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Abstract Environmental pollution is one of the main causes of human cancer. Exposures to environmental
carcinogens result in genetic and epigenetic alterations which induce cell transformation. Epigenetic changes
caused by environmental pollution play important roles in the development and progression of environmental
pollution-related cancers. Studies on DNA methylation are among the earliest and most conducted epigenetic
research linked to cancer. In this review, the roles of DNA methylation in carcinogenesis and their significance in
clinical medicine were summarized, and the effects of environmental pollutants, particularly air pollutants, on
DNA methylation were introduced. Furthermore, prospective applications of DNA methylation to environmental
pollution detection and cancer prevention were discussed.
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Introduction

The World Health Organization estimates that a quarter of
all diseases are attributed to environmental exposure. In
China, diseases caused by environmental pollution have
led to a serious health problem. For example, air pollution
contributes to direct damaging effects on public health;
about 350 000–500 000 people in China died prematurely
each year as a result of air pollution [1]. Cancer is one of
the major diseases caused by environmental pollution.
Carcinogenesis is a multi-factor and multi-stage process.
Accumulating genetic mutations had traditionally been
considered the major causes of tumor [2]. However, this
paradigm has been expanded, and research revealed that
epigenetics also participates in carcinogenesis [3–7].
Both genetic and epigenetic mechanisms regulate gene

expression and functions. The term “epigenetics” refers to
all heritable changes in a cellular phenotype that are
independent of alterations in the DNA sequence [8].
However, this definition of epigenetics remains debatable.
Sometimes, “epigenetics” is only used to describe
chromatin-based events regulating DNA-templated pro-
cesses [6]. Epigenetic mechanisms include DNA methyla-
tion, histone modification, chromatin remodeling, non-

coding RNA, and nuclear organization. DNA methylation,
primarily referred to as the methylation of the 5-carbon on
cytosine residues (5mC) in dinucleotides, is one of the
most extensively characterized modification of chromatin.
Emerging evidence has demonstrated that carcinogenesis
caused by environmental pollution is associated with
genetic and epigenetic changes. In this review, several
aspects involving environmental pollution, DNA methyla-
tion, and carcinogenesis were systematically discussed.

Environmental pollution and
carcinogenesis

Polluted air, water, and soil contain a wide range of
contaminants, including polycyclic aromatic hydrocarbons
(PAHs), heavy metals, arsenic, benzene, sulfur dioxide,
carbon monoxide, carbon dioxide, and nitrogen dioxide.
The International Agency for Research on Cancer (IARC)
has developed approaches to evaluate the carcinogenicity
of various contaminants (http://monographs.iarc.fr/ENG/
Classification/). Some important pollutants related to
carcinogenesis are listed in Table 1. Exposures to these
environmental carcinogens can result in genetic and
epigenetic alterations, which induce cell transformation.
Numerous studies have demonstrated a strong link
between air pollution and lung cancer. Moreover, water
and soil pollution are closely related to cancers of the
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digestive tract and liver, as well as leukemia. Relationships
between air pollution and lung cancer were further
discussed in this paper.
Although smoking is the most important cause of lung

cancer, about a quarter of lung cancer cases worldwide are
not associated with smoking. A study estimated that air
pollution induced more than 200 000 lung cancer deaths
globally [9]. If lung cancer in never-smokers was

Table 1 Some pollutants related to human carcinogenesis

Agent Group* Main sources Main objects of pollution or main modes of entry

Polycyclic aromatic hydrocarbons (PAHs) 1/2A/2B/3 Coal and oil combustion products Air, soil

Nitro-polycyclic aromatic hydrocarbons 3 Coal and oil combustion products Air, soil

Coal tar 1 Coal and oil combustion products Air, soil

Coke productions 1 Coal coking Air, water, soil

Carbon black 2B Coal and oil combustion products Air

Sulfur dioxide (SO2) 3 Coal and oil combustion products Air

PM2.5 1 Multi-source, e.g., coal and oil combustion
products, etc.

Air

Arsenic and its compounds 1 Coal and oil combustion products, mining,
smelting, etc.

Air, water, soil

Formaldehyde 1 Industry, medicine, agriculture, etc. Air, water, food

Asbestos 1 Construction industry, building materials Inhalation, contact

Bitumen 2B/3 Petrochemical industry, construction industry,
etc.

Inhalation, contact

Radon and its decay products 1 Mining, smelting Inhalation, radioactive contamination

Benzene 1 Chemical industry Air, water

Styrene 2B Chemical industry Air, water, soil

Trichloroethylene 1 Pharmaceutical and chemical industry Air, water

1,3-butadiene 1 Chemical industry Inhalation, contact

4,4'-diaminobiphenyl ether 2B Synthetic dyes Inhalation, contact

Bis-chloromethyl 1 Chemical industry Inhalation

Carbon tetrachloride 2B Chemical industry Inhalation

Epoxyethane 1 Detergents, fungicides, etc. Inhalation

Dimethylsulfate 2A Synthetic dyes, chemical industry Inhalation

Polychlorophends and their sodium salts 2B Chemical industry Inhalation, contact, ingestion

Dimethylcarbamyl chloride 2A Pharmaceutical and pesticide industry Inhalation, contact, ingestion

Auramine 2B/1 Dyes Inhalation, contact, ingestion

Epichlorohydrin 2A Chemical industry Inhalation, contact, ingestion

Polychloroprene 3 Chemical industry Inhalation, contact

Amitrole 3 Herbicide Water, soil, air

Hexachlorocyclohexane 2B Insecticide Water, soil, air

Dichlorodiphenyltrichloroethane (DDT) 2B Insecticide Water, soil, air

Heptachlor 2B Insecticide Water, soil, air

Chlordane 2B Insecticide Water, soil, air

Hematite (Fe2O3) 3 Mining, smelting Air, soil

Lead compounds 2B/3 Mining, smelting (lead dust), industry, etc. Air, water, soil

Titanium dioxide 2B Mining, smelting Inhalation

Chromium (VI) compounds 1 Smelting (chromium residue), metal processing,
electroplating, tanning, etc.

Water, soil, air

Cadmium and its compounds 1 Mining, smelting, metal processing, dyes,
chemical industry, etc.

Water, soil

Nickel compounds 1/2B Mining, smelting, metal processing Air, water, soil

Beryllium and its compounds 1 Mining, smelting Air, water, soil

* Grouping based on the Agents Classified by the IARC Monographs (Volumes 1–111; last update 18 February 2015; http://monographs.iarc.fr/ENG/
Classification/). Group 1, carcinogenic to humans; Group 2A, probably carcinogenic to humans; Group 2B, possibly carcinogenic to humans; Group 3, not
classifiable as to its carcinogenicity to humans; Group 4, probably not carcinogenic to humans.
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considered a separate disease, this malignancy would be
the seventh cancer killer worldwide [10]. IARC proposed
outdoor air pollution as carcinogenic in 2013 [11]. Air
pollution is a complicated cocktail of chemicals that waft
from sources from factories to lawnmowers [12]. PAHs
and arsenic are the most important carcinogens of air
pollution for lung cancer. Fine particulate matter (up to 2.5
µm in diameter, PM2.5) and particulate matter (up to 10 µm
in diameter, PM10) are major components of air pollution.
PM2.5 has become the fourth largest threat to the health of
people in China [13]. A recent research has established a
link between lung cancer and fine particulate matter
(PM2.5) [12]. PM2.5 contained many components, includ-
ing PAHs and heavy metals. IARC has also defined PM2.5

as a carcinogen (http://monographs.iarc.fr/ENG/Classifica-
tion/).
The morbidity and mortality of air pollution-related lung

cancer vary significantly in different regions. The risk of
lung cancer correlated with average pollution levels
(PM10) [14]. Notably, high rates of air pollution-related
lung cancer often occurred in special regions. Generally,
air pollution was more serious in these special regions. The
lung cancer cases in these special regions serve as good
models to study the relationship between environmental
factors and this fatal disease. A good example of air
pollution-related lung cancer was found in Xuanwei City
and Fuyuan County, Yunnan Province, China [15–17].
More non-smoking women suffered from lung cancer in
Xuanwei and Fuyuan than in other areas. Air pollution
(indoor, outdoor) by burning “smoky coal” was the main
reason for lung cancer in Xuanwei and Fuyuan. Burning
“smoky coal” releases numerous cancer-causing sub-
stances, such as PAHs [18].
More importantly, industrial developments are heighten-

ing levels of outdoor air pollution in some regions, cities,
and countries, particularly in developing countries. Air
pollution is becoming increasingly serious in some regions
of developing countries. Therefore, air pollution-related
lung cancer in developing countries is more severe than
that in developed countries. However, the control of air
pollution is a significant challenge for developing countries
because of technical and financial problems. A very long
time is needed to control environmental pollution and
thereby save numerous lives worldwide.

DNA methylation and carcinogenesis

Studies on DNA methylation are among the earliest and
most conducted epigenetic research linked to cancer.
Multiple alterations in DNA methylation, including loss
of DNA methylation (hypomethylation) and increases in
DNA methylation (hypermethylation), were observed in
malignant cells. In the cancer field, some people use
“epimutation” to define a heritable change in gene activity

that is not associated with a DNA mutation but rather with
gain or loss of DNA methylation or other heritable
modifications of chromatin [19]. Numerous studies have
provided comprehensive data and highlighted a potential
connection between DNA methylation alterations (epimu-
tation) and cancer.

Global hypomethylation and carcinogenesis

DNA repeat elements, including long interspersed nuclear
element (LINE), moderately repeated DNA sequences,
satellite repeats, short interspersed nuclear element, and
Alu repeats, are heavily methylated in normal human cells.
Genome-wide hypomethylation is largely attributed to the
loss of methylation at DNA repeat elements, such as LINE,
moderately repeated DNA sequences, and satellite repeats
in cancer cells [6,7,20]. Global hypomethylation can also
induce genomic instability [5,6], loss of imprinting [7], and
activation of oncogenes [5–7], which contribute to the
development and progression of cancer. Although gen-
ome-wide hypomethylation was studied to link epigenetics
to cancer, the functional roles and significance of global
hypomethylation in carcinogenesis remain largely
unknown.

Hypomethylation of gene promoters and
carcinogenesis

Apart from the loss of methylation at DNA repeat
elements, DNA hypomethylation of individual genes
may also occur. Unlike hypermethylation of gene promo-
ters, promoter hypomethylation of genes resulted in
upregulation of genes [21,22]. Moreover, highly prevalent
regions of hypomethylation have correlated with increased
gene expression [22]. A study found that the expression of
MAGFA11 (a cancer germline antigen) was associated
with promoter and global DNA hypomethylation, and
MAGFA11 promoter activity was directly repressed by
DNA methylation through influencing nucleosome occu-
pancy at the MAGFA11 promoter [23]. Thus, DNA
hypomethylation of gene promoters may activate onco-
genes and participate in carcinogenesis.

CpG hypermethylation of gene promoters and
carcinogenesis

In mammalian cells, DNA methylation occurs almost
exclusively at cytosines located at 5′ to a guanine in a
cytosine-phosphate-guanine (CpG) dinucleotide; however,
some studies observed the presence of non-CpG methyla-
tion in embryonic stem cells [24,25]. CpG islands in the
gene promoters are generally protected from methylation.
CpG islands methylated in the gene promoters play an
important role in transcriptional regulation, and the
hypermethylation of promoters can lead to transcriptional
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silencing. Altered methylation in CpG promoter islands is
common in various cancers [4,6,7]. (1) CpG hypermethy-
lation of promoters affects the expression of protein-coding
genes. The relationship between CpG island methylation
and gene expression is mostly studied in cancer epige-
netics. Numerous studies have demonstrated that CpG
hypermethylation of gene promoters may lead to aberrant
silencing of importantly functional genes, such as RB,
BRCA1/2, PTEN, MGMT, CDKN2B, P16, RASSF1A,
MLH1, GSTP1, APC, and E-cadherin [3,7,20]. These
genes are involved in cell cycle, DNA repair, key signaling
pathways, genomic stability, detoxication, and cell adhe-
sion, among others. These alterations in gene expression
demonstrate functional roles in the development and
progression of cancer. (2) CpG island hypermethylation
of promoters has deregulated the expression of tumor-
suppressor microRNA (miRNA) and contributed to
tumorigenesis [26,27]. Although many genes were found
to be silenced by promoter hypermethylation, the under-
lying mechanisms remain largely unknown. Promoter
hypermethylation may establish a molecular environment
to inhibit gene expression. For example, promoter
hypermethylation prevented the binding of transcription
factors [28]. DNA hypermethylation can also create
binding sites for methyl-binding proteins and complexes
and then form a repressive chromatin configuration [29]. In
a recent study, functional genome analysis indicated that
the classical notion of gene silencing through promoter
hypermethylation was not a prominent feature, and many
genes with differentially methylated promoters did not
show distinct expression [22]. This finding suggested that
the promoter methylation cooperates with other factors to
regulate gene expression.

Other alterations in DNA methylation and
carcinogenesis

Besides DNA methylation in promoters, methylation
within the gene body also affects gene expression
[25,30–32]. Generally, gene body methylation is positively
correlated with gene expression. Alterations in methylation
of the gene body may demonstrate functional and clinical
implications in carcinogenesis [30]. Furthermore, the
demethylation of gene bodies caused by 5-Aza-2'-
deoxycytidine (5-Aza-CdR) treatment can induce gene
downregulation, indicating that gene body methylation is a
therapeutic target in cancer [33].
Genome-wide DNA methylation studies also found that

DNA hypermethylation occurred at “CpG island shores.”
CpG island shores are conserved sequences of upstream
and downstream CpG islands. Interestingly, cancer-related
changes in DNA methylation also involve CpG island
shores [6,34]. Methylation of CpG island shores is strongly
related to gene expression, and most genes downregulated
in association with shore hypermethylation are activated

by 5-Aza-CdR and DNA methyltransferase knockout [34].
Another recent study used DNA methylation sequencing
and found that non-CpG methylation was low in tumor but
high in normal adult tissue [22]. However, the pathological
functions of these regional alterations in methylation
remain unclear.

Interrelationships of DNA methylation and genetic
alterations in carcinogenesis

Epigenetic and genetic alterations contribute to crosstalk in
carcinogenesis [5]. On the one hand, some inactivating
mutations in genes, particularly in DNA methyltransferase
(DNMT) genes, can disrupt DNA methylation patterns
[35,36]. On the other hand, alterations in DNAmethylation
facilitate genetic mutation and disable DNA repair
functions. The hypermethylation of DNMT3 exons
potentially leads to genetic mutation via the hydrolytic
deamination of 5mC to form a C-to-T transition mutation
[5]. Additionally, chromatin organization, which is regu-
lated by DNA and histone modifications, exerts a major
influence on regional mutation rates in human cancer cells
[37–40]. A genome-wide DNA methylation study also
found that partially methylated domains affecting up to
one-third of the genome showed increased mutation rates
[22]. Several DNA repair genes, such as MGMT and
MLH1, are regulated by promoter methylation. The
hypermethylation of MGMT enhances susceptibility of
genetic mutations in p53 and KRAS [3]. The loss of
function of MLH1 by promoter hypermethylation results in
microsatellite instability [41]. Interestingly, some tumor
suppressor genes are deregulated by simultaneous promo-
ter methylation and somatic mutations [42]. Tomasetti and
Vogelstein thought that the majority of cancers are ascribed
to random mutations arising during DNA replication in
normal stem cells [43]. Given that alterations in DNA
methylation can increase the incidence of random muta-
tions arising during DNA replication, interrelationships of
DNA methylation and genetic alterations should be further
studied.

Interrelationships of DNA methylation and other
epigenetic in carcinogenesis

Epigenetic mechanisms, such as histone modifications and
chromatin remodeling, are closely related to DNA
methylation [44]. Other epigenetic alterations can affect
DNA methylation. Histone modifications (acetylation and
methylation) are correlated with DNA methylation status
[45,46]. For example, genetic reactivation of long inter-
spersed element-1 (LINE-1 or L1) by benzo(a)pyrene
(BaP) carcinogen involves an ordered cascade of epige-
netic events beginning with nucleosomal histone modifica-
tions and is completed with alterations in DNA
methyltransferase-1 recruitment to the L1 promoter and
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reduced DNA methylation of CpG islands [47]. Moreover,
DNA methylation provides binding sites for some methyl
binding proteins, such as MBD1, MBD2, MBD3, and
McGP2, and these proteins recruit histone-modifying
enzymes to coordinate the chromatin-templated processes
[48]. A relationship also exists between DNA methylation
and miRNA. On the one hand, miR-29b resulted in global
hypomethylation and promoter hypomethylation of some
genes through downregulation of DNMTs (i.e., DNMT1,
DNMT3A, and DNMT3B) [21]. On the other hand, DNA
methylation downregulates miRNA transcription and then
affects gene expression [26,27].

Mechanisms of DNA methylation regulation in
carcinogenesis

Although alterations in DNA methylation in cancers have
been observed for a long time, the mechanisms of
alterations in DNA methylation during malignant trans-
formation have not been completely elucidated. DNA
methylation status is regulated by both DNA methylation
(the methylation of the C5 position of cytosine, 5mC) and
DNA demethylation. The 5-carbon of cytosine nucleotides
is methylated by DNMTs. DNA demethylation includes a
stepwise process, i.e., hydroxylation of 5mC catalyzed by
the ten-11 translocation (TET) family of proteins and then
deamination by activation-induced cytidine deaminase or
carboxylation [49]. Mutations of several DNMTs have
been observed in cancer tissue, and these mutations were
related to the alterations in DNA methylation, as well as
the development and progression of cancer [35,36].
Additionally, overexpression of DNMT1, DNMT3A, and
DNMT3B possibly contributed to hypermethylation in
various cancers [50]. Mutations in TET family members
were found in myeloproliferative neoplasms [51]. Besides
DNMTs and TETs, isocitrate dehydrogenase (IDH)1 and
IDH2, which induce DNA hypermethylation, also exhib-
ited mutations in cancers [52]. The mechanisms of DNA
methylation regulation are complex, and those of DNA
methylation alterations may vary in different cancers.

Environmental pollution and DNA
methylation

Environmental carcinogens and DNA methylation
alterations

Environmental carcinogens include a wide range of
contaminants. This article focuses on environmental
pollution-related carcinogens. Other environmental fac-
tors, such as diet, smoke, and alcohol, were not discussed
in this review. The main carcinogens of environmental
pollution include PAHs, heavy metals, arsenic, benzene,
and air particles. Substantial research has revealed

relationships between DNA methylation and environmen-
tal carcinogens [53–125]. The major findings and
references are summarized in Table 2. Some studies were
not included owing to the limitation of space.
PAHs comprise one family of the most important

environmental carcinogens, which are produced by burn-
ing coal, gasoline, diesel, and tobacco. PAHs widely occur
in polluted air, water, and soil. The relationships between
DNA methylation and PAHs have been frequently studied
in vivo and in vitro. PAH exposure induced CpG site-
specific hypermethylation of p16INK4α in vivo [54].
Prenatal PAH exposure was also associated with decreased
global methylation of white blood cells in the umbilical
cord [55], and transplacental exposure to airborne PAH
was related to DNA methylation of 5′-CpG island of
ACSL3 [56]. A study demonstrated that the maternal PAH
exposure and treatment of BaP, which is a common PAH,
increased promoter hypermethylation and reduced expres-
sion of IFNγ in vivo and in vitro, respectively [57]. Besides
environmental exposures, alterations in DNA methylation
were also detectable in lung tissue and peripheral blood
DNAs from smokers [58]. In vitro treatment with BaP
decreased global DNA methylation in zebrafish embryos
[59]. Cultured human bronchial epithelial cells treated with
BaP showed alterations in DNA methylation, including
DNA hypomethylation and hypermethylation [60–62].
The suppressed mRNA expression of several genes agreed
with the hypermethylation of these genes. Furthermore, the
BaP-induced gene hypermethylation was associated with
the transformation of cultured cells [62]. Apart from
inducing global hypomethylation and promoter hyper-
methylation of specific genes, BaP reduces DNA methyl-
transferase levels, mediates hypomethylation of L1
promoter, and modulates L1 expression [47]. In cultured
breast cancer cells, BaP exposure can also disrupt DNA
methylation [63]. Thus, BaP induces changes in DNA
methylation via multiple mechanisms and pathways.
Similarly, alterations in DNA methylation and gene
expression were observed in human bronchial epithelial
cells exposed to cigarette smoke condensate [64].
Fine particulate matter (PM2.5) and particulate matter

(PM10) are major air pollutants. Multiple alterations in
DNA methylation, including global DNA hypomethyla-
tion and gene-specific hyper- and hypomethylation, were
linked with exposure to PM2.5 and PM10 [65–76].
However, the particulate matter contained several ele-
mental components, and such components vary in different
regions. Therefore, PM2.5 and PM10 in various regions
may demonstrate diverse biological effects, including
influence on DNA methylation. Besides the exposure
quantities of PM2.5 and PM10, the qualities of PM2.5 and
PM10 should also be noted.
Arsenic is a common environmental carcinogen. DNA

methylation of gene p53 and p16 promoters was detected
in arsenic-exposed population [77]. Arsenic treatment can
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induce alterations in DNA methylation in cultured cells
[78,79]. Formaldehyde is also a common environmental
carcinogen, particularly in China. Unfortunately, research
on formaldehyde is very limited [80,81]. Furthermore, the
relationships between DNA methylation and radon remain
poorly understood, although several studies have been
conducted [82–84].
Exposure to asbestos led to alterations in DNA

methylation [85–87]. Such alterations can be induced by
some environmental chemicals, such as benzene [80,88–
90], styrene [80], trichloroethylene [80], 1,3-butadiene
[91–94], carbon tetrachloride [80], dimethylsulfate [95],
and epichlorohydrin [80]. Overall, knowledge on the
relationships between DNA methylation and environmen-
tal chemicals is limited.
Pesticides are important environmental pollutants.

Exposure to hexachlorocyclohexane [96], dichlorodiphe-
nyltrichloroethane (DDT) [97,98], and chlordane [96]
resulted in alterations in DNA methylation. However, the
pathological functions and clinical significance are unclear.
Thus, additional related studies are needed.
Heavy metals are involved in air, water, and soil

pollution. The relationships between DNA methylation
and heavy metals have been thoroughly investigated.
Alterations in DNA methylation can be caused by
exposure to lead [99–102], chromium [103–106], cad-
mium [107–119], nickel [120–125], and beryllium [68].

Paradoxically, two studies showed that cadmium reduces
genome methylation [116,117], but other investigations
revealed that cadmium exposure is associated with DNA
hypermethylation [109,119]. More importantly, when a
heavy metal enters the human body, this element can
hardly be removed. Alterations in DNA methylation
caused by heavy metals may be very stable. Thus, their
pathological functions and clinical significance should be
further noted.

Alterations in DNA methylation induced by
environmental carcinogens and carcinogenesis

Exposure to environmental pollution induced various
patterns of DNA methylation, such as global hypomethy-
lation and hyper- and hypomethylation of specific genes.
Alterations in DNA methylation (epimutation) may
participate in carcinogenesis. Global hypomethylation
correlates with genomic instability [5] and activates
potential oncogenes [4,7,20]. By contrast, hypermethyla-
tion of tumor suppressor genes and DNA repair genes leads
to gene silencing. Genomic instability, activation of
oncogenes, silencing of tumor suppressor genes, and
defects in DNA repair are implicated in virtually every
step of cancer development and progression. Although
environmental exposure induced numerous methylation
changes, all these alterations in DNA methylation cannot

Table 2 Some environmental pollutants and DNA methylation in previous studies
Agent Alterations in DNA methylation References

Polycyclic aromatic hydrocarbons (PAHs) Global DNA hypomethylation and gene-specific hyper- and hypomethylation [47,54–63,80]

Carbon black Gene-specific hypermethylation [68]

PM2.5, PM10 Global DNA hypomethylation and gene-specific hyper- and hypomethylation [65–76]

Arsenic Global DNA hypomethylation and gene-specific hyper- and hypomethylation [77–79]

Formaldehyde Global DNA hypomethylation [80,81]

Radon Gene-specific hypermethylation [82–84]

Asbestos Gene-specific hyper- and hypomethylation [85–87]

Benzene Global DNA hypomethylation and gene-specific hyper- and hypomethylation [80, 88–90]

Styrene Global DNA hypomethylation [80]

Trichloroethylene Global DNA hypomethylation [80]

1,3-butadiene Global DNA hypomethylation and gene-specific hypermethylation [91–94]

Carbon tetrachloride Global DNA hypomethylation [80]

Dimethylsulfate DNA hypermethylation [95]

Epichlorohydrin Global DNA hypomethylation [80]

Hexachlorocyclohexane Global DNA hypomethylation [96]

Dichlorodiphenyltrichloroethane (DDT) Global DNA hypomethylation and gene-specific hyper- and hypomethylation [97,98]

Chlordane Global DNA hypomethylation [96]

Lead Global DNA hypomethylation and gene-specific hyper- and hypomethylation [99‒102]

Chromium Global DNA hypomethylation and gene-specific hyper- and hypomethylation [103‒106]

Cadmium Global DNA hyper- and hypomethylationand gene-specific hypermethylation [107–119]

Nickel Gene-specific hypermethylation [120–125]

Beryllium Gene-specific hypermethylation [68]
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simultaneously play a causative role in carcinogenesis.
Some of the methylation alterations (“drivers”) may
participate in carcinogenesis and contribute to the devel-
opment and progression of cancer. These drivers may be
involved in many pathological functions, such as abnormal
expression of genes and noncoding RNAs, as well as
genomic instability. Most of the methylation alterations
(“passengers”) are only consequential events of transfor-
mation. Thus, the drivers should be differentiated from the
passengers to study the carcinogenesis induced by
environmental exposure. A recent study also demonstrated
that only one-third of the variation in cancer risk among
tissue is attributable to environmental factors or inherited
predispositions, and the majority is caused by random
mutations arising during DNA replication in normal stem
cells [43]. However, aside from directly inducing gene
mutations, environmental factors can also increase the
incidence of gene mutations arising during DNA replica-
tion by affecting DNA methylation. Thus, the relationships
between DNA methylation induced by environmental
exposure and the gene mutations arising during DNA
replication should be studied.

Mechanisms of DNA methylation alterations by
environmental carcinogens

The mechanisms of DNA methylation regulation involve
several aspects. Various environmental carcinogens may
affect DNA methylation via different mechanisms. Most
studies have focused on DNMTs. For examples, BaP-
induced gene hypermethylation was mediated by DNMT
action [62]. A research demonstrated that BaP affected
gene-specific methylation through histone modifications
and alterations in DNMT1 recruitment to the promoter
[47]. In workers exposed to benzene, toluene, and xylene
(BTX), decreased DNMT1, DNMT3a, and DNMT3b
mRNA expression was correlated with increased airborne
BTX, and decreased DNMTs may be involved in global
hypomethylation associated with BTX exposure [88].
Demethylation of global DNA and downregulation of
DNMT1 can be observed in mice exposure to 1,3-
butadiene [93]. DNMT3b overexpression can result in
generalized DNA hypermethylation and gene silencing
during cadmium-induced malignant transformation of
human prostate cells [118]. However, another study
showed that increased global DNA methylation was
associated with the overexpression of DNMT genes,
DNMT1 and DNMT3a, during cadmium-induced malig-
nant transformation [119]. Silencing of the O(6)-methyl-
guanine DNA methyltransferase and upregulation of
DNMT1 expression were specifically detected in NiS-
transformed human bronchial epithelial cells [120].
Additionally, hydroquinone caused decreased levels of
DNA methylation, as well as increased TET1 activity and
global levels of 5-hydroxymethylcytosine (5-hmC) [126].

Although environmental carcinogens have affected
DNA methylation through DNMTs and TETs, most of
these environmental carcinogens have caused multiple
alterations in DNA methylation, e.g., global DNA
hypomethylation and gene-specific hyper- and hypo-
methylation. On the one hand, environmental carcinogens
induced active DNMTs and DNA hypermethylation. On
the other hand, they can also induce inactive DNMTs and
DNA hypomethylation. The changes in DNMT activities
cannot explain all the phenomena. Moreover, the mechan-
isms of DNA methylation alterations induced by environ-
mental carcinogens have not been completely elucidated.
To date, the mechanism by which environmental carcino-
gens induce gene-specific hyper- and hypomethylation
remains largely unknown. Thus, further studies on this
topic are necessary.

DNA methylation and cancer diagnosis and
warning

Various cancers show distinct alterations in DNA methyla-
tion compared with normal cells. Thus, alterations in DNA
methylation can be considered as biomarkers for cancer
detection and diagnosis. As biomarkers of cancer diagnosis
and warning, alterations in DNA methylation provide
several advantages: (1) Growing evidence suggests that
alterations in DNA methylation are very early events
during transformation of normal cells into cancer cells.
Thus, alterations in DNA methylation can be used in early
cancer detection and diagnosis. (2) In some cancer types,
alterations in DNA methylation can be detected in
circulating DNA. Moreover, methylation patterns were
similar in sputum, serum DNA, and tumor tissue [127].
Therefore, examination of blood and sputum samples
provides the conditions for early cancer detection.
(3) Specific alterations in DNA methylation may be related
to particular cancer types [128]. Aside from cancer-specific
changes in DNA methylation, alterations in DNA
methylation also reflected tumor-type specificity. (4) In
contrast to genetic changes, more dynamic alterations in
DNA methylation are particularly sensitive to environ-
mental influences. DNA methylation tests may demon-
strate higher sensitivity than gene tests for cancer warning.
Although DNA methylation exhibits many characteristics
of powerful biomarkers, good biomarkers with high
sensitivity and specificity based on DNA methylation are
still lacking for clinical application.

DNA methylation and cancer therapy

Many studies attempted to influence DNA methylation
with epigenetic drugs for cancer therapy [128–130]. The
major targets are DNMTs. Two drugs, 5-Aza-CdR and 5-
azacytidine (5-Aza-CR), have been approved by the Food
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and Drug Administration in the United States for clinical
application. Both 5-Aza-CdR and 5-Aza-CR, which are
cytosine analogs, are incorporated into replicated DNA in
place of cytosine and trap DNMTs, resulting in proteoso-
mal degradation and heritable global demethylation upon
cell division [33]. Additionally, TET1/2/3 mediating DNA
demethylation are promising drug targets. In principle,
both epigenetic amplifications and deletions of genes can
be considered targets for cancer therapy.

DNA methylation and environmental
pollution assessment

Gene mutations have been generally used as molecular
biomarkers for exposure to environmental pollution.
However, DNA methylation as biomarkers of exposure
to environmental pollution exhibited several features:
(1) Alterations in DNA methylation can be observed in
cultured cells after treatment with low-dose carcinogens,
such as PAHs, but gene mutations did not occur for the
low-dose treatment. Thus, alterations in DNA methylation
showed higher sensitivity than gene mutations for
exposure to environmental pollution [67]. (2) Alterations
in DNA methylation are detectable in peripheral blood.
The peripheral blood is easily obtained for practical
application. (3) Environmental carcinogens can induce
the characteristic injury “chemical signature” in genome.
Similarly, environmental carcinogens may leave a finger-
print on the epigenetic interface (epigenetic signatures)
[67]. For example, MTHFR hypermethylation and reduced
F2RL3 methylation intensities were associated with
tobacco smoking [131,132]. Therefore, epigenetic finger-
prints can be used to assess environmental carcinogens.
(4) Alterations in DNA methylation are stable after
exposure to tobacco smoke and environmental pollution.
Thus, DNA methylation tests can be used to detect
historical exposures. Several studies have demonstrated
that DNA methylation can be considered a long-term
biomarker of exposure to tobacco smoke [132,133].
Overall, DNA methylation may be widely used as a
biomarker to examine environmental pollution and even
toxicity of food and drugs in vivo and in vitro.

DNA methylation and cancer prevention

The prevention of environmental pollution-related cancer
entails several aspects, such as environmental pollution
detection, control of environmental pollution, screening of
high-risk population, protection of high-risk population
from environmental exposure, use of preventive medicine
by high-risk population, and detection and/or treatment of
pre-cancer diseases. Genetic and epigenetic mechanisms

are crucial factors in cancer carcinogenesis. DNA
methylation may be one of appropriate entrances to
prevent cancers. (1) DNA methylation can be used as a
sensitive marker to assess environmental carcinogens for
environmental pollution detection. (2) Examination of
DNA methylation patterns in healthy people exposed to
strong pollution may be helpful to screen the population
susceptible to environmental carcinogens, thus protecting
the high-risk population. (3) Alterations in DNA methyla-
tion are believed to be responsible for early events in
tumorigenesis and associated with pre-cancer lesions [20].
Therefore, alterations in DNA methylation may be
powerful biomarkers for the early detection of pre-cancer
lesions. Subsequently, these lesions can be treated, and
tumor development can be inhibited. (4) Some chemical
agents that can reduce DNA methylation alterations
induced by environmental carcinogens may be used as
preventive drugs for the high-risk population, including
those that are very susceptible, workers exposed to high
pollution, and residents living in highly polluted regions.
Cancer prevention is a very challenging task, but it is
extremely valuable.

Conclusions

Environmental pollution is one of the main causes of
human cancer. Environmental pollution can affect DNA
methylation. On the one hand, DNA methylation altera-
tions induced by environmental pollution may participate
in carcinogenesis. On the other hand, DNA methylation
alterations can be used as biomarkers to diagnose, treat,
and prevent cancers, as well as detect environmental
pollution.
Finally, novel forms of DNA modifications, such as 5-

hydroxymethylcytosine (5-hmC), are associated with
carcinogenesis-like DNA methylation. Thus, the relation-
ships between environmental carcinogens and these new
forms of DNA modifications should be further studied.
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