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Abstract Chromosomal aberrations have been associated with cancer development since their discovery more
than a hundred years ago. Chromosomal translocations, a type of particular structural changes involving
heterologous chromosomes, have made a critical impact on diagnosis, prognosis and treatment of cancers. For
example, the discovery of translocation between chromosomes 9 and 22 and the subsequent success of targeting the
fusion product BCR-ABL transformed the therapy for chronic myelogenous leukemia. In the past few decades,
tremendous progress has been achieved towards elucidating the mechanism causing chromosomal translocations.
This review focuses on the basic mechanisms underlying the generation of chromosomal translocations. In
particular, the contribution of frequency of DNA double strand breaks and spatial proximity of translocating loci
is discussed.
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Introduction

Chromosomal translocation is a type of genetic and structural
alteration occurring between heterologous chromosomes, the
presence of which has been closely associated with
carcinogenesis, especially leukemogenesis and lymphoma-
genesis. Chromosomal translocation often endows cancer
cells with new biologic features, which is of important
significance in cancer diagnosis and therapy. However, the
molecular mechanisms causing chromosomal translocations
have not been completely understood. The formation of
chromosomal translocation involves a complicated process,
initiated by induction of DNA double strand breaks (DSBs)
and completed via re-joining of broken DNA ends on
heterologous chromosomes. This review provides a historic
perspective of discovering chromosomal translocation and
covers recent progresses with a focus on the molecular
mechanisms that induce the formation of chromosomal
translocation. In the end, the important applications of
chromosomal translocation in clinical medicine are also
reviewed.

Early work of genomic instability: the cause
or the consequence?

Chromosomal abnormalities were initially observed as novel
chromosomes in tumor cells in the late nineteenth and early
twentieth centuries [1,2]. In 1890, the German biologist
David von Hansemann found that tumor cells with chromo-
some abnormalities often contained several spindle bodies
and other mitotic aberrations [2]. Then, the German cytologist
Theodor Boveri, who is considered by many to be first cancer
geneticist, provided the most comprehensive analysis of the
data with most complete descriptions of tumor cell chromo-
somes [1,2]. Furthermore, Boveri proposed that tumor cells
possessed “growth-stimulatory chromosomes” that were the
cause of malignant transformation [1]. However, at that time,
no specific markers were available to identify individual
human chromosomes, so Boveri was not able to characterize
the chromosomal changes in tumors in more depth.

Little was made of Boveri’s observation until the 1950s,
when several scientists discovered that virtually all tumor cell
lines had chromosomal aberrations, frequently containing
more than 100 chromosomes per cell, including dicentric and
ring chromosomes [3]. However, cell lines from the same
tumor type did not have the same aberrations, so these
abnormal karyotypes were assumed to be a result of the
inherent genomic instability of cancer cells, rather than a
cause of malignant transformation. This view persisted until
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the early 1970s, then, the chromosome banding techniques
were invented, which allowed the identification of individual
chromosomes and regions of chromosomes involved in
aberrations [2]. In addition, these techniques enabled the
researchers to associate specific chromosome abnormalities
with human leukemias, lymphomas and solid tumors [2].
Subsequent studies convincingly showed that chromosomal
translocations, a type of structural changes involving
heterologous chromosomes, play a critical role in initiating
cancers (reviewed in Ref. 4). Recently, with the application of
next generation sequencing technique, the cancer genomes
are being revealed in more depth at an almost revolutionary
speed [5,6], which allows the identification of genomic
aberrations at nucleotide level. These sequencing data suggest
that cancer genomes are extremely complicated and com-
posed of a large number of genetic changes [7–10]. Somatic
mutations are common in cancers including point mutations,
insertions, deletions, amplifications, translocations and copy
number changes [7–10]. Given the complexity of cancer
genomes, the role of genomic instability in cancer develop-
ment needs more investigations.

Discovery of chromosomal translocation

In 1960, Peter Nowell and David Hungerford first reported
that a minute chromosome was consistently associated with a
human malignant disease, chronic myelogenous leukemia
(CML) [11,12]. This peculiar chromosome in CML patients
became known as the Philadelphia (Ph) chromosome [12].
Initially, in more than 10 years, it was thought that this small
chromosome was caused by a simple deletion, and the loss of
DNA from the chromosome was proposed to be the cause of
the leukemia [2]. However, the application of chromosome
banding techniques showed that the Ph chromosome was not
caused by a deletion, instead, by an interchange between the
long arms of chromosome (Chr) 9 and Chr 22 [13], thus,
resulting in a reciprocal chromosomal translocation. This
CML-associated t(9;22) translocation was discovered by
Rowley in 1973 [13]. Around the similar time, the first
translocation t(8;21) was also reported by Rowley, which was
associated with acute myelogenous leukemia (AML) [14].
Recently, recurrent chromosomal translocations were also
identified in solid tumors such as prostate cancers [15] and
lung cancers [16,17].

Subsequent studies identified the genes involved in t(9;22)
translocation by cloning the breakpoints, one of which was
ABL1 gene (V-abl Abelson murine leukemia viral oncogene
homolog 1) located on Chr 9, encoding the human cellular
homolog of the transforming sequence of Abelson murine
leukemia virus (A-MuLV), while another was the “breakpoint
cluster region” (BCR) gene located on Chr 22 [18,19]. The
reciprocal translocation between Chr 9 and 22 fuses the
ABL1 gene from Chr 9 into the BCR gene on Chr 22, which
creates a fusion transcript composed of the 5′ part of BCR and

the 3′ part of ABL1 [20]. The common breakpoints in the
BCR gene are located downstream of exons e13 or e14 (M-
BCR) and less frequent breakpoints are downstream of exons
e1 and e2 (m-BCR). Breakpoints in the ABL1 gene occur
commonly upstream of exon a2, or of exon a3 in less than 5%
of CML patients [21]. The ABL1 gene encodes a protein
tyrosine kinase [22,23]. The BCR-ABL1 fusion gene still
retains kinase activity [19,24]. However, the 5′ portion of
ABL1 containing a SH3 domain is frequently deleted in the
translocation. Activity of ABL1 protein is negatively
regulated by its SH3 domain, and deletion of the SH3
domain causes ABL1 to become an oncogene [25–29]. Later
studies showed that the BCR-ABL fusion caused by t(9;22)
was essential for the development of CML [30]. Apart from
associating with CML, the t(9;22) translocation was also
found in acute lymphoblastic leukemia (ALL), especially in
adult patients [31]. The identification of the cancer-causing
fusion protein as a tyrosine kinase that is specifically
expressed by cancer cells made it an attractive therapeutic
target [30]. The development of the kinase inhibitor STI-571
has transformed CML therapy, which induces remission in
majority of patients [30]. In addition, STI-571 might also be
useful in treating ALL when combined with other drugs [32].
More importantly, the scientific success of the Philadelphia
story proved the principle of targeted cancer therapy by
discovering the cancer-causing mechanisms and searching for
specific therapeutic approaches, and once more validated the
power of basic research. Although it took several decades for
this story to unfold, the paradigm it established may be
followed for many other recurrent chromosomal structural
changes associated with human cancers (see below).

Although the t(8;21) and t(9;22) were among the first
translocations to be discovered, the first molecularly
characterized translocation was the t(8;14) translocation
associated with Burkitt’s lymphoma (BL) [33,34], a type of
mature B cell lymphoma. The genes involved in this
translocation are the well-known oncogene c-myc located
on Chr 8 and immunoglobulin heavy chain (Igh) gene on Chr
14 [33]. In 1982, Dalla-Favera and Croce showed that the
human c-myc oncogene was located on the region of Chr 8
affected by the translocation, which was the first oncogene
cloned at a translocation site [33]. At the same time, Phil
Leder’s group [35] showed that c-myc was translocated into
the 5′ region of the Igh gene. This Igh-c-myc translocation
established a paradigm for subsequent chromosomal translo-
cations observed in many different types of mature B cell
lymphomas [36]. Unlike the t(9;22) translocation, the Igh-c-
myc translocation does not create a fusion protein, instead, it
juxtaposes the c-myc oncogene next to the enhancer region of
Igh locus, resulting in abnormal levels of c-myc oncogene
expression [37]. Later studies show that the Igh-c-myc
translocation is also observed in other types of mature B
cell lymphomas such as diffuse large B cell lymphomas
(DLBCLs) [38] and constitutes one of the most important
components of malignant transformation [39,40]. We recently
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established a mouse model based on the conditional deletion
of Xrcc4, a DNA repair factor, in p53 deficient B cells, which
recurrently developed peripheral B cell lymphomas termed
CXP lymphomas [41]. Interestingly, these CXP lymphomas
frequently harbor the reciprocal Igh-c-myc translocations and
activate the expression of c-myc oncogene in a similar manner
as in human mature B cell lymphomas [36,41,42]. The
expression of c-myc oncogene can be activated by intronic Eμ
enhancer (iEu) and Igh 3′ regulatory region (Igh3′RR) since
transgenic mice that harbor c-myc oncogene fused with iEμ or
Igh3′RR sequences are susceptible to B cell lymphomas
[39,40,43–45]. Recent studies introduced an Igh3′RR inacti-
vating mutation, which deletes the key hs3b and hs4
enhancers via gene targeting, into the CXP model to test its
essential role in B cell lymphomagenesis [46]. These studies
demonstrated that the Igh3′RR is not required for the
generation of CSR-related Igh DSBs or Igh-c-myc transloca-
tions, but required for the activation and selection of Igh-c-
myc translocations in CXP lymphomas [46].

Cloning of translocation breakpoints has discovered new
oncogenes that are involved in regulating cell growth and
inducing malignant transformation. For example, the AML-
associated t(8;21) translocation led to the identification of
AML1, an important transcription factor in hematopoietic
lineage [47]. In fact, leukemia and lymphoma are now the
most extensively characterized human malignant diseases [2],
chromosomal translocations that alter either the function or
expression of involved genes play a critical role in the
etiology of these diseases [36]. However, the mechanisms
causing chromosomal translocations are still not completely
understood. Studies show that antigen receptor loci are
frequently involved in chromosomal translocations such as
t(14;18) translocation occurring between Igh and bcl-2, the
well-known anti-apoptotic gene, which is associated with
follicular lymphomas [48,49]. Evidence suggests that trans-
locations at antigen receptor loci in lymphoid cells are likely
caused by mistakes during lymphocyte specific DNA
recombination processes [50,51] (see below). However, the
precise mechanisms that underlie most recurrent transloca-
tions including both driver and passenger translocations have
not yet been elucidated [51].

Mechanisms for translocations involving
antigen receptor loci

The underlying molecular mechanisms for translocations
frequently occurring at antigen receptor loci in lymphocytes
have been extensively reviewed [50–54]. Thus, only a few
basic principles of lymphocyte-specific recombination pro-
cesses are discussed here. T and B lymphocytes are the major
components of our immune system, which can mount highly
specific immune responses against invading pathogens by
generating a nearly infinite diversity of antigen receptors
within the limits of a finite genome. This amazing diversity of

adaptive immunity is largely achieved through lymphocyte
specific DNA recombination process at antigen receptor loci,
known as V(D)J recombination [55]. V(D)J recombination
occurs in both T and B cell progenitors and assembles the
variable region exon from V, D and J gene segments that are
responsible for antigen recognition [55] (Fig. 1). In antibody-
producing B cells, assembly of the variable region exons of
IgH and immunoglobulin light (IgL) chain genes occurs in B
lymphocyte progenitors during early development in bone
marrow (BM) [56,57]. Productive VH(D)JH rearrangements
in pro-B cells signal differentiation to the pre-B cell stage
where IgL genes are assembled [58]. There are two IgL loci,
Igκ and Igl. In mice and humans, Igκ genes are generally
rearranged before Igl genes [56].

In periphery, upon antigen activation, mature B cells
undergo IgH class switch recombination (CSR), another
DNA recombination process that further diversifies the
constant region of IgH gene (CH) [59]. Both V(D)J
recombination and CSR involve a cut-and-join mechanism
and generate DNA DSBs as an intermediate [50]. Classical
non-homologous end joining (C-NHEJ) repairs the DSBs
introduced, respectively, by the recombination activating
genes (RAGs) in V, D, J gene segments during V(D)J
recombination or activation induced deaminase (AID) in
large repetitive switch regions (S) that lie upstream of each of
the various sets of CH exons during CSR (Fig. 1). XRCC4 and
DNA ligase IV (Lig4) are the most specific C-NHEJ factors
and required for V(D)J recombination and a normal level of
CSR [60,61]. XRCC4 cooperates with Lig4 to catalyze the
ligation step of C-NHEJ [62]. Extensive studies performed in
the past convincingly demonstrate an important role of RAGs
in generating chromosomal translocations [52–54,63]. RAGs
can mediate translocations through cryptic recombination
signal sequences (RSSs) mechanism [52,53]. It has been
shown that translocation partners of antigen receptor loci such
as LMO2, SIL and SCL possess cryptic RSSs that are
misrecognized and cut by RAGs [64–66]. In addition, RAGs
can generate DSBs at altered DNA structures such as non-B
DNA structures [63,67,68].

The effectiveness of adaptive immunity appears to come at
a high price, especially in the case of B cells, since more than
90% of lymphomas are B cell derived [69]. This may not be
surprising given that B cells undergo both V(D)J recombina-
tion and CSR, and DSBs arising in either process, if not
properly repaired, may initiate chromosomal translocations
[50]. Consistent with this notion, human and mouse B cell
lymphomas often harbor clonal translocations linking onco-
genes, such as c-myc, to IgH, Igκ or Igl [36]. Collaboration
between these processes has also been proposed to initiate
translocations [70]. Many oncogenic translocations in mature
B lymphomas occur during attempted CSR and involve AID-
initiated breaks [50,71–74]; for example, the breakpoints of
Igh-c-myc translocations identified in the CXP lymphomas
often fall within or around S regions where AID-initiated
DSBs cluster [41]. However, some of the translocations
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appear to result from RAG-initiated DSBs because the
breakpoints often occur at D or J gene segments [36,52,75].
While many of these translocations probably indeed occur in
B cell progenitors in BM during V(D)J recombination, our
data suggest that some of these translocations may result from
RAG activity in peripheral B cells [76]. Furthermore, we
found that these RAG-initiated Igl breaks often joined
together with AID-initiated Igh breaks to form Igh-Igl
translocations in primary non-transformed peripheral B cells
[76]. The frequency of such spontaneous translocations is so
high that they can be readily observed using routine
cytogenetic assay without employing any selective markers
such as drug-resistant gene cassette, suggesting that fre-
quency of DSBs might be a major driver of translocations.

Factors influencing the frequency and
spectrum of translocations

Translocations require DSBs located on heterologous
chromosomes. DSBs can be induced by cell-intrinsic factors

such as oxidative metabolism, replication stress or lympho-
cyte specific recombination [54], or cell-extrinsic factors such
as ionizing radiation (IR), which is still used experimentally
to generate translocations, or chemotherapeutics. Mammalian
cells are not tolerant of DSBs, which cause cells to arrest in
mitosis or undergo apoptosis [77]. Thus, DSBs activate the
cellular DNA repair machinery that catalyzes the joining of
broken chromosomal ends [62]. There are two major
pathways in mammalian cells, homologous recombination
(HR) and NHEJ, to repair DSBs [62]. Joining of a single DSB
with two broken ends on one chromosome is mediated by
end-joining and could lead to deletions, duplications, or
inversions, depending on the extent of the processing of the
particular DSB. Joining of two DSBs on two heterologous
chromosomes leads to translocations. Sometimes, the four
broken chromosome ends on two chromosomes are almost
precisely exchanged, which results in balanced reciprocal
translocations with little nucleotides lost during the joining
process. This type of translocations is often observed in
mature B cell lymphomas [36]. In contrast, radiation-induced

Fig. 1 Overview of V(D)J recombination and Igh CSR in B cells. Germline configuration of Igh locus (top) is shown with V (variable)
(red box), D (diversity) (gray box) and J (joining) (blue box) gene segments located upstream and a set of constant region exons (black
oval) located downstream. Grey diamond: intronic enhancer (iEμ) and Igh 3′ regulatory region (Igh3′RR). Black and white triangles
flanking the V, D, J gene segments: recombination signal sequences (RSSs). V(D)J recombination is initiated by RAGs which recognize
RSSs and completed by NHEJ. The rearranged Igh locus (middle) is shown with V(D)J exon assembled. White and color boxes: switch
(S) regions. The upstream donor Sμ (yellow box) and downstream acceptor Sγ1 (green box), as an example, are indicated for CSR. CSR is
catalyzed by AID and NHEJ. The switched Igh locus (bottom) is shown with the hybrid Sμ/Sγ1 sequence and the Cγ1 exons juxtaposed
next to assembled V(D)J exon.

266 Mechanisms and impacts of translocations in cancers



translocations typically present an extremely complicated
karyotype with multiple chromosomes joined together in one
aberrant chromosome [78]. Thus, multiple factors could
influence the frequency and spectrum of translocations,
including: (1) the mechanism initiating DSBs; (2) the
frequency of DSBs in a particular locus; (3) the spatial
proximity of two heterologous loci harboring DSBs; (4) the
repair pathway that fails to promote normal re-joining,
instead, may prefer mis-joining. Apart from the influence of
these mechanistic factors, oncogenic selection is also one of
the most important factors to determine the appearance of
recurrent translocations in cancers [51].

An elegant genetic system using embryonic stem (ES) cells
was established to investigate the relationship between the
frequency of DSBs and translocation [79]. The system took
advantage of the unique features of meganuclease I-SceI,
present in the mitochondria of Saccharomyces cerevisiae. I-
SceI is an intron-encoded homing endonuclease and recog-
nizes an 18 base pair sequence [80]. I-SceI is a rare cutting
endonuclease because, statistically, an 18 bp sequence occurs
once in every 7 � 1010 base pairs (equal to about 20 human
genomes) [81]. Thus, it provides an ideal way to induce a
single defined DSB in mammalian genome. In this ES cell
system, two I-SceI cutting sites were targeted into two
different loci located on Chr 14 and Chr 17, respectively [79].
The re-joining of DNA sequence between these two loci re-
creates a selection marker (neor), which allows the detection
of translocations formed [79]. The initial studies employing I-
SceI system suggested that the presence of DSBs might
influence the translocation pattern [79].

Subsequently, the I-SceI system was introduced into B
lymphocytes to investigate how DSBs at Igh locus were
repaired during CSR [82] and how DSBs at c-myc locus were
generated [74]. More recently, the I-SceI-based experimental
system has provided a tool to study translocation formation
genome-wide, reported side-by-side from Alt’s and Nussenz-
weig’s groups [83,84]. Prior to these studies, most studies of
translocation mechanisms focused on a few specific translo-
cations that are observed as recurrent translocations in cancers
[51]. However, cancer models may not be the ideal system to
study the mechanistic factors influencing the early phase of
translocation generation, given the strong influence of in vivo
oncogenic selection pressure [51]. Previous studies using
primary B cells, A-MuLV transformed pro-B cell lines, ES
cell lines, and prostate cancer cell lines [76,85–87] have
offered insights for the operation of mechanistic factors, also
provided some clues for a better experimental system, such as
minimizing cellular selection and employing genomic
approaches [51].

In the Alt’s study [83], a high-throughput, genome-wide
translocation sequencing (HTGTS) approach was developed
and employed to identify nearly 150 000 independent
translocation junctions in B lymphocytes. These B cells
harbor I-SceI cutting sites in c-myc or Igh locus, which were

subsequently cut with retroviral I-SceI or I-SceI-glucocorti-
coid receptor fusion protein targeted into Rosa26 locus [83].
Translocation junctions initiated from I-SceI DSBs in either
Igh or c-myc locus were found to be widely distributed across
the genome. Furthermore, the location of translocation
junctions clustered to transcribed chromosomal regions and
displayed a prominent correlation with transcription start sites
[83]. Translocation hotspots mainly fall into two categories,
AID-dependent or AID-independent. The former is consistent
with the on-going AID-dependent CSR and the presence of
AID-off targets in these anti-CD40 and IL-4 activated B cells
while the latter comprises mainly cryptic I-SceI cutting sites
[83]. This is probably because I-SceI is a homing endonu-
clease that does not have stringently defined recognition
sequences in the way that other restriction enzymes do, which
means single base changes do not abolish cleavage but reduce
its efficiency to variable degrees [88]. Since the precise
boundary of required bases is generally not known for
homing endonucleases, the identified cryptic I-SceI sites may
provide more insights into the functionality of I-SceI enzyme.
Since the translocation libraries were sequenced with Roche-
454 platform, the actual junctions were identified and
majority of them were formed via end-joining with short
micro-homologies [83]. In the Nussenzweig’s study, a
translocation capture sequencing (TC-Seq) method was
developed to identify more than 180 000 chromosomal
rearrangements genome-wide in primary B cells [84].
Basically, a pair-end deep sequencing approach using
Illumina platform was employed to sequence the amplified
rearrangements from LPS and IL-4 stimulated primary B cells
that harbor I-SceI cutting sites in c-myc or Igh locus [84]. This
study revealed that DSBs and transcriptional activity are
critical factors to determine the pattern of chromosomal
rearrangements [84]. Taken together, both studies suggest that
the mechanism initiating DSBs probably plays a critical role
in determining the frequency and spectrum of translocations.
In particular, the translocation hotspots are often AID targets
or cryptic I-SceI cutting sites in B cells that are activated for
CSR and infected with retroviral I-SceI enzyme [83]. In
addition, both studies show that the partners of recurrent
translocations frequently identified in lymphomas also appear
as translocation hotspots in the absence of major selections
[83,84].

The role of spatial proximity in
chromosomal rearrangements and
translocations

To join the two broken chromosomal ends to form
translocations, the loci with DNA lesions must be in close
contact at some stage during the joining process. A long-
lasting debate in the field of chromosome aberrations is
whether these DNA lesions come into close contact after
DNA damage (the “breakage first” hypothesis), or whether
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rearrangements occur only where close associations pre-exist
(the “contact first” hypothesis) [89]. The early dominance of
breakage-first hypothesis likely stemmed from a traditional
picture of chromosome architecture and interphase nuclear
organization [89]. In the traditional view, chromosomes were
envisaged as having a solid backbone that was completely
severed by DSBs. These breaks then formed open mobile
ends that wandered around in the nucleus, and rejoined with
similar ends in the vicinity [90]. However, nowadays we
know that chromosome integrity is maintained with DNA
packaged with histone proteins into a complex tertiary
structure [91]. Different chromosomes occupy distinct
nuclear territories [91,92] and are further organized into
open and closed chromatin domains within different nuclear
compartments [93,94]. Thus, in this highly compartmenta-
lized organization of the nucleus, it is almost impossible for
unrestricted movements of open broken ends of DNA in a
short period of time. It was predicted that most of the
chromosomes are susceptible only to rearrangements within a
domain (intrachromosomal) whereas very few rearrange-
ments between chromosome domains (interchromosomal)
would occur since most of the DSBs are not available [89].
Though, previous reports showed that DSBs could move
around in the nucleus of yeast in a range of a few μm [95]. In
addition, two recent studies followed the movements of
fluorescent protein marked chromosomes that harbor I-SceI
induced DSBs in live budding yeast, and showed that the
damaged chromosomes increased their movements to search
for homologous template for DNA repair [96,97]. Brownian
motion of chromatin over distances up to 0.5–1 μm was also
described in living cells of Saccharomyces cerevisiae and
Drosophila melanogaster [98]. However, live-cell imaging
studies of mammalian cells showed DSBs to be relatively
immobile [99]. Thus, a more comprehensive analysis of
chromosomal broken ends in live mammalian cells may be
needed to further elucidate this point.

The highly organized structures of chromosomes have led
to the notion that spatial proximity of two heterologous loci
may promote their preferential translocations [100]. Consis-
tently, cytogenetic studies showed several genes that involved
in translocations were, on average, in relatively close
proximity (see Refs. 76,101–103). However, such cytoge-
netic studies were limited by the experimental approach, for
example, only a few pairs of genomic loci in a limited number
of cells were analyzed. In addition, the definition of spatial
proximity has been somewhat arbitrary in these cytogenetic
studies [76,85,101,104,105]. Therefore, it is an important
question to test how the three-dimensional (3D) organization
of the genome contributes to frequency and spectrum of
chromosomal translocations using high throughput genomic
approaches.

Recently, a novel method was described, termed Hi-C,
which probes the 3D structure of the genome by coupling
proximity-based ligation with massively parallel sequencing

[94]. By combining HTGTS and Hi-C, two high-throughput
genomic methods, in a genetically tractable system, the
first comprehensive analysis of 3D genome structure and
the landscape of potential translocations within the same
genome was revealed [106]. This study shows definitively
that 3D genome organization and spatial proximity among
loci strongly influence patterns of chromosomal rearrange-
ments and translocations genome-wide [106]. Translocation
libraries were generated from three G1-arrested A-MuLV
transformed mouse ATM–/– pro-B cell lines; each of them
harbored a single I-SceI cutting site integrated into different
chromosomes, thereby, allowing generation of tractable I-
SceI-induced DSBs at distinct genomic loci [106]. In this pro-
B cell system, the most frequent translocation partners for I-
SceI-induced DSBs were endogenous DSBs generated by
RAG at the antigen receptor loci such as Igκ [106]. These
results were consistently observed in all three pro-B cell lines,
thus, suggesting proximity is not an important determinant
factor in translocation formation under these conditions
[106]. These data demonstrate that the frequency of DSBs
is one of the drivers of translocation formation, consistent
with the suggestions of previous finding [76]. To normalize
the formation of DSBs in the genome, the G1-arrested pro-B
cell lines were treated with IR, a situation in which DSBs are
not rate-limiting anymore. In this scenario, translocation
spectrum was not dominated by RAG targets, instead,
translocation junctions were widely spread across different
chromosomes and subchromosomal domains in a fashion
directly correlated to pre-existing contact [106]. Notably,
translocation junctions occurred preferentially in cis along
single chromosomes, especially around the site where the
defined I-SceI-induced DSBs were generated [106]. Similar
findings were also reported in another independent study
[107]. It was found that, in the absence of recurrent DNA
damage such as AID or RAG-initiated DSBs, translocations
between Igh or c-myc and all other genes are directly related
to the frequency of their pre-existing contact [107].

These new findings may be relevant to the translocation
formation in cancers. In lymphoid cancers, as mentioned
above, RAG- or AID-initiated DSBs at antigen-receptor loci
dominate the spectrum of translocations [50]. However, the
DSBs at translocation partner loci in lymphoid cells or the
DSBs in non-lymphoid cells probably occur at low
frequency; in this scenario, factors other than DSB frequency,
such as spatial proximity, may play a much more important
role than in lymphoid cancers [85,104]. Accordingly,
formation of translocations between randomly generated
DSBs, such as those induced by chemo- and radio-therapies,
will likely be influenced by spatial proximity, similar to what
was observed in the IR-treated pro-B cell lines [106].
Furthermore, these results obtained using the high-throughput
genomic approaches will help the interpretation of cancer
genome sequencing data and the evolution of increasingly
complex karyotypes in cancers [5,108–110].
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Why chromosomal translocation matters?
Its application to clinical medicine

Since their discovery, chromosomal translocations have made
a critical impact on diagnosis, prognosis and treatment of
cancers [2]. It has been long recognized that particular
chromosomal translocations are often associated with sub-
types of leukemia and lymphoma, which convinced hematol-
ogists and pathologists that chromosomal abnormalities,
especially translocations, were a crucial etiological compo-
nent of these diseases [2]. The development of cytogenetic
techniques such as fluorescence in situ hybridization (FISH)
and spectral karyotyping (SKY) have greatly helped to
identify chromosomal abnormalities in cancer cells [111,112].
These techniques have been widely used in clinics to facilitate
the diagnosis of cancers, especially for leukemia and
lymphomas [2,4]. SKY is particularly useful in this context,
because cancer cells often have multiple chromosomal
rearrangements [111]. In addition, with the application of
molecular biology techniques, chromosomal translocations
can also be detected with polymerase chain reaction (PCR),
reverse transcriptase PCR (RT-PCR) or multiplex RT-PCR,
which allows patient samples to be screened for different
translocations in parallel [2]. Given the rapid development of
next generation sequencing techniques, its application in
clinics might be sooner than what we expect and potentially
make a profound impact in personalized medicine [113].

Apart from its application in diagnosis, clinicians dis-
covered that the chromosomal abnormalities appeared to be
very useful prognostic markers, as more cytogenetic analyses
were collected from patients [4]. Now, many clinics routinely
carry out karyotyping of leukemia or lymphoma cells before
treatment since the presence of particular chromosomal
aberrations seem to be a very useful indicator for patients’
prognosis and responses to a certain type of treatment. For
example, in ALL patients, the presence of t(12;21) transloca-
tion indicates a good prognosis, whereas the presence of the
Ph chromosome with t(9;22) translocation often associates
with rapid advancement of the disease [2]. More importantly,
the distinct type of translocation is critical in determining the
appropriate treatment. For example, an acute promyelocytic
leukemia (PML) patient that harbors the t(15;17) transloca-
tion, fusing a part of the PML gene to the retinoic acid
receptor α (RARA) gene to encode PML-RARA, is very
likely to respond to all-trans retinoic acid therapy [114–116].
In addition, a CML patient that carries t(9;22) translocation
can be treated with STI-571, which induces remissions in the
vast majority of patients [32]. As discussed above, the success
story of Ph chromosome has established a paradigm that may
be followed for other recurrent chromosomal structural
changes associated with human cancers. One of such example
is the anaplastic lymphoma kinase (ALK) translocation in
non-small cell lung cancer (NSCLC). In 2007, a group led by
Hiroyuki Mano discovered a fusion gene, EML4-ALK, in a

lung cancer patient and later in five others [16,17]. Such
translocation activates ALK expression [16]. ALK is an
oncogene that induces cell transformation in vitro and in vivo,
which was first identified in 1994 as part of another
translocation in anaplastic large-cell T lymphoma [117,118].
In addition, about 12% of neuroblastomas, a rare pediatric
cancer, also exhibit ALK mutations [119]. EML4-ALK
translocation is present in 2%–7% of NSCLC patients
[120,121], and two other ALK fusions in lung cancer have
been reported [122]. Among the 160 000 new cases of
NSCLC each year in the US, at least 5 000 of them are ALK
positive. A clinical trial of ALK inhibitor (crizotinib) in lung
cancer has been recently completed, which appeared to have a
positive effect on patients [120], and the FDA approval for
crizotinib was subsequently granted in 2011. Overall, these
studies again demonstrated the impact of basic research on the
mechanistic study of translocations and treatment of cancers.

The frequency of chromosomal translocations and other
aberrations among different populations may be influenced
by environmental or genetic difference, which could serve as
predictors of human cancer risk [123]. Epidemiology studies
suggest that the relative frequency of specific subtypes of
translocation could vary significantly among populations
[124]. For example, the molecular structures of Igh-c-myc
oncogenic translocation in BL differ dramatically according
to the epidemiologic setting [125]. About 80% of chromo-
somal breakpoints in Igh locus involve the JH region and 20%
involve S regions in African BL; in contrast, more than 90%
of breakpoints in Igh locus occur in S regions in European BL
[125]. This observation is potentially caused by the high
incidence of malaria transmission in African population
[125]. Increasing epidemiologic evidence also suggest that
MLL translocations in infant and childhood leukemia are
associated with environmental factors such as maternal
exposure to chemicals or defects of metabolic pathways
[126]. These studies potentially have profound impacts on the
prevention of translocation. Although the relative frequency
of translocation in leukemia or lymphoma cases is well
documented, the frequency of translocation (in the absence of
disease diagnosis) among different populations remains
largely unknown [124]. Future studies of translocation
frequency in prospective cohorts should provide more
insights into the natural history and mechanism of transloca-
tions and other leukemia initiating mutations.
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