies, such as fibrosis
and rhabdomyosarcoma [39]. Therefore, the major effect
of miR-29 in the liver is its involvement in fibrosis.
A number of studies have also focused on the function of

miR-29 in lipid metabolism. miR-29 is downregulated in
the livers of mice fed with a lipogenic methyl-deficient diet
that causes NASH [40], and an miR-29a inhibitor
promotes hepatic steatosis, thus demonstrating the impor-
tance of the miR-29 family for NAFLD. A recent report
showed that plasma total and HDL cholesterol levels
significantly decreased because of a global miRNA
deficiency in Dicer1fl/fl mice. Notably, the altered lipid
profile was mediated by the miR-29a-induced repression of
lipoprotein lipase (LPL) in normal liver [41]. LPL plays a
key role in breaking down circulating triglycerides and
releasing their fatty acids for uptake by tissue, which use
these fatty acids for β-oxidation or triglyceride synthesis.
Antagonizing miR-29a facilitates the uptake of fatty acids
in the liver and results in hepatic steatosis; this finding is
consistent with those of previous studies wherein elevated
levels of LPL were observed in NAFLD patients and HFD
mice models [42]. An additional study performed by Kurtz
et al. [43] observed decreased plasma cholesterol and
triglyceride levels, fatty acid synthesis, and liver content as
a result of locked nucleic acid (LNA) inhibitors of miR-29.
They also showed that LNA29 silenced genes that are
associated with the lipid synthesis pathway while activat-
ing transcriptional factors responsible for inhibiting lipid
synthesis, such as Aryl hydrocarbon receptor, forkhead
box O3, and SIRT1, thereby controlling lipid levels. These
two studies described the involvement of miR-29 in
different pathways at the molecular level, including the
lipoprotein lipolysis pathway and the fatty acid and
cholesterol synthesis pathway; however, the latter study
did not show whether miR-29 causes hepatic steatosis.
Given that miR-29 is associated with fibrosis and hepatic

lipid metabolism, the association between miR-29 and
liver fibrosis may provide additional information for
NAFLD staging and progression. Nevertheless, the under-
lying mechanism of miR-29 on NAFLD is unclear and
additional studies should be conducted to demonstrate the
correlation between miR-29 and NAFLD.
In addition to the miRNAs discussed here, various

additional miRNAs are involved in NAFLD. The miR-212
expression was upregulated in the livers of HFD mice, and
exercise attenuated hepatocyte steatosis via miR-212,
which participates in the lipogenesis of NAFLD by

interacting with fibroblast growth factor 21 (FGF21)
[44]. Estrogen targeting miR-125b conferred protection
against hepatic steatosis mediated by decreased FASN
expression in the liver of a female mouse model [45].
Furthermore, miR-24 has been shown to promote lipid
accumulation in the livers of HFD-treated mice and
hepatocytes exposed to fatty acids, thus activating lipid
synthesis via insulin-induced gene 1 downregulation and
SREBP upregulation [46]. A microarray analysis revealed
that miR-155 was upregulated by NF-κB, and tumor
suppressor CCAAT/enhancer binding protein β (C/EBPβ)
was downregulated in mice fed choline deficient and
amino acid diets, which induces liver tumors [47].

Circulating miRNAs as biomarkers in
NAFLD

A variety of imaging methods have been used to evaluate
NAFLD in patients. Ultrasound and computed tomography
scans, which are the most common methods for assessing
hepatic triglyceride content, have limits in diagnosing mild
hepatic steatosis and in reflecting the severity of
inflammation. Although magnetic resonance spectroscopy
provides highly accurate measurements of hepatic fat, it is
time-consuming and requires complex procedures such as
data acquisition and analysis, thus limiting its application
in clinical practice [48]. The discovery of miRNAs in
plasma indicates that miRNAs may be used as non-
invasive biomarkers of disease.
Studies of hepatic miRNAs provide additional informa-

tion for understanding the complex changes that occur
during NAFLD progression. Furthermore, the release of
extracellular vesicles containing miRNAs has been
reported during the accumulation of lipotoxic lipids in
hepatocytes, thus suggesting that circulating and liver
miRNAs have a tight correlation and can be potentially
used as biomarkers of liver damage [49]. Therefore,
circulating miRNAs may be used as diagnostic or
prognostic markers because they can be conveniently
detected and correlated with histological changes. Without
a doubt, a number of studies have focused on exploring
changes in circulating miRNAs.
miR-122 has received considerable attention because of

its wide involvement in the physiological processes of the
liver. In a cross-sectional study of 443 subjects who
attended health examinations in Japan, 5 serum miRNAs
(miR-21, miR-34a, miR-122, miR-145, and miR-451)
were elevated in NAFLD patients, and levels of serum
miR-122 were correlated with the severity of liver steatosis
[50]. Furthermore, a longitudinal study was conducted to
explore the serum levels of miR-122 in HFD mice, in
which miR-122 was upregulated prior to changes in
alanine aminotransferase (ALT) during early-stage
NAFLD, thus suggesting that miR-122 can be a potential
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screening biomarker for NAFLD [51]. Additionally, in a
mouse model of MCD-induced NASH, miR-122 serum
levels increased and were correlated with ALT and
aspertate aminotransferase (AST) levels, which are
canonical biomarkers of liver damage [52]. Similarly,
circulating miR-122 levels were upregulated in NASH
patients compared with simple hepatocyte steatosis sub-
jects and were associated with inflammatory activity and
fibrosis stage [53], thus suggesting that monitoring miR-
122 levels may be useful for assessing the development
and severity of NAFLD-related liver injury. However,
miR-122 may have low specificity in the diagnosis of
NAFLD because increased serum levels of miR-122 are
common in chronic liver diseases with different etiologies,
including chronic hepatitis C and alcoholic fatty liver
disease [54]. In addition to miR-122, Cermelli et al. [54]
demonstrated that plasma miR-34a and miR-16 levels are
high in NAFLD patients and miR-34a is associated with
histological disease severity. Furthermore, circulating
miR-181d and miR-99a are negatively associated with γ
glutamyl transferase levels, and miR-197 and miR-10b are
inversely correlated with inflammation in the liver [55].
Another research study found that 4 miRNAs (miR-122-
5p, miR-1290, miR-27b-3p, and miR-192-5p) are differ-
entially expressed in NAFLD patients compared with the
control group. A 4-miRNA panel presented higher AUC
and was shown to be a more sensitive and specific indicator
of NAFLD than either miR-122, ALT, or fibrosis index 4
(FIB-4); this result indicates that a single miRNA is not
powerful enough to reflect histological changes and act as
a biomarker [56]. Therefore, a combination of multiple
miRNAs and other biomarkers, such as cytokeratin 18,
FGF21, ALT, and AST, may offer higher accuracy for
assessing NAFLD.

Conclusions and perspectives

Several miRNAs are involved in the progression of
NAFLD via various pathways, such as lipid metabolism,
oxidative stress, fibrogenesis, and oncogenesis. A specific
miRNA can be used to fine-tune specific processes by
targeting different mRNAs, and miRNA levels vary during
NAFLD progression. Therefore, a complex network exists
for the regulation of related signaling pathways. Circulat-
ing miRNAs have recently emerged as biomarkers for the
degree of NAFLD severity and can offer additional
opportunities for the early diagnosis and staging of
NAFLD. Although various studies have been performed
to explore the role of miRNAs in NAFLD, multiple
inconsistencies remain, and the relationship between
miRNAs and histological changes in NAFLD is unclear.
Therefore, further studies on the mechanism underlying the
pathological progression of NAFLD are necessary. More-
over, a number of studies that focused on aberrant miRNAs

in plasma were cross-sectional and cannot address the
causal effects of miRNAs on NAFLD; therefore, additional
long-term prospective studies are needed to clarify the
predictive value of miRNAs for NAFLD. Furthermore,
several miRNAs are dysregulated in multiple liver diseases
and are not specific to NAFLD patients; therefore,
additional studies focusing on the sensitivity and specifi-
city of these miRNAs are required because biomarkers
used in clinical practice should be able to effectively
evaluate the presence and severity of disease. Given that
miRNA profiles are associated with NAFLD staging,
whether the joint effect of miRNAs or a combination of
miRNAs and other biomarkers offer highly accurate and
reliable information for NAFLD diagnosis, staging, and
therapy monitoring is still unclear.
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