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Abstract Adipose tissue is an important organ for energy homeostasis. White adipose tissue stores energy in the
form of triglycerides, whereas brown adipocytes and recently identified beige adipocytes are specialized in
dissipating energy by thermogenesis or contribution to dispose glucose and clear triglycerides in blood. The
inverse correlation between the brown adipose tissue activity and body mass suggests its protective role against
body fat accumulation. Thus, recruitment and activation of brown or beige adipose tissue become particularly
appealing targets for increasing energy expenditure. Angiogenesis and sympathetic nerve signals are the
fundamental determinants for brown and beige adipose tissue development, as well as for their metabolic
functions. Secretary factors including BMPs can induce the development, the activation of brown or beige adipose
tissue, which seem to be promising for therapeutic development.
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Introduction

The prevalence of overweight and obesity has been
considered as a global pandemic. Worldwide, the propor-
tion of adults with a body mass index (BMI) of 25 kg/m2 or
greater increased between 1980 and 2013 from 28.8% to
36.9% in men, and from 29.8% to 38.0% in women. In
China, the number of overweighted and obese adult
individuals increased dramatically over the past 30 years,
reaching 46 million of obesity and 300 million of over-
weight in 2013 [1]. Obesity, the excessive accumulation of
fat mass, is associated with an increased risk of developing
insulin resistance, type 2 diabetes, hyperglycemia, hyper-
tension and many types of cancers [2,3]. There is thus an
urgent need for novel treatments for this condition.
Although obesity is characterized with increased fat

mass, not all fat depots are the same. There are two types of
adipose tissue, namely white adipose tissue (WAT) and
brown adipose tissue (BAT). The main function of WAT is
to store excess energy in the form of triacylglycerols
(TAGs), whereas BAT is specialized to dissipate energy as
heat. Recently, another kind of adipocytes named inducible

“brown-like” adipocytes or beige cells are discovered in
white fat depots in response to various activators. The
activation of brown and beige fat cells increases energy
expenditure and thereby reduces obesity in mice, and is
also correlated with leanness in humans. As a result, the
brown or beige fat cells would be the promising therapeutic
targets for metabolic disease.

WAT

WAT develops in multiple anatomical sites with major
intra-abdominal depots around the omentum, mesentery,
gonad, and perirenal areas, as well as in subcutaneous
depots of buttocks, thighs, and abdomen [4]. White
adipocytes are round and oval in shape, containing a
single large lipid droplet and a few mitochondria that are
elongated and have less defined cristae [5]. White
adipocytes are 25–200 μm in diameter with visceral
adipocytes generally larger than subcutaneous adipocytes,
suggesting the different capacity of enlargement for
individual adipocyte at different sites. WAT is also
known as an active endocrine organ, releasing free fatty
acid and adipokines such as leptin, adiponectin, tumor
necrosis factor α (TNFα), and interleukin-6 (IL-6), which
act on distant tissue including brain, liver, muscles to
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regulate food intake, energy homeostasis, and insulin
sensitivity [6].

BAT

BAT is an indispensible organ in small mammals and
infants to defend against temperature decline. In rodents,
BAT is composed of only one major depot that is
concentrated in interscapular area. Most brown adipocytes
are polygonal with a variable diameter from 15 to 50 μm in
range. Brown adipocytes contain multilocular lipid
droplets and mounts of functional mitochondria which
are large, spherical and with dense cristae. Other than
energy storage, the most important role of BAT is to burn
energy by non-shirvering thermogenesis. At cellular level,
BAT regulates energy expenditure through mitochondria
and the expression of uncoupling protein 1 (UCP-1), which
uncouples oxidative phosphorylation from synthesis of
ATP, leading to heat generation. BAT is also thought to be
an endocrine organ. Several endocrine factors have been
found to be released by BAT, such as insulin-like growth
factor 1 (IGF1), IL-6 and fibroblast growth factor 21
(FGF21), contributing to the metabolic effects of BAT
[7,8].

Beige fat

It was reported almost 30 years ago that some multilocular
UCP-1 positive fat cells existed within certain WAT in
mice, rats and cats [9–12]. In 2007, some researchers
identified brown adipocytes admixed with WAT and
interspersed among bundles of skeletal muscle in rodents
[13]. The amount of this kind of brown adipocytes is
increased by cold exposure, decreased with age and
nutrition overload and also affected by genetic variability
[14,15]. Similar phenomena were observed when rodents
were treated with β3-adrenergic receptor agonists such as
BRL26830A, CGP-12177, and CL 316243 [15–18]. In
human infants, BAT is abundant and predominantly
located in interscapular depot. BAT gradually disappears
with aging, and in normal adult humans BAT is
proportionally smaller and was believed to be functionally
less important. However, the view was challenged by
unexpected findings during positron-emission tomography
and computed tomography (PET/CT) with tracer [18F]-2-
fluoro-D-2-deoxy-D-glucose (FDG) for cancer staging or
surveillance, that collections of adipose tissue with high
uptake of [18F]-FDG were found in the neck and shoulder
area of patients [19]. In 2009, five independent groups used
[18F]-FDG PET/CT to identify and characterized the
presence and relevance of BAT in adult humans [20–24].
The major metabolically active fat depots are in the
cervical, supraclavicular, axillary, and paravertebral

regions, which were defined as BAT because the
adipocytes were found to have UCP-1 expression and
share other histological characteristics of brown adipo-
cytes. The human BAT was also shown to express type II
iodothyroninedeiodinase (DIO2) and β3-adrenergic recep-
tor, indicating its potential responsiveness to cold or
pharmacological stimuli. As a matter of fact, there is an
inverse correlation between BAT activity and average
outdoor temperature. In addition, the percentage of adult
humans with BAT that can be activated and detected may
be quite high, as 96% of younger people have functional
BAT whose activity increases following cold exposure or
treatment with antidiabetic drugs, thiazolidinediones or
adrenergic activators. Indeed, the human BAT depots were
demonstrated to consist of an admixture of UCP-1 positive
adipocytes in WAT. These brown-like adipocytes at WAT
depots in both human and the rodent have recently been
demonstrated to be derived from lineages different from
classical brown fat cell precursors, and designated as
“beige” or “brite” cells [25–27].

The molecular signature of brown and
beige adipocytes

Defining cell types within fat depots lays the basis for
exploring the mechanism of brown and beige adipocytes
development and activation. The classical brown and white
adipocytes have different development origins (Fig. 1):
brown preadipocytes express skeletal muscle gene signa-
ture but their white counterparts do not [26]. Lineage
tracing experiments in mice have demonstrated that
classical brown adipocytes derive from precursor cells
that express myogenic factor 5 (myf5), a key regulator of
myogenesis, while beige adipocytes in subcutaneous WAT
derive from myf5 negative progenitors [27]. Immortalized
beige cell lines from mouse white fat depots have low basal
expression of UCP-1, but respond to cyclic AMP
stimulation with high UCP-1 expression. They also have
distinct gene expression pattern from either white fat cells
or brown fat cells, i.e., expression of CD137, TMEM 26
(transmembrane protein 26), Slc27a1 (fatty acid transport
protein-1), and TBX1 (T-box transcription factor), etc.
[28]. Waldén examined gene expression pattern in different
adipose depots of mice, and identified depots specific gene
markers: Zic1 for the classical BAT depots, Hoxc9
(homeobox C9) for the brite depots, Hoxc8 for the brite
and white in contrast to the brown, and Tcf21 (transcription
factor 21) for the white depots [29](Fig. 1). By applying
transcriptional data frommurine adipose tissue to human’s,
the molecular signature of BAT isolated from multiple
adipose tissue was examined, and the results indicated that
adult human BAT may be primarily composed of beige
cells [30]. Recently, however, a combination of high-
resolution imaging techniques and histological and
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biochemical analyses showed the existence of an anato-
mically distinguishable interscapular BAT (iBAT) depot in
human infants that consists of classical brown adipocytes
[31,32]. Studies by two individual groups also showed that
some adipose depots in adult humans contained classical
brown adipocytes. Cypess examined the gene expression
of neck BAT in both superficial and deeper compartments
of adult human. They found that the deeper adipose tissue
depots displayed higher expression levels of the two
classic BAT marker genes Zic1 (Zic family member 1) and
LHX8 (LIM homeobox 8), as compared with the super-
ficial WAT [33]. Jespersen assessed gene expression of
BAT from the supraclavicular region, and found that a
classical brown expression signature, including upregula-
tion of miR-206, miR-133b, LHX8, and Zic1 and down-
regulation of HOXC8 and HOXC9, coexists with an
upregulation of two established beige markers, TBX1 and
TMEM26 [34].

Metabolic function of brown and beige
adipocytes

Brown adipose tissue (BAT) is an organ for non-shivering
thermogenesis and diet induced thermogenesis [35]. In
rodents, the thermogenesis capacity of BAT is enormous.
In cold-acclimatized rat weighting 350–400 g, oxygen

consumption by 3 g of BAT is approximately twice the
basal metabolic rate [36]. In human, it has been estimated
that as little as 50 g of BATcould utilize up to 20% of basal
caloric needs if maximally stimulated [37]. Due to its
known function in the dissipation of chemical energy in
response to cold or excess feeding, BAT has the capacity to
modulate energy balance. BAT induction in mice promotes
energy expenditure, reduces adiposity and protects mice
from diet-induced obesity [15,38]. Conversely, BAT
ablation reduces energy expenditure and increases obesity
in response to high fat diet [39].
Since brown fat comprises such a small percentage of

total body weight, the stored lipid can sustain thermogen-
esis for only a short time, and further energy supplies must
come from circulation. Recent data showed that the
capacity of BAT to uptake and combust triglycerides
from circulation. Increased BAT activity induced by short-
term cold exposure drastically accelerated plasma clear-
ance of triglycerides as a result of the increased uptake by
BAT, a process crucially dependent on local LPL activity
and transmembrane receptor CD36. BAT is also a major
organ for glucose disposal, as a large fraction of ingested
glucose is channeled to BAT, where glucose will be
combusted. Glut1 (glucose transporter 1) and Glut4
activity and expression are increased by cold and
norepinephrine may also be directly involved in stimulated
uptake [40,41]. BAT transplanted to recipient mice had

Fig. 1 Origin and molecular signature of adipocytes: classical brown adipocytes derive from myf5+ precursors. White and beige adipocytes derive
from myf5– precursors, but may come from two distinct population of precursors. Some molecular markers express in different kind of adipocytes or
fat depots.
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improved glucose tolerance, increased insulin sensitivity.
BAT transplantation increased insulin-stimulated glucose
uptake in vivo by endogenous BAT,WAT, and heart muscle
[42].
Classic experiments in rodents have shown that BAT

proliferation and/or activation contribute to limiting excess
weight gain and improving insulin sensitivity by thermo-
genesis or increased glucose and triglycerides combustion.
The central question that must be addressed is whether
BAT function significantly impacts energy balance and
human obesity. Recent studies have demonstrated the
existence of metabolically active BATcomposed of mainly
beige adipocytes in adult humans [20–24]. Moreover, the
amount of BAT detected in human inversely correlated
with age, BMI and diabetic status [21,43]. With the
recognition that human BAT can be activated, targeting
BAT or beige fat proliferation and activation may be
viewed as two appealing ways to prevent or treat obesity
and its associated diseases.

Angiogenesis contribution of brown and
beige adipose tissue to metabolic function
and fat pad expansion

BAT is metabolically active and therefore possesses a
higher vascular density. As early as in embryogenesis,
adipose tissue development is spatially and temporally
associated with microvessel growth [44]. Endothelial
dysfunction in obese individuals makes an important
contribution to the development and progression of type 2
diabetes [45]. Adipose tissue secrets factors, such as
vascular endothelial growth factor A (VEGF-A), fibroblast
growth factor (FGF), leptin, adiponectin, thrombospondin
1 and plasminogen activator inhibitor (PAI-1), to regulate
angiogenesis [46–51]. Among them VEGF-A is the only
bona fide endothelial cell growth factor, and accounts for
most of the pro-angiogenic activity in adipose tissue
[52,53]. VEGF-A stimulates vascular endothelial activa-
tion, proliferation, migration and vessel permeability
[51,54]. VEGF-A is highly expressed in BAT. Recently,
by way of deletion or overexpression of VEGF-A in
adipose tissue, the effect of angiogenesis on adipose
function and metabolic consequences were studied by
several groups [55–58]. Obesity causes capillary rarefac-
tion in BATwith mitochondrial dysfunction and decreased
expression of VEGF-A. Deletion of VEGF-A results in a
similar phenotype in BAT to obesity. Conversely, intro-
duction of VEGF-A into BAT of obese mice restores
vascularity, ameliorated brown adipocyte dysfunction and
improved insulin sensitivity [58]. VEGF-A in WAT also
has significant effects on its metabolic function, which may
be associated with the browning of WAT [56,57]. In
inguinal fat depot, cold exposure resulted in browning of
WAT. Meanwhile, angiogenesis was also activated and

VEGF-A was upregulated [59]. Upregulation of VEGF-A
in adipocytes improves vascularization and causes a
browning of WAT, which is associated with an increase
in energy expenditure and resistance to high fat diet-
mediated metabolic insults [56,57]. VEGFR2 blockage
abolished the cold induced angiogenesis and impaired non-
shivering thermogenesis capacity [59].
What is more, VEGF-A stimulated vascularization also

participates in regulation of inflammation in adipose tissue.
Obesity causes capillary rarefaction, leading to adipose
tissue hypoxia, which is correlated with inflammatory
macrophage or T cell infiltration and inflammatory
cytokine expression [56–58]. VEGF-A overexpression in
adipose tissue increases macrophage infiltration with a
higher number of M2 anti-inflammatory and fewer M1
proinflammatory macrophages than wild type mice, and
thus influences insulin sensitivity [55].
Adipose vasculature participates in modulating adipose

tissue development and growth in various ways (Fig. 2).
Angiogenic vessels deliver nutrients and oxygen from the
blood to adipocytes. More importantly, angiogenic vessels
transport stem cells derived from bone marrow [60], or
provide stem cells derived from themselves [61–65].
Recent studies show that mural cells including vascular
pericytes have stem cell features and can differentiate into
adipocytes under proper inducement. Lineage tracing
experiments using the VE-cadherin promoter revealed
localization of reporter genes in both preadipocytes and
adipocytes of white and brown fat depots [63]. The data
suggested endothelial cells in neoangiogenesis might
contribute to the stem cell pool of adipogenesis. Adipo-
cytes produce various growth factors and cytokines that
communicate with endothelial cells in a paracrine fashion
to promote their growth [47], which seems to form a
forward circuit. In cold acclimation, BAT-like changes in
inguinal fat pad is induced with adipocyte hyperplasia
[66]. These changes are accompanied by switching on an
angiogenesis, as demonstrated by the increased vascula-
tures with CD31 staining [59].

Sympathetic signaling control of brown and
beige fat

The metabolic function of BAT is facilitated by extremely
high mitochondrial content and dense vascular vessels. It is
also promoted by extensive nerve supply to this tissue.
Brown fat thermogenesis and UCP1 gene transcription are
mainly controlled by norepinephrine released from the
sympathetic terminals innervating the tissue. It has also
been suggested that catecholamines secreted by a certain
subtype of macrophages can activate brown and beige fat
in mice [67]. More recently, the efferent beige fat
thermogenic circuit, consisting of eosinophils, type 2
cytokines interleukin (IL)-4/13, and alternatively activated
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macrophages, was identified [68]. Sympathetic norepi-
nephrine acts through β3-adrenergic and cAMP-dependent
pathway. Norepinephrine binds to β3-adrenergic receptors
on the membrane of adipocytes and thereby activates
adenylatecyclase (AC), resulting in an increased cAMP
level in cytosol and protein kinase activation. On the one
hand, phosphorylated hormone sensitive lipase (HSL) by
PKA releases glycerol and fatty acid from lipid to fuel
thermogenesis. It is noteworthy that free fatty acid itself is
an activator of UCP-1 by increasing proton leak through
UCP-1 [69,70]. On the other hand, the PKA activates
UCP-1 transcription through p38 mitogen-activated pro-
tein kinase (MAPK) dependent or independent way [71–
73]. Sympathetic signaling is activated in the cold, and
prolonged cold exposure stimulates the proliferation and
differentiation of brown precursor cells to expand BAT
mass [74]. Conversely, at warmer housing temperatures or
in surgically denervated BAT, the expression of UCP-1 and
other thermogenic factors are substantially reduced in mice
[35,75].
Cold exposure is also a classic activator of beige

adipocyte development and function, indicating the
involvement of sympathetic signaling. The propensity of
WAT depots to develop beige adipocytes is highly
correlated with their density of sympathetic nerve fibers
[76]. Treating mice with β3-adrenergic activators, such as
CL316,214, led to the expression of UCP1 in inguinal
WAT [15–17]. The β3-adrenergic receptor knockout
decreased the levels of UCP1 mRNA and protein as well

as the density of multilocular cells after cold exposure at 24
°C or an elongated cold exposure for 10 days, but did not
affect the UCP1 expression in classic brown fat [77]. These
results revealed that β3-adrenergic receptors play a major
role in the appearance of beige adipocytes in white fat.
However, other factors must also be involved, as systemic
β3-agonist administration or β3-adrenergic receptor knock-
out mice exhibit fat deposit difference in affecting UCP1
expression. Cold exposure or β3-adrenergic receptor
agonist increased miR-196a level in WAT. The fat-specific
forced expression of miR-196a in mice induced the
recruitment of brown adipocyte-like cells in WAT, and
enhanced energy expenditure and resistance to obesity.
miR-196a induces functional brown adipocytes in WAT
through the suppression of Hoxc8 [78,79]. Cyclooxygen-
ase (COX)-2, a rate-limiting enzyme in prostaglandin (PG)
synthesis, is a downstream effector of β-adrenergic
signaling in WAT and is required for the induction of
BAT in WAT depots [80,81]. Foxc2 (forkhead box C2)
induces beige fat cell development, drives mitochondrial
biogenesis and promotes angiogenesis in adipose tissue
[82–84]. Foxc2 functions in fat cells to a large extent by
driving the expression of the R1α regulatory subunit of
protein kinase A (PKA, encoded by Prkar1a), thus
sensitizing adipocytes to the effects of catecholamines
[85,86].

BMPs that activate BATor induce beiging in
WAT

While sympathetic signaling undoubtedly plays a role in
regulating brown or beige fat function in vivo, many other
hormones and factors such as Irisin, retinaldehyde
dehydrogenase (Raldh), thyroid hormone, natriuretic
peptides (NP) have been shown to regulate energy
expenditure in adipose tissue and have been discussed
comprehensively in other reviews [87,88]. Morphogens of
vertebrate embryonic patterning and evolution of meso-
dermal tissue, including hedgehog [89,90], wingless (Wnt)
[91,92], bone morphogenetic proteins (BMPs), and
fibroblast growth factors 21 (FGF21) [93–96] have been
linked to adipocyte lineage determination. They are also
involved in regulating brown or beige fat function. Here
we describe some of the BMPs that affect brown and beige
fat and seem to be particularly promising for therapeutic
development.
BMP7 promotes differentiation of brown preadipocytes

and induction of mitochondrial biogenesis via p38
mitogen-activated protein (MAP) kinase and PGC-1-
dependent pathways. BMP7 knockout embryos show a
marked paucity of brown fat and an almost complete
absence of UCP1. Adenoviral mediated expression of
BMP7 in mice results in a significant increase in brown,
but not white fat mass and leads to an increase in energy

Fig. 2 Vasculature contributes to adipose expansion in variety of ways.
Angiogenic vessels supply nutrients and oxygen in the blood to
adipocytes. Angiogenic vessels transport mesenchymal stem cells
(MSC) from bone marrow, or provide stem cells derived from
themselves. Adipocytes produce various growth factors and cytokines
that communicate with endothelial cells in a paracrine fashion to promote
their growth.
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expenditure and a reduction in weight gain [97]. BMP7
was also found to have a role in appetite regulation through
central mTOR pathway [98].
BMP8B is produced by mature brown fat cells when

stimulated by nutritional and thermogenic factors. BMP8B
amplifies the thermogenic response of brown adipocytes to
adrenergic activators through enhanced p38MAPK/CREB
signaling and increased lipase activity. BMP8B knockout
mice exhibit impaired thermogenesis and reduced meta-
bolic rate, causing weight gain. Interestingly, BMP8B is
also expressed in the hypothalamus, and BMP8B knockout
mice display altered neuropeptide levels and reduced
phosphorylation of AMP-activated protein kinase
(AMPK). Central BMP8B treatment increases sympathetic
activation of BAT and leads to weight loss in mice [99].
BMP7 and BMP8B function in BAT to stimulate BAT

development and thermogenesis respectively. BMP4 is
thought to regulate WAT development. BMP4 induces
multipotent mouse C3H10T1/2 stem cells to commit to
preadipocytes in culture, and BMP4 treated C3H10T1/2
cells develop into adipocytes if implanted subcutaneously
into nude mice [100]. Preadipocyte cell line A33,
subcloned from C3H10T1/2, with 5-azacytidine treatment
expresses and secretes BMP4, indicating BMP4’s impor-
tant role in the commitment stage [101]. BMP4-induced
commitment is mostly depended on activation of Smad
rather than p38/MAPK pathway [102]. The induction of
EMT (epithelial-mesenchymal transition)-like response by
BMP4 via upregulation of lysyloxidase is required for
adipocyte lineage commitment [103]. Although the robust
effect of BMP4 on commitment of multipotent stem cells is
undoubted, the characteristic of differentiated adipocytes
in culture was not well defined. Further in vivo data
showed that BMP4 can induce brown-like changes in WAT
[104]. Forced expression of BMP4 in adipocytes of mice
gives rise to reduced white adipocyte and lipid droplet size,
along with an enhanced mitochondrial biogenesis. The
inguinal white fat pad also expressed some of the marker
genes of beige adipocytes. These changes correlate closely
with increased energy expenditure, improved insulin-
sensitivity and protection against diet-induced obesity
and diabetes, suggesting that the adipocytes were meta-
bolic active. Conversely, BMP4-deficient mice exhibit
enlarged white adipocyte morphology and impaired insulin
sensitivity. Mechanically, the BMP4-p38MAPK-ATF2-
PGC1α pathway was required for the BMP4-induced
brown-fat like changes in WAT. This effect of BMP4 on
WAT appears to extend to human adipose tissue, since the
level of expression of BMP4 in WAT correlates inversely
with body mass index.

Therapeutic perspectives and challenges

Adipose tissue is an important organ for energy home-
ostasis. When energy intake exceeds the storage capacity

of WAT, the fat will accumulate in non-adipose tissue such
as pancreatic beta cells, liver, skeletal muscle, leading to
metabolic disorders. The anti-obesity methods involve
either reducing energy intake or increasing energy
expenditure. Due to their ability to dissipate energy,
enhancement of the function of brown adipocytes or beige
adipocytes, or/and increase its mass could be very effective
in treating type 2 diabetes and obesity. Since the reports
that normal adult humans possess brown active adipocytes
[20–24], it is accepted that such kind of adipocytes might
be the therapeutic targets.
However, the key point is whether human brown or

beige adipocytes can be physically recruited and activated.
This would seem to be the case, at least by cold exposure.
But it would seem difficult to increase exposure to cold in
daily life. Moreover, it is to be noted that mice exposed to a
cold setting at 4 °C show increased cardiovascular risk
such as atherosclerotic plaque growth or instability [105],
although human BAT can be activated and recruited by
rather mild cold conditions at 10–19 °C [106,107]. It is
known that the stimulatory effects of cold exposure on
BAT are initiated by peripheral stimulation of transient
receptor potential (TRP) channels in sensory neurons
[108,109]. TRP vanilloid (TRPV) is a subfamily of TRP
channels. TRPV1 is activated by some pungent com-
pounds in chili peppers such as capsaicin or its non-
pungent analogs— capsinoids. Acute effects of capsinoids
on energy expenditure are quite similar to those of cold
exposure in humans [110–112]. In addition, energy
expenditure after only 2 h cold exposure at 19 °C increased
in human individuals with the daily ingestion of capsinoids
for 6 weeks [107]. Capsinoids treatment along with mild
and short time cold stimuli via activation of TRP could be a
promising way to treat obesity and related metabolic
diseases.
It is interesting to pharmacologically expand and

activate brown or beige fat in human. However, so far,
treatments using β3-adrenergic receptor agonists have been
unsuccessful in humans. The discoveries of circulating
secreted factors, such as BMPs that enhance brown and
beige fat function in mice have garnered tremendous
interest [97,99,104]. BMP8B increases the sensitivity of
brown fat cells to adrenergic stimuli and activates it. In our
laboratory, we found that BMP4 acquired WAT with BAT
activity along with increased number of both stromal
vascular cells and adipocytes, indicating that BMP4 both
recruits and activates the beige adipocytes. Although the
findings in mice are valuable, very few studies have been
done to explore whether these BMPs have similar function
in human fat depots. Given the high variety among human
fat depots, defining the fat cells within human fat depots
that can be efficiently recruited and thermogenically
activated, and exploring which pathways promote this
process will be meaningful for future research. Moreover,
since BMPs also involve in angiogenesis and bone
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formation, their specificity of action will need to be
carefully examined and monitored.
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