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Abstract Hearing impairment is considered as the most prevalent impairment worldwide. Almost 600 million
people in the world suffer frommild or moderate hearing impairment, an estimated 10% of the human population.
Genetic factors play an important role in the pathogenesis of this disorder. Hereditary hearing loss is divided into
syndromic hearing loss (associated with other anomalies) and non-syndromic hearing loss (not associated with
other anomalies). Approximately 80% of genetic deafness is non-syndromic. On the basis of the frequency of
hearing loss, hereditary non-syndromic hearing loss can be divided into high-, mid-, low-, and total-frequency
hearing loss. An audiometric finding of mid-frequency sensorineural hearing loss, or a “bowl-shaped” audiogram,
is uncommon. Up to now, merely 7 loci have been linked to mid-frequency hearing loss. Only four genetic mid-
frequency deafness genes, namely, DFNA10 (EYA4), DFNA8/12 (TECTA), DFNA13 (COL11A2), DFNA44
(CCDC50), have been reported to date. This review summarizes the research progress of the four genes to draw
attention to mid-frequency deafness genes.

Keywords hereditary non-syndromic hearing loss; mid-frequency hearing loss; deafness genes

Introduction

With a prevalence of 0.1%, hearing loss is the most
common sensory impairment affecting several million
people worldwide [1]. In China, the prevalence of hearing
loss ranges from 1‰‒3‰ [2]. The Second National
Sample Survey on Disability indicates that people with
hearing disability account for 27% of all persons with
disabilities [3]. Numerous factors, such as genetic and
environmental factors, can cause deafness; in particular,
genetic factors account for over half of all deafness cases.
Approximately 70% of hereditary hearing loss is non-

syndromic hearing loss (NSHL), in which hearing
impairment is not associated with any additional clinical
phenotypes [4]. Monogenic hearing loss can be inherited in
various ways. Autosomal recessive non-syndromic hearing
loss (ARNSHL) occurs in 80% of cases and is typically
pre-lingual, whereas autosomal dominant non-syndromic
hearing loss (ADNSHL) accounts for approximately 20%

of cases and is often post-lingual [5]. A previous study
showed that syndromic deafness is frequently associated
with chromosome micro-imbalances [6], and chromosomal
alterations in non-syndromic patients tend to be both small
and rare, focusing on specific genes [7]. To date, 87 genes
for NSHL have been identified (http://hereditaryhearin-
gloss.org/).
Patients were divided into low- (0.25 – 0.5 kHz), mid-

(0.5 – 2 kHz), high- (2 – 8 kHz), and total-frequency
hearing loss groups, as well as the total deafness group,
on the basis of the frequency of hearing loss. Patients with
mid-frequency hearing loss show a cookie-bite audiogram
[8]. Over 80 deafness genes have been reported to date.
However, only four genes have been identified to
contribute to mid-frequency hearing loss: TECTA, EYA4,
COL11A2, and CCDC50. This paper discusses the research
progress on the four genes.

TECTA

TECTA is a causative gene of both autosomal recessive
(DFNB 21) and autosomal dominant (DFNA8/A12)
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NSHL [9,10]. TECTA includes 23 exons and encodes α-
tectorin, a non-collagenous glycoprotein of the tectorial
membrane composed of 2156 amino acids; TECTA is
located on chromosome 11q22–24 [11]. Moreover, TECTA
is one of the major non-collagenous components of the
tectorial membrane. The tectorial membrane is an extra-
cellular matrix in the inner ear; this membrane covers the
neuro-epithelium of the cochlea and contacts the stereocilia
bundles of specialized sensory hair cells. Sound induces
the movement of these hair cells relative to the tectorial
membrane, deflects the stereocilia, and leads to fluctua-
tions in hair-cell membrane potential, which transduces
sound into electrical signals [11–13].
α-tectorin, a major non-collagenous component of the

tectorial membrane, exhibits many functional domains: the
entactin (ENT)-like domain, four von Willebrand factor-
like type D (vWFD) domains in the zonadhesin (ZA)
domain, and the zona pellucida (ZP) domain [14].
Several mutations related to hearing loss have been

detected in humans [15,16]. All inactivating mutations in
TECTA cause ARNSHL, whereas missense mutations in
TECTA lead to ADNSHL [16,17]. Autosomal recessive
mutations in TECTA cause a similar audiometric pattern of
moderate-to-severe hearing loss, most significantly invol-
ving mid-frequency hearing loss [18 – 20], and the
dominant mutations in TECTA are related to characteristic
audiogram configurations, depending on which domain the
mutations occur [13,14,21].
Mutations in TECTA account for 4% of all ADNSHL

cases in a number of populations; thus, these mutations are
regarded as one of the major causes of ADNSHL [22].
Missense mutations in TECTA cause dominant forms of
non-syndromic deafness, and a genotype-phenotype cor-
relation has been reported in humans, with mutations in the
ZP and ZA domains related to mid- and high-frequency
hearing losses, respectively [11]. Existing studies generally
validate previously observed genotype-phenotype correla-
tions in DFNA8/12, as well as introduce new correlations.
Specifically, mutations in the entactin-G1-like domain in
the first two vWFD repeats and the TIL2 repeats in the ZA
and ZP domains are all associated with mid-frequency
hearing loss, whereas mutations in the other regions of the
ZA domain result in high-frequency hearing loss [16].

EYA4

The eyes absent homolog 4 (EYA4), a causative gene of
mid-frequency hearing loss, encodes a 639-amino-acid
protein serving as a transcription factor; EYA4 is also
associated with the composition organ of Corti [23]. EYA4
localizes to the ADNSHL locus DFNA10 on chromosome
6q23. The EYA4 gene is encoded for the EYA4 protein,
which acts through its phosphatase activity and plays an
important role in eye development and for the continued

function of the mature organ of Corti [24]. Research has
indicated the associations between EYA gene mutations
and post-lingual, progressive, and autosomal dominant
hearing loss [25]. Additionally, several mutations in the
EYA4were found to be associated with progressive hearing
loss [25,26].
The EYA4 protein is composed of 639 amino acids with

two critical domains, including a highly conserved 271-
amino-acid C terminus called eyaHR, alternatively called
the eya domain or eya homology domain and a more
divergent proline-serine-threonine (PST)-rich transactiva-
tion domain at the N terminus. Mutations of this gene are
known to cause post-lingual and progressive sensorineural
hearing losses, either as non-syndromic (DFNA10) or
syndromic hearing loss, depending on the location of the
truncation of the mutant protein [27].
Studies on zebrafish demonstrated the eya4 expression

in the mechanosensory epithelia of the zebrafish otic
vesicle, as well as those in neuromasts, which are sensory
patches related to the mammalian inner ear [28], and
previous researchers hypothesized that Eya4 regulated the
expression of Na+/K+-ATPase. Scientists examined the
subunit levels in eya4 morphant zebrafish and demon-
strated the selective reduction of two subunits. The re-
expression of the Na+/K+-ATPase β2b subunit rescued
eya4 deficiency in morphant zebrafish. Overall, these
results indicate that Eya4 regulates Na+/K+-ATPase,
thereby providing a mechanism by which human EYA4
mutations cause both hearing loss and heart disease [29].

COL11A2

Mutations in COL11A2 cause ADNSHL at the DFNA13
locus [30] and ARNHSL at the DFNB53 locus. COL11A2
spans ~28 kb and consists of 66 exons and an alternatively
spliced exon in the N terminus [31,32]. This gene encodes
one of the two α chains of type XI collagen, a minor
fibrillar collagen. COL11A2 is located on chromosome 6,
which is very close yet separate from the gene for retinoid
X receptor β. Type XI collagen is a heterotrimer; however,
the third α chain is a post-translationally modified α1 type
II chain. The proteolytic processing of this type XI chain
produces PARP, a proline/arginine-rich protein that is an
N-terminal domain. The collagen family consists of 19
collagens encoded by at least 32 unique genes [33]. The
common signature collagen motif is the sequential
repetition of the amino acid triplet-Gly-X-Y-, where
numerous X- and Y-positions are filled by the ring amino
acids proline and hydroxyproline; these amino acids
facilitate the intertwining of three collagen polypeptide
chains into a triple helix [34]. Type XI collagen is a minor
collagen accounting for < 10% of the total cartilage
collagen. This type of collagen functions as a spacer in
maintaining the interfibrillar distance and fibril diameter of
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type II collagen [35]. The tectorial membrane (TM) of the
mammalian cochlea is a gelatinous sheet-like structure
anchored at the inner part to the apex of the interdental
cells and lies on top of sensory hair cells where the long
rows of outer hair cell stereocilia are anchored. The
structural integrity of the TM is crucial for it to acquire its
complex mechanical properties associated with the hearing
process. The TM is composed of four types of collagens
(II, V, IX, and XI), five types of non-collagenous
glycoproteins (α-tectorin, β-tectorin, otogelin, otoan-
chorin, and otolin), glycosaminoglycans (uronic acid and
keratan sulfate), and CEACAM16. Several of these protein
mutations have been identified in human families and
cause syndromic or non-syndromic HL [36,37].
A Dutch family (150 relatives in 5 generations; 49 were

studied) with autosomal dominant non-syndromic sensor-
ineural mid-frequency hearing impairment raised an
association to the DFNA13 locus. Mutation analysis
revealed a missense mutation in the COL11A2 gene.
The gene mutations of this type are also associated with

type III Stickler syndrome, otospondylomegaepiphyseal
dysplasia (OSMED syndrome), and Weissenbacher-Zwey-
muller syndrome. Phenotype-genotype comparisons sug-
gest that the different phenotypes are dependent on
mutations. As collagen folding begins at the carboxy
terminus, where the nucleation domain is located, muta-
tions close to the carboxy terminus generate a more severe
phenotype [38]. This positional effect of missense
mutations is common to other diseases associated with
collagen folding.

CCDC50

CCDC50 is a gene encoding a tyrosine-phosphorylated

effector of EGF-mediated cell signaling known as “Ymer,”
which causes non-syndromic, post-lingual, and progres-
sive sensorineural DFNA44; furthermore, this gene is
expressed in the inner ear. Mutations in CCDC50 cause
mainly low- to mid-frequency hearing losses. The human
gene (Hs.478682) is organized in 12 exons, and two
alternative transcripts have been identified. The longer
transcript (NM_178335) contains a 1449 nt ORF encoding
a protein of 482 amino acids, whereas the shorter variant
(NM_174908) without exon 6 encodes a protein of 305
amino acids [39].
Ymer is expressed in the inner ear during developmental

and postnatal maturation and is associated with micro-
tubule-based structures. Moreover, it may play a role in
developing the adult inner ear. Thus, we can assume that
the pathogenesis of DFNA44 hearing loss, a post-lingual,
progressive form of deafness, results from the destabiliza-
tion of the cytoskeleton in the PCs and stria vascularis of
the adult cochlea [40].
This paper mainly introduces the four genes causing

mid-frequency hearing loss, namely, TECTA, EYA4,
COL11A2, and CCDC50 (Table 1). Through the efforts
of scientists, we have gathered further knowledge about
these genes. However, the process in which these genes
lead to hearing loss remains unknown. Furthermore,
increasing deafness genes will be derived with the progress
of sequencing and bioinformatics, and the mechanism
involved will be investigated.
The genetic causes of hearing loss can be detected

through sequence analysis, which helps clinicians and
patients to delineate the characteristics of a disease. In
addition, hearing loss occurring in early childhood can
affect linguistic development; as such, strategies should be
developed to determine the genetic alterations among
patients for further clinical care of hearing loss.

Table 1 Summary of functions and mutations in TECTA, EYA4, COL11A2, and CCDC50

Gene Location Length
Protein
location
in Corti

Function Nucleotide mutation Phenotype References

TECTA 11q22–24 90 321 bp Tectorial
membrane

Components of the
tectorial membrane

c.950T>A, c.2657A>G,
c.3169T>A, c.3293C>T,
c.3406G>C, c.3743C>T,
c.3995G>T, c.4525T>G,
c.4549T>C, c.4856G>C,
c.5383+ 5delGTGA,
c.6026T>C

High frequency
hearing loss

[13,14,16,21,22,41]

c.1084A>T, c.1124delT,
c.1395T>G, c.1685C>T,
c.2444C>T, c.3107G>A,
c.5331G>A, c.5372C>G,
c.5383+ 2T>G, c.5458C>T,
c.5471G>A, c.5509T>G,
c.5509T>C, c.5597C>T,
c.5600A>G, c.5609A>G,
c.5618C>T, c.5668C>T,
c.5692T>C, c.5839C>T,
c.6062G>A

Mid frequency
hearing loss

[11,14,16,18,42–45]
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