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Abstract The high prevalence of diabetes and diabetic complications has caused a huge burden on the modern
society. Although scientific advances have led to effective strategies for preventing and treating diabetes over the
past several decades, little progress has been made toward curing the disease or even getting it under control, from
a public health and overall societal standpoint. There is still a lack of reliable biomarkers indicative of metabolic
alterations associated with diabetes and different drug responses, highlighting the need for the development of
early diagnostic and prognostic markers for diabetes and diabetic complications. The emergence of metabolomics
has allowed researchers to systemically measure the small molecule metabolites, which are sensitive to the changes
of both environmental and genetic factors and therefore, could be regarded as the link between genotypes and
phenotypes. During the last decade, the progression made in metabolomics has provided insightful information on
disease development and disease onset prediction. Recent studies using metabolomics approach coupled with
statistical tools to predict incident diabetes revealed a number of metabolites that are significantly altered,
including branched-chain and aromatic amino acids, such as isoleucine, leucine, valine, tyrosine and
phenylalanine, as diagnostic or highly-significant predictors of future diabetes. This review summarizes the
current findings of metabolomic studies in human investigations with the most common form of diabetes, type 2
diabetes.
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Introduction

Diabetes mellitus is a chronic disease that is characterized by
the absolute or relative shortage of insulin, leading to chronic
hyperglycemia, which may be due either to the progressive
failure of pancreatic β-cell function and consequently a lack
of insulin production (type 1 diabetes) or to the development
of insulin resistance and subsequently the loss in β-cell
function (type 2 diabetes, T2DM). Diabetes mellitus,
particularly T2DM, represents one of the most significant
global health problems because it is associated with a large
economic burden for the health systems of many countries.
According to the data from world health organization (WHO),
346 million people are affected by diabetes in 2011 and an

estimated 3.4 million people died from consequences of high
blood sugar in 2004 and this number was predicted to double
between 2005 and 2030 [1]. Due to the broad range of
diabetes-related complications, including diabetic nephropa-
thy, peripheral neuropathy and cardiovascular disease,
diabetes is a major cause of both morbidity and mortality [2].

It is well known that the development of common forms of
diabetes arises from the interplay between environmental and
genetic factors. As for T2DM, the predominant cause is
related to lifestyle factors including diet, insufficient physical
activity, an overweight or obese state and stress [3]. Owe to
the enormous effort put into the search of T2DM susceptible
genes, more than 60 genetic loci have been identified and
widely replicated [4]. However, these variants in total could
only account for around 10% of the heritability of T2DM [5],
which is called “missing heritability,” and the mechanisms
underlying the pathogenesis of diabetes are not fully under-
stood.
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The diagnosis of diabetes is mainly based on the results of
blood tests examining fasting blood glucose or glycated
hemoglobin (HbA1c) levels [1]. Whereas the diagnosis and
treatment of manifest diabetes have been thoroughly
investigated, the identification of novel pathways or early
biomarkers indicative of metabolic alterations of T2DM is
still not fully understood. Without timely and appropriate
management, subjects with diagnosed diabetes have already
been affected by one or more macro- or microvascular
complications, highlighting the critical importance of early
diagnosis of the disease. Metabolomics or metabonomics, the
comprehensive and quantitative analysis of all metabolites
[6,7], is a rapidly evolving technology by which an entire
spectrum of endogenous metabolites in cells, biofluids or
tissue following genetic or environmental interventions is
measured quantitatively. There is mounting evidence that
metabolomics can provide important insight into biomarker
discoveries, toxicity evaluation and the pathogenic nature of
various diseases [6,8–14] and a great deal of research on
diabetes has been conducted with both animal models and
clinical human subjects during the last decade. The
advantages of metabolomics over other “omics,” e.g.,
genomics, transcriptomics or proteomics, include its high
sensitivity and its ability to enable the analysis of relatively
few metabolites compared with the unwieldy number of
corresponding genes or mRNA molecules. The genome is
often referred to as the blueprint of what can happen in our
bodies. Pushing this analogy further would suggest that the
proteome describes the tools that make things happen and the
metabolome would be the end results of that work. The small
molecules that compose the metabolome are the final
downstream products of the interaction between genes and
influences like environmental factors, health behavior or
pharmaceutical interventions and their levels reflect the
activity of metabolic pathways, which do much of the work
in our bodies from signaling transcription to building proteins
to create and shuttle energy. Therefore, metabolomics enables
the detection of short-term and/or long-term pathophysiolo-
gical changes in body fluids, cells or tissue and could be a
useful tool for disease diagnosis or biomarker detection. The
purpose of this review is to summarize the current
metabolomic findings on T2DM, the most common form of
diabetes, conducted in humans, and give an overview of the
perturbed metabolic pathways in T2DM.

Metabolomics techniques

There are two major high-throughput tools consisting of
nuclear magnetic resonance (NMR) spectroscopy and mass
spectrometry (MS) used in metabolomics study. Both
methods enable the comprehensive investigation of metabolic
profiles [15] and can provide complementary snapshots of the
metabolome of body fluids such as plasma, urine, cells or
tissue [16,17].

Mass spectrometry

MS is the most frequently used technique in metabolic studies
and it is a powerful tool for investigating molecular structure
as well as for detecting and quantifying metabolites [15]. MS
provides mass-to-charge (m/z) ratio information, which
enables the structure of metabolites to be determined. The
greatest advantage of the MS is its high sensitivity, although
disadvantages arise from the destruction of the sample and the
long sample preparation time required. In addition, MS is
often combined with other suitable methods for the analytical
separation of compounds, including gas chromatography
(GC) or liquid chromatography (LC), to achieve detection of
distinct metabolite classes [18] by reducing the complexity of
the mass spectra and the matrix effect. Both GC-MS and LC-
MS demonstrate high separation efficiency and are excellent
tools for metabolic profiling. Since the metabolome consists
of a vast array of compounds, most current metabolomic
analyses using a single analytical platform can only detect a
fraction of the metabolites in a complex biological sample;
thus, a multiplatform approach may provide a more
comprehensive understanding of metabolic alterations. The
combined use of two analytical platforms takes advantage of
complementary analytical outcomes and therefore, broadens
the “window” of important metabolic variations identified
and another advantage of using the platforms in combination
(for example, LC-MS and GC-MS) is that we can cross-
validate the metabolites mutually detected by these two
analytical platforms [14].

Nuclear magnetic resonance spectroscopy

NMR is another widely used spectroscopic technique for
metabolomics that is based on the magnetic properties of the
atomic nucleus (e.g., 1H, 13C, or 31P), which enables the
identification of metabolites that are otherwise unidentifiable
by MS analysis [19]. NMR analysis usually does not require
any pretreatment including column chromatography and
derivatization. It is non-destructive, non-biased, highly
quantitative, and enables the identification of complex
unidentified metabolites. The major disadvantage of NMR,
relative to MS, is its low sensitivity.

Detailed information regarding NMR theory, its applica-
tion and typical chemical shift values are available elsewhere
[20]. The summarization of NMR spectroscopic applications
in modern metabolic research and detailed protocols for
biofluid (urine, serum/plasma) and tissue samples can be
achieved in literature [16].

Metabolic variations and metabolic
pathways in T2DM patients

Metabolic studies have revealed alterations in metabolites
related to pathways involved in the action of insulin,
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including lipolysis, ketogenesis, proteolysis and glucose
metabolism from either animal studies or oral glucose
tolerance test [3]. These results indicate a change from β-
oxidation to glycolysis and fat storage in response to glucose
ingestion. Furthermore, metabolomics studies conducted on
human subjects between diabetic patients and healthy
controls revealed many important altered metabolic pathways
and metabolic variations. These findings can be summarized
as follows.

Carbohydrate metabolism and tricarboxylic acid (TCA)
cycle

Glucose, a primary source of energy for human body, is
utilized in cells beginning with glycolysis where glucose is
converted into pyruvate. Under aerobic conditions, pyruvate
is converted into acetyl coenzyme A (acetyl-CoA), which
then could enter the TCA cycle to generate ATP. Under
anaerobic conditions, however, lactate dehydrogenase cata-
lyzes the conversion of pyruvate to lactate. We recently
conducted a study on diabetes including normal controls and
patients with T2DM, type 1 diabetes, fulminant T1DM and
diabetic ketoacidosis using metabolomics approach [21] and
observed a 9.35 times higher concentration of serum pyruvate
in T2DM patients than in normal controls (Table 1 and
Fig. 1), suggesting an upregulated glycolysis in T2DM. In
addition, the lactate level was also significantly increased. In
urine samples, lactate was also found significantly increased
in T2DM patients in a study comprising 33 T2DM patients
and 20 healthy controls [22].

The TCA cycle is also known as the citric acid cycle, since
the formation of citrate via acetyl-CoA is the first step in the
cycle and citrate is regenerated by a sequence of reactions.
Messana et al. [22] demonstrated that T2DM is associated
with higher citrate levels compared with a normal condition.
However, the perturbations of TCA cycle seem to be more
complex than this study suggests: although citrate was
observed to be elevated in T2DM in the work by Salek et
al. [23], three TCA cycle intermediates, namely, malate,
fumarate and succinate, were significantly downregulated in
urines of diabetic patients in the same study, warranting
further studies to address this issue.

1,5-anhydroglucitol (1,5-AG) is a naturally occurring
dietary polyol with a similar structure to glucose and is
maintained at a steady-state level during normoglycemia
[24] through kidney filtration and reabsorption [25].
However, with elevated serum glucose concentrations
( > 180 µmol/L), glucose is not completely reabsorbed by
the kidney, and the serum 1,5-AG decreased due to the
competitive inhibition of renal tubular reabsorption of
glucose. Several studies have found 1,5-AG to be a sensitive
marker for postprandial hyperglycemia [26–28], which is an
independent risk factor for macrovascular complications [29–
31]. Many patients who are otherwise well controlled by
HbA1c, an indicator of overall blood glucose control, also

have significant postprandial hyperglycemia [32]. In agree-
ment with these findings, the serum 1,5-AG levels of normal
controls in our study were 10 times as high as those of
fulminant type 1 diabetic patients [21], despite the compar-
able HbA1c (5.40 � 0.31 vs. 6.30 � 0.23, P > 0.05)
between the two groups, further supporting the notion that
1,5-AG could be used as an adjunct index to HbA1c for a
better glycemic control [26].

Lipid metabolism

It is well-established that diabetes is often accompanied by
dyslipidemia [33], which is a major risk factor of cardiovas-
cular diseases in diabetic patients. The precise pathogenesis
of diabetic dyslipidemia remains unknown. Nevertheless, a
large body of evidence suggests that increased free fatty acid
flux secondary to insulin resistance is the main cause [34,35].
In concert with the findings in references 34 and 35, higher
blood levels of fatty acids in T2DM patients were detected in
many metabolomic studies [21,36]. For instance, palmitate,
heptadecanoate, stearate, oleate and palmitoleate were found
to be significantly increased in obese T2DM women in
contrast to obese non-diabetic controls [36].

In diabetes, especially under poorly controlled conditions,
glucose cannot be efficiently utilized due to absolute or
relative shortage of insulin and therefore, the increased flux of
fatty acids serves as the major source of energy through β-
oxidation, and as a result, ketone bodies including acetone,
acetoacetate and 3-hydroxybutyrate are released [37]. Not
surprisingly, 3-hydroxybutyrate was higher in plasma [36],
serum [21,38] and urine [23] samples of T2DM patients
compared to normal subjects in different studies and the
concomitant increase of acetoacetate was also observed by
Salek et al. [23].

Despite the increased availability of lipids, T2DM is
associated with a blunted ability of skeletal muscle to oxidize
free fatty acids [39–41]. However, the mechanisms that
underlie dysfunctional mitochondrial fatty acid oxidation and
impaired insulin action are not fully understood. Targeted
acylcarnitine profiling with ultra performance liquid chroma-
tography-mass spectrometry (UPLC-MS) in 44 diabetic and
12 non-diabetic subjects demonstrated that acylcarnitines,
particularly long-chain acylcarnitines (C10-carn, C12-carn and
C14-carn), were significantly increased in T2DM subjects,
reflective of incomplete long-chain fatty acid oxidation [42].
Moreover, the proof-of-principle work by Adams et al. [42],
showed that nuclear factor-κB (NF-κB) can be significantly
activated by C12-carn and C14-carn, which could induce
inflammation and plays an important role in the onset of
insulin resistance [43,44]. The authors proposed that limited
TCA cycle activity relative to mitochondrial fuel delivery
contributes to incomplete long-chain fatty acid combustion,
in turn promoting accumulation of acylcarnitine by-products
that activate NF-κB-associated pathways to inhibit insulin
activity. The abnormal accumulation of acylcarnitines was
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Table 1 List of altered metabolic pathways in T2DM patients

Pathway Metabolite
Change of direction
(vs. healthy control)

Sample Platform Reference

Carbohydrate metabolism
and TCA cycle

1,5-Anhydrogluticol Down Serum NMR, UPLC-MS, GC-MS [38]

Down Serum GC-MS [21]

Pyruvate Up Serum GC-MS [21]

Lactate Up Serum GC-MS [21]

Up Urine NMR [22]

Down serum GC-MS [58]

Down Serum NMR [57]

Citrate Up Urine NMR [22]

Up Urine NMR [23]

Down Serum NMR [57]

Malate Down Urine NMR [23]

Fumarate Down Urine NMR [23]

Succinate Down Urine NMR [23]

Lipid metabolism 3-Hydroxybutyrate Up Plasma GC-MS [36]

UP Serum NMR, UPLC-MS, GC-MS [38]

Up Urine NMR [23]

Up Serum GC-MS [21]

Acetoacetate Up Urine NMR [23]

Fatty acids Up Plasma GC-MS [36]

Up Serum GC-MS [21]

LysoPCs Up Plasma UPLC-MS [46]

LysoPC (18:2) Down Serum LC-MS [50]

Down Serum LC-MS [49]

LysoPEs Up/Down Plasma UPLC-MS [46]

PCs Up/Down Serum LC-MS [49]

Acetylcarnitines Up Plasma UPLC-MS [46]

Up Plasma UPLC-MS [45]

Up/Down Plasma UPLC-MS [42]

Down Plasma UPLC-MS [47]

Amino acid metabolism Valine (BCAA) UP Serum NMR, UPLC-MS, GC-MS [38]

Up serum GC-MS [58]

Down Serum NMR [57]

Leucine (BCAA) UP Serum NMR, UPLC-MS, GC-MS [38]

Up Plasma UPLC-MS [46]

Up Plasma GC-MS [36]

Down Serum NMR [57]

Down Urine NMR [23]

Isoleucine (BCAA) UP Serum NMR, UPLC-MS, GC-MS [38]

Down Serum NMR [57]

Down Urine NMR [23]

Lysine Down Plasma GC-MS [36]

Down Serum NMR [57]

Down Serum GC-MS [58]

Up Plasma UPLC-MS [46]

Glycine Down Plasma GC-MS [36]

Down Serum LC-MS [50]

Down Serum LC-MS [49]

Serine Up Plasma UPLC-MS [46]

Tyrosine Down Serum NMR [57]

Phenylalanine Up Plasma UPLC-MS [46]
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replicated in both targeted [45] and non-targeted [46]
metabolomic studies. It is noteworthy that a recent study in
youth produced contrasting results [47]. Adolescents with

T2DM exhibited enhanced mitochondrial function evidenced
by similar long-chain acylcarnitines, lower medium- to short-
chain acylcarnitines (except C8-carn and C10-carn) and higher
rates of fat oxidation in comparison to normal controls,
possibly suggesting an early metabolic plasticity in youth.

Phospholipids are key components of lipid bilayer of all
cells and are implicated in cellular signal transduction [48]. In
a recent large prospective study (mean follow-up 7 years)
with a targeted metabolomic approach, Floegel et al. [49]
reported that numerous phospholipids (including sphingo-
myelin, 9 phosphatidylcholines and lysophosphatidylcholine
C18:2) at baseline were significantly associated with the risk of
T2DM, independent of established risk factors. Likewise,
lower levels of lysophosphatidylcholine C18:2 were shown to
be predictive for T2DM in a prospective population-based
cohort by Wang-Sattler et al. [50]. Though the precise
mechanism underlying such association has yet to be
elucidated, these two studies imply that alterations of
phospholipids may be an early event in the pathogenesis of
T2DM.

Fig. 1 The intensity of serum pyruvate measured by GC-MS in
different groups. NC, normal control; T2DM, type 2 diabetes;
T1DM, type 1 diabetes; DKA, diabetic ketoacidosis; FT1DM,
fulminant type 1 diabetes.

(Continued)

Pathway Metabolite
Change of direction
(vs. healthy control)

Sample Platform Reference

Phenylalanine Up Serum GC-MS [21]

Up Serum LC-MS [49]

Down Serum NMR [57]

Tryptophan Down Urine NMR [23]

Alanine Up Urine NMR [22]

Down Serum NMR [57]

Glutamine Up Urine NMR [23]

Up Serum GC-MS [21]

Glutamate Up serum GC-MS [58]

Down Serum GC-MS [21]

Methionine Down Serum NMR [57]

Up Serum GC-MS [21]

Histidine Down Serum NMR [57]

Down Urine NMR [23]

2-Hydroxybutyrate Up Plasma GC�GC-MS [62]

Up Plasma GC-MS [36]

Up Serum GC-MS [21]

Up Plasma GC-MS [36]

Hippurate Up Urine NMR [22]

Taurine Up Urine NMR [23]

Choline metabolism Betaine Up Urine NMR [22]

DMA Up Urine NMR [22]

TMAO Up Urine NMR [22]

Up Urine NMR [23]

Bile acid metabolism Cholate Down Serum NMR, UPLC-MS, GC-MS [38]

Deoxycholate Up Serum NMR, UPLC-MS, GC-MS [38]

TCA, tricarboxylic acid cycle; NMR, nuclear magnetic resonance; GC-MS, gas chromatograph-mass spectrometry; LC-MS, liquid chromatography-mass
spectrometry; UPLC-MS, ultra performance liquid chromatography-mass spectrometry; LysoPC, lysophosphatidylcholine; LysoPE, lysophosphatidyletha-
nolamine; PC, phosphatidylcholine; DMA, dimethylamine; TMAO, trimethylamine N-oxide.
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Amino acid metabolism

Branched-chain amino acids (BCAAs) include valine, leucine
and isoleucine, which are among the nine essential amino
acids for humans. Although the association of BCAAs with
insulin and diabetes has been noted for over 60 years [51–53],
BCAAs did not gain much research interest until the study
done by Newgard et al. [9] in 2009. It was found the three
BCAAs, isoleucine, leucine, and valine, are correlated with
insulin resistance and significantly increased in overweight/
obese subjects compared to healthy leans by a metabolomics
study with a cohort of 74 obese and 67 lean subjects. BCAAs
were further reported to be significantly associated with
insulin resistance in both overweight/obese [54] and normal
weight subjects [55]. Recently, Wang et al. [56] followed
2422 non-diabetic individuals for 12 years and found that the
increased branched-chain and aromatic amino acids including
isoleucine, leucine, valine, tyrosine and phenylalanine in
diabetic patients could be highly-significant predictors for
future diabetes. The prospective nature of their study suggests
a cause-effect relationship between BCAAs and diabetes. It’s
noteworthy that decreased levels of BCAAs were reported in
both serum [57] and urine samples [23] in diabetic subjects.
One possible explanation could be that the T2DM patients
recruited in the metabolomic studies mentioned above were
not newly-diagnosed and untreated, except those enrolled in
the study done by Bao et al. [58], in which serum valine was
significantly increased in T2DM. Thus the findings observed
in references 57 and 23 might not reflect the physiological
alterations in BCAA metabolism in T2DM [59].

In two population-based prospective studies [49,50] as

mentioned above, baseline serum glycine was found to be
inversely correlated with the risk of developing T2DM.
Interestingly, a glycine related enzyme, 5-aminolevulinate
synthase 1 (ALAS-H), was upregulated in the T2DM group in
the same study [50]. Together with the link between insulin
and ALAS-H expression [60], it was postulated that the
decrease of serum glycine in T2DM may result from insulin
resistance. Indeed, Floegel et al. [49] observed that glycine
was positively associated with insulin sensitivity in their
study samples.

Our recent [21] and others’ [36,61,62] studies have
identified a consistent increase of blood 2-hydroxybutryrate
(2-HB) in T2DM patients (Fig. 2A). 2-HB, which could be
used to synthesize gluthathione, is released as a byproduct
when cystathionine is cleaved to cysteine. Higher level of
2-HB, together with higher cystine [36] in T2DM patients,
probably reflected the increased activity of homocysteine
transsulfuration pathway secondary to oxidative stress
[63,64]. Consistent with the result that 2-HB was negatively
correlated with insulin sensitivity [61], we found that the
serum 2-HB concentration was positively correlated with
HbA1c in our study samples (r = 0.420, P < 0.001) [21]
(unpublished data, Fig. 2B), which is similar with the results
achieved by Fiehn et al. (r = 0.455, P = 0.001) [36], raising
the possibility that 2-HB could serve as a biomarker of blood
glucose control and therefore oxidative stress [65].

Other altered metabolic pathways

It is well known that bile acids are tightly linked to lipid
metabolism. However, there is a growing body of evidence

Fig. 2 The comparison of 2-hydroxybutyrate between nondiabetic and diabetic subjects and the association of 2-hydroxybutyrate with
HbA1c. (A) The intensity of serum 2-hydroxybutyrate measured by GC-MS in normal controls and diabetic patients. (B) The Pearson
correlation between 2-hydroxybutyrate and HbA1c.
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that T2DM is associated with an altered bile acid pool. For
example, Bennion et al. [66] reported that bile acid pool size
and fecal bile acid excretion were significantly higher during
uncontrolled hyperglycemia than during relative euglycemia.
Bile acid sequestrants can be used to bind bile acids in the
intestinal and disrupt the enterohepatic circulation, subse-
quently modulating the bile acid pool composition. 8-week
treatment with colesevelam hydrochloride, a bile acid
sequestrant, in diabetic patients was found to significantly
improve whole body insulin resistance [67]. Using a
metabolomic approach, Suhre et al. [38] reported that cholate,
one of two primary bile acids, was more frequently detected
in controls than in patients with T2DM, while for deox-
ycholate, a secondary bile acid, was rich in T2DM patients.
This phenomenon implies a perturbed composition of bile
acid pool in T2DM, and more specifically, a higher rate of
conversion from primary to secondary bile acids.

Wang et al. [68] recently demonstrated that three
metabolites of the dietary lipid phosphatidylcholine—cho-
line, trimethylamine N-oxide (TMAO) and betaine—were
able to predict risk for cardiovascular diseases in an
independent cohort. Feeding mice with TMAO could
promote the development of atherosclerosis. By NMR,
Messana et al. [22] observed higher urine levels of betaine
and TMAO in T2DM patients compared with normal
controls. Another metabolomic study with a similar design
also reported a significant relationship between TMAO and
T2DM in consistency [23]. These findings are of interest in
light of the fact that diabetes itself is a major risk factor for
CVD in both men and women [69,70].

Additionally, alterations in intestinal microflora-associated
metabolites have been detected. Studies using germ-free mice
confirmed a critical role of gut microflora in the formation of
TMAO from dietary choline [68,71] and recently Swann et al.
[72] revealed that germ-free and antibiotic-treated mice
exhibited lower bile acid diversity and a major increase in
the taurine-conjugated bile acids in multiple tissue, confirm-
ing the role of gut microflora in the regulation of bile acid
pool. Also note that higher urine levels of hippurate, which is
mainly produced via gut microbial metabolism, was observed
in the metabolomic study done by Messana et al. [22]. The
human gut microflora has an important role in health, which
has been comprehensively discussed by several researchers
[73,74]. These studies suggest that the perturbation of gut
microflora may underlie some of the metabolic changes in
diabetes, thereby modulating diabetes risk.

Conclusions and future perspectives

The fast-growing application of metabolomics in diabetes has
provided researchers much knowledge and the opportunity to
gain new insights into metabolic pathways and pathophysio-
logical mechanisms. Several potential metabolic biomarkers
and related metabolic pathways have been identified and are

currently being investigated and validated in T2DM patients,
such as 3-hydroxybutyrate with ketogenesis and altered bile
acids, in addition to the BCAAs and AAAs. It is also notable
that recent metabolomic studies on T2DM have reported
many conflicting results regarding certain metabolites (e.g.,
BCAAs). Given that human metabolome has been shown to
be sensitive to age, sex, diet, drug and other environmental
factor, a stringent selection and treatment of samples as well
as an optimized metabolomics profiling protocol should
always be taken into consideration prior to the study.
Nevertheless, metabolomics increased our knowledge of the
dysregulated metabolic pathways associated with progression
of metabolic diseases and provided potentially new ther-
apeutic strategies targeting these dysregulated pathways,
though our understanding about the distinct and complete
metabolic footprints of T2DM is still very limited.
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