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Abstract

Applying effort-based decision-making tasks provides insights into specific variables influencing choice behaviors. The
current review summarizes the structural and functional neuroanatomy of effort-based decision-making. Across 39 exam-
ined studies, the review highlights the ventromedial prefrontal cortex in forming reward-based predictions, the ventral
striatum encoding expected subjective values driven by reward size, the dorsal anterior cingulate cortex for monitoring
choices to maximize rewards, and specific motor areas preparing for effort expenditure. Neuromodulation techniques,
along with shifting environmental and internal states, are promising novel treatment interventions for altering neural
alterations underlying decision-making. Our review further articulates the translational promise of this construct into the
development, maintenance and treatment of psychiatric conditions, particularly those characterized by reward-, effort-

and valuation-related deficits.
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Introduction

Effort-based decision-making (EBDM) encompasses men-
tal computations that estimate work (“effort”) amounts
required for a positive outcome (“reward”) Kurniawan
et al., 2010; Prévost et al., 2010; Treadway et al., 2009.
Applying a neuroeconomic lens to assess decision-mak-
ing can be valuable in operationalizing and quantifying
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motivation and further parsing it into its basic elements
Chong et al., 2016; this framework can develop mechanis-
tic theories, computational models and testable approaches
to understand choice behavior Chong et al., 2016; Pessigli-
one et al., 2018. This approach separates the two compo-
nents that make up effort-based decision-making — namely
effort (the motivational aspects of decision-making) and
reward (including reward responsiveness). While tradi-
tional models of effort focus primarily on discounting and
costs, practical models can subdivide costs into various
components including effort expenditure (i.e. work — the
amount of energy/time put into obtaining rewards), risk-
taking (engaging in behaviors under conditions of threat
or uncertainty to obtain a reward), and reward discounting
(i.e. temporal costs with the devaluing of reward over time
or opportunity costs) Chong et al., 2016; Zald & Tread-
way, 2017. Participants may not know how much effort
is needed to obtain a reward, and thus a probabilistic ele-
ment is evident as participants may expend considerable
amounts of effort without attaining a reward. The reward
element encompasses constructs of anticipation, con-
sumption, type, magnitude and the state of the individual
(e.g. mood or energy levels) Berridge & Robinson, 1998;
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Chong et al., 2016; Knutson et al., 2004. Indeed, EBDM
fits into the Positive Valence Domain of the Research
Domain Criterion (RDoC) framework launched by the
National Institute of Mental Health (NIMH)(https://www.
nimh.nih.gov/research/research-funded-by-nimh/rdoc/
constructs/rdoc-matrix.shtml, which includes a reward
valuation construct, made up of reward probability, delay
and effort subconstructs, suggesting that alterations in the
way a reinforcer is computed as a function of its magni-
tude, valence, predictability, the time interval prior to its
expected delivery, and the perceived costs of the physi-
cal or cognitive effort required to obtain it may be shared
across psychiatric disorders.

The application of EBDM tasks has provided behav-
ioural insights into specific variables influencing choice
behaviours, particularly when choice-relevant information
is not always available. In particular, behavioural assess-
ments of EBDM, including tasks that measure various
EBDM constructs of Brand et al. (2005); Bechara et al.,
1994; Lejuez et al., 2002; Madden & Bickel, 2010; Odum,
2011; Rachlin & Green, 1972; Knutson et al., 2000; Hodos,
1961; Kool et al., 2010; Horan et al., 2015, have identified
subjective valuation, effort valuation, reward magnitude,
choice difficulty and choice probability as contributing to
reward-, effort- and valuation-related impairments (see
Box 1) Hélie et al., 2017; Rangel et al., 2008. Importantly,
details of particular EBDM tasks can vary widely, and
these details may be crucial in precipitating the pattern of
individual performance differences or the corresponding
neural substrates. Key details include hypothetical versus
experiential aspects, probabilistic features, the output type,
the nature of the reward, the motivational state of the indi-
vidual, and the task duration. Further, expectancies about
how much effort is needed, and how precisely the expected
effort cost is calculated may vary widely from paradigm
to paradigm depending on how the paradigm is arranged,
and additionally varies across age (i.e., adolescents com-
pared to adults) Rodman et al., 2021. Nevertheless, impair-
ments in reward-, effort- and valuation-related processes
are increasingly reported across psychiatric conditions
Addicott et al., 2020; Brassard & Balodis, 2021; Chang
et al., 2019; Cooper et al., 2019; Culbreth et al., 2018,
2020; Damiano et al., 2012; Docx et al., 2015; Fervaha
et al., 2015; Green & Horan, 2015; Hartmann et al., 2015;
Mansur et al., 2019; Mata et al., 2017; Mitchell & Sevigny-
Resetco, 2020; Mosner et al., 2017; Racine et al., 2019;
Taylor & Filbey, 2021; Treadway et al., 2009, 2012, 2015;
Yang et al., 2014.
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Box 1 Effort-Based Decision-Making Constructs and Descriptions

Subjective Valuation The within-individual variability
in preferences for rewards and/or
actions. The process of assigning
values/weights to different options
based on a person’s current state
(Hélie et al., 2017; Slovic, 1995;
Slovic et al., 1977). Subjective
valuation is usually produced from
a subjective rating that is used to
compare the desirability of different
options (i.e., predicting the benefits
associated with each possible choice)
(Hélie et al., 2017; Rangel et al.,
2008). Typically, when choosing
between multiple options, decision-
makers will select or prefer options
with the highest subjective value
(i.e., the options with the most value
relative to other choices)

Effort Valuation The within-individual variability in
the mental calculations performed
to determine cost/effort required
to obtain rewards. Like subjective
valuation, effort valuations are con-
text- dependent and change relative
to the decision-makers environment,
states and other available options.
Typically, when choosing between
multiple options, decision-makers
will select or prefer options requiring
the least amount of effort (i.e., an
easy task over a hard task)

The size or number of benefits associ-
ated with chosen options (i.e., size/
portion of food rewards or the
amount of monetary rewards). Larger
reward magnitudes are normally
perceived more favorably when
compared to smaller reward options.
Typically, decision-makers assign
greater values to choices/options
leading to larger benefits (Rangel
et al., 2008)

The degree of physical or cognitive
demand associated with each task
trial (i.e., hard tasks versus easy
tasks). Several key factors contribute
to the valuation of choice difficulty,
including individual differences,
cognitive load, time, effort costs and
reward magnitude (Bonnelle et al.,
2015; Hogan et al., 2019). In this
latter sense, cost—benefit weighing
becomes more difficult as benefits
and costs become of similar magni-
tudes (Bonnelle et al., 2015)

Reward Magnitude

Choice Difficulty
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Choice Probability The likelihood that a certain task
results in reward receipt. Choice
probability influences valuation
processes, as decision-making often
requires assessing rewards and costs
that occur probabilistically (i.e.,
prospects) (Rangel et al., 2008).
Probabilities can be explicitly shown
to participants in decision-making
tasks (e.g., GDT and EEfRT task) or
intentionally withheld requiring par-
ticipants to draw on past experiences
and learn as the task progresses (e.g.,
Deck Choice Effort Task and IGT)

The within-individual variability in
preferences for rewards. Similar to
subjective valuation, reward valua-
tion is the act of attributing values or
significance to incentives. Incen-
tives that carry greater value or are
perceived as more gratifying tend to
result in enhanced performance (i.e.,
individuals will exert greater effort
in pursuit of higher-valued rewards)
(Arulpragasam et al., 2018)

Reward Valuation

Effort Anticipation/Effort
Prospect

Closely related to effort valuation,
effort anticipation (also referred to
as effort prospect/prospective effort)
refers to the process through which
individuals consider the expected
amount of physical, mental, or
emotional effort required to obtain
a reward. It involves estimating the
difficulty and strenuousness of the
effort before deciding whether to
pursue the task

Reward Anticipation Similar to effort anticipation, reward
anticipation refers to the process
through which individuals consider
the expected size and receipt of
a reward. In other words, reward
anticipation focuses on the assess-

ment of potential rewards

The actual allocation or utilization of
physical, cognitive, or emotional
resources to complete a specific task
or activity. This is a tangible con-
struct, referring to the effort exerted
by an individual to achieve a reward

Effort Expenditure

Prediction Error/Expectation The discrepancy between an individ-
violation ual's anticipated outcome or reward
and the actual outcome or reward
received after expending effort on a
particular task or activity. Prediction
effort/expectation violations reflect
the difference between what a person
expected to gain from their efforts
and what they actually obtained. This
construct is crucial in understanding
updating mechanisms (i.e., adjusting
decision-making strategies)
Reward-Effort Integration The point in an effort-based decision-
making where information about
prospective effort expenditure and
potential reward outcomes are com-
bined to guide decision cost/benefit
computations

In addition to behavioural assessments, prior neuroimag-
ing studies have identified the ventromedial prefrontal cortex
(vmPFC), the dorsal anterior cingulate cortex (dACC), the
ventral striatum (VS), the posterior cingulate cortex (PCC),
the amygdala, and the insula contributing to EBDM pro-
cesses Kable & Glimcher, 2009; Prévost et al., 2010. Specifi-
cally, the vmPFC has been shown to play a role in subjec-
tive valuation of both primary and secondary rewards Bartra
et al., 2013; Chib et al., 2009; Clithero & Rangel, 2014; Kim
etal., 2011; Lin et al., 2012; O’Doherty, 2011, 2014. In the
absence of reward, BOLD signals reveal that the vimPFC
encodes the subjective valuation of prospective effort Hogan
et al., 2019 and is also recruited in experienced utility sig-
nals and prediction errors, suggesting shared anatomical
substrates involved in decision-making processes Arulpra-
gasam et al., 2018; Lin et al., 2012. The integration of effort
and reward information during decision-making also recruits
the vmPFC, in addition to the dACC, supplementary motor
area (SMA), insular cortices and VS to form a distinct neu-
ral network Arulpragasam et al., 2018; Bartra et al., 2013;
Klein-Flugge et al., 2016; Levy & Glimcher, 2012. When
effort and reward cues are presented simultaneously, the
dACC, putamen and the anterior insula (al) engage simulta-
neously Arulpragasam et al., 2018. Preclinical models addi-
tionally support the role of the medial PFC and ACC during
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effort valuation and effort expenditure for rewards Fatahi
et al., 2020; Rudebeck et al., 2006, and demonstrate neu-
ral synchronization between brain regions during decision-
making Fatahi et al., 2020. Indeed, a recent meta-analysis
of functional magnetic resonance imaging studies assessing
the neural basis of effort valuation specifically in humans
additionally suggests that the pre-SMA scales positively
with effort demands, whereas vimPFC activation is involved
in signaling net values, thus providing strong evidence for
different, yet complementary, roles of the vmPFC and pre-
SMA in valuing effort costs, and as two core regions of a
network that drive motivated behavior Lopez-Gamundi
et al., 2021. Additionally, the cingulate, particularly more
anterior areas, is linked to signaling trade-offs between
competing options (i.e., more difficult choices may involve
selecting between options with similar costs and benefits)
and likelihood or probability that an individual will select a
particular option amongst alternatives respectively Bonnelle
et al., 2015; Hogan et al., 2019; Huang et al., 2016. Thus,
this body of work collectively suggests that brain regions
involved in subjective valuation, effort valuation, reward
magnitude, choice difficulty and choice probability, may
have unique, yet overlapping functions. However, given the
potential impact of methodological limitations in prior stud-
ies, including variations in employed EBDM tasks, imaging
techniques, psychiatric populations, and variables of interest,
conducting a systematic review on the topic is imperative.
This approach promises to unveil significant patterns and
trends in this rapidly expanding field.

The effort expenditure for rewards task

Based on a translational measure of reward motivation Sala-
mone et al., 1994, the Effort Expenditure for Rewards Task
(EEfRT) was developed to behaviorally assess components
of effort expenditure, reward magnitude and reinforcement
schedules in humans Treadway et al., 2009. The EEfRT
presents individuals with a choice of ‘easy-tasks’ (30 but-
ton presses within 7 s using the dominant index finger) or
‘hard-tasks’ (100 button presses in 21 s using the non-dom-
inant little finger) associated with varying monetary rewards
Treadway et al., 2009. By separating reward probability,
reward magnitude, and effort expenditure (often confounded
in other neuropsychological tasks) the EEfRT behaviorally
quantifies aspects of motivation and captures individual dif-
ferences in effort-expenditure for rewards Treadway et al.,
2012. Although other neuropsychological tasks assess
various EBDM constructs, the EEfRT is currently the only
behavioural task recommended to assess effort valuation in
the revised RDoC matrix.

A scanner-adapted EEfRT task has participants choose
between ‘no-effort tasks’ for $1.00 or ‘high-effort’
tasks for larger rewards. Effort expenditure consists of
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repeated button-presses to raise the height of a vertical bar
(20%/50%/80%/100%). Each trial sequentially presents
reward or effort information at 2 cue-points, followed by
a Decision Prompt, and Choice phase Arulpragasam et al.,
2018. By temporally disconnecting effort expenditure and
reward magnitude, the EEfRT fMRI version permits investi-
gation of how these constructs independently and simultane-
ously influence effortful goal-directed choice behavior Arul-
pragasam et al., 2018. With an increasing number of studies
employing the scanner-adapted version of the EEfRT, a
review of recent neuroimaging findings utilizing this task
relative to other EBDM tasks is timely.

Clinical applications

Importantly, clinical applications of EBDM paradigms are
also gaining interest Wolpe et al., 2024. For instance, one
behavioural study demonstrated that the EEfRT is the most
promising paradigm to detect group differences and treat-
ment outcomes in individuals with schizophrenia Reddy
et al., 2015. Importantly, promising applications of EBDM
tasks have also been shown in depression, generalized anxi-
ety disorder, and attention deficit/hyperactivity disorder
and schizophrenia [for review see Wolpe et al. 2024]. Other
cost related tasks also relate to intervention responses Elton
et al., 2019 but are beyond the scope of the current review.
While the clinical applications of EBDM studies underscore
its potential for targeted therapeutic interventions in shift-
ing reward-based expectations, the neurobiological prop-
erties underlying clinically relevant changes has yet to be
elaborated.

Current review

Considering the increasing number of EBDM studies, a
review of the neurobiological research is timely. One recent
meta-analysis has begun to shed light in this direction by
quantitatively synthesizing fMRI data to identify neural
correlates specific to effort-related cost processing and
value integration in healthy adults Lopez-Gamundi et al.,
2021. However, given the variations in employed EBDM
tasks, imaging techniques, psychiatric populations, and
variables of interest, a further review accounting for these
factors can additionally identify neurobiological trends in
EBDM studies. Thus, the current systematic review first and
foremost extends findings from the prior meta-analysis by
including multiple neuroimaging approaches and conduct-
ing a qualitative synthesis of these studies examining the
spectrum of EBDM constructs, across healthy controls and
psychiatric disorders, in order to 1) fully understand the
scope of neural processes underlying cost—benefit compu-
tations and 2) understand how these neural processes may
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manifest in psychiatric populations. Second, we provide
a novel translational aspect in our review to explore how
effort-based neurobiological mechanisms relate to treatment
outcomes across psychiatric populations. More specifically,
the focus of the current review is to summarize the literature
examining the underlying structural and functional anatomy
of EBDM components, and subsequently discuss ways in
which this framework can be applied to interventions for
disorders characterized by reward-, effort- and valuation-
related deficits.

Methods

A systematic literature review using PRISMA guidelines
was conducted on PubMed, Web of Science and PSY-
CINFO for studies investigating the neural correlates of
EBDM. Searches included keywords “decision-making”
and “effort-based decision-making” coupled with “neu-
ropsychology”, “neuroscience”, and “imaging”. The
Preferred Reporting Items for Systematic Reviews and
Meta-Analysis (PRISMA) guidelines were followed (see
Fig. 1) (Moher et al., 2009). Database searches were
conducted through October 2022 and were not restricted
by year or journal (except for English language). The

returned records were uploaded to Covidence™, an online
software used to help streamline the systematic review
process. Our searches generated 4558 articles; title and
abstracts were independently reviewed by SB and HL
to ensure relevance. Eleven additional resources were
identified through other sources, including recommen-
dations made during peer-review. To be included, stud-
ies had to meet the following criteria: 1) published in
an English language peer-reviewed journal, 2) reflect
original research in human participants (i.e. commen-
taries, abstracts, meta-analyses and systematic reviews
were excluded), 3) include at least one neuropsychologi-
cal task assessing EBDM and its constructs (i.e., stud-
ies employing any EBDM task that assesses subjective
valuation, effort valuation, reward magnitude, choice
difficulty and choice probability) and included at least
one form of neuroimaging (i.e. fMRI, PET, EEG) and
4) include either a comparison psychiatric group with
a control group OR a correlation coefficient measuring
the association between neural functioning during effort-
based choices and the experimental group of interest. Of
these, 4530 studies were excluded after screening out
duplicates and studies not meeting our inclusion crite-
ria. A total of 39 studies met criteria for inclusion in our
review.

Records identified through database

(n= 4558)

Additional records identified through
other sources
(n=11)

searching

l l

Duplicates records removed
(n= 204)

Fig.1 Preferred reporting items (
for systematic reviews and |dentification
meta-analyses (PRISMA) flow
diagram \
)
Screening
| N
)
Eligibility
./

A

Records excluded
(n=4277)

Records screened
(n= 4365)

A4

Full-text articles excluded, with
reasons
(n = 49)

Full-text articles assessed for
eligibility
(n= 88)

v

n =39 Wrong study design
(wrong effort-based decision-
making paradigm, no
neuroimaging component, not
original research studies in
humans - preclinical studies/
preregistrations).

n =10 Wrong outcomes
(results reporting outcomes unrelated
to effort-based decision-making
constructs)

Studies included in qualitative
synthesis
(n= 39)
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Results

Thirty-nine studies met inclusion criteria; Table 1 presents
EEfRT and EEfRT-variation study results (N =20, EEfRT-
variation studies resemble the traditional EEfRT task with
slight modifications, thus not identical to the original EEfRT
task); Table 2 presents study results from studies assessing
EBDM constructs of interest by using alternative EBDM
tasks including approach-avoidance conflict tasks, cue-pre-
dictive instrumental task, delay and effort discounting choice
task, risk taking tasks and modified monetary incentive delay
tasks (N=19). While these tasks do not comprehensively fit
with the main effort-based decision-making criteria, these
alternative EBDM studies were included in our review as
results emphasized patterns of neural functioning and influ-
ences relevant to our predetermined EBDM constructs of
interest. Neuroimaging techniques adopted in EEfRT and
EEfRT-variation studies specifically included fMRI Ari-
dan et al., 2019; Arulpragasam et al., 2018; Bernacer et al.,
2019a; Bonnelle et al., 2015; Croxson et al., 2009; Culbreth
et al., 2020; Hogan et al., 2019, 2020; Huang et al., 2016;
Klein-Flugge et al., 2016; Kurniawan et al., 2010; Nagase
et al., 2018; Suzuki et al., 2021; structural magnetic reso-
nance imaging (sSMRI) Mathar et al., 2016; Umesh et al.,
2020; electroencephalography (EEG) (Giustiniani et al.,
2020; Harris & Lim, 2016; cTBS stimulation Soutschek &
Tobler, 2020; diffusion weight MRI Saleh et al., 2021 and
a combined fMRI and sMRI technique Yang et al., 2016.
Study populations included healthy individuals Aridan et al.,
2019; Arulpragasam et al., 2018; Bernacer et al., 2019a,
2019b; Bonnelle et al., 2015; Croxson et al., 2009; Gius-
tiniani et al., 2020; Harris & Lim, 2016; Hogan et al., 2019,
2020; Klein-Flugge et al., 2016; Kurniawan et al., 2010;
Nagase et al., 2018; Soutschek & Tobler, 2020; Suzuki et al.,
2021; Umesh et al., 2020; schizophrenia Culbreth et al.,
2020; Huang et al., 2016; obesity Mathar et al., 2016; small
vessel cerebrovascular disease (SVD) Saleh et al., 2021
and individuals with first-episode major depressive disor-
der (MDD) Yang et al., 2016. Combined across EEfRT and
EEfRT-variation studies, a total of 753 participants (42%
female) completed a neuroimaging protocol, 566 of which
were healthy controls (43% female). Healthy controls across
EEfRT and EEfRT-variation studies were right-handed, had
normal or corrected-to-normal vision, no history of psychi-
atric or neurological diseases, and had no structural brain
abnormalities Aridan et al., 2019; Arulpragasam et al.,
2018; Bernacer et al., 2019a, 2019b; Bonnelle et al., 2015;
Croxson et al., 2009; Giustiniani et al., 2020; Harris & Lim,
2016; Hogan et al., 2019, 2020; Klein-Flugge et al., 2016;
Kurniawan et al., 2010; Nagase et al., 2018; Soutschek &
Tobler, 2020; Suzuki et al., 2021; Umesh et al., 2020. For the
purpose of this review, only results from studies including
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healthy adults are discussed in-text. A more detailed report-
ing of all study results, including clinical populations, are
included in Tables 1 & 2.

Identified effort-based decision-making constructs

Studies using the EEfRT task specifically assessed sub-
jective valuation Arulpragasam et al., 2018; Klein-Flugge
et al., 2016, effort valuation Arulpragasam et al., 2018;
Hogan et al., 2019, 2020, reward magnitude Arulpragasam
et al., 2018; Giustiniani et al., 2020; Huang et al., 2016;
Klein-Flugge et al., 2016; Suzuki et al., 2021, choice dif-
ficulty Hogan et al., 2019, 2020, choice probability Huang
et al., 2016, reward valuation Arulpragasam et al., 2018,
effort anticipation/effort prospect Arulpragasam et al., 2018;
Suzuki et al., 2021, reward anticipation Arulpragasam et al.,
2018; Giustiniani et al., 2020, effort expenditure Huang
et al., 2016; Mathar et al., 2016; Suzuki et al., 2021, predic-
tion error/expectation violation Arulpragasam et al., 2018,
and reward-effort integration Arulpragasam et al., 2018;
Klein-Flugge et al., 2016; Suzuki et al., 2021 (for construct
descriptions, see bottom half of Box 1).

Patterns of neural activation associated
with effort-based decision-making constructs

Subjective valuation

In EEfRT fMRI studies specifically examining subjective
valuation, one identified vmPFC recruitment Arulpragasam
et al., 2018; 2 reported dACC (decreased activation Arulpra-
gasam et al., 2018; increased activation Klein-Flugge et al.,
2016; and one study found pre-SMA activity encoding posi-
tive difference in SV between chosen and unchosen options
Klein-Flugge et al., 2016 (see Fig. 2a). In EEfRT-variation
MRI studies, one identified pre-SMA, motor cortex, cingu-
late motor area and VS activity related to high cost-ben-
efit value (high reward discounted by effort) Croxson et al.,
2009, and one identified posterior cingulate recruitment
related to subjective value in consistent decisions Ber-
nacer et al., 2019b. One EEfRT-variation EEG study found
increased vmPFC, dmPFC, precuneus and posterior parietal
cortex amplitudes related to net values (i.e., subjective value
— effort cost) Harris & Lim, 2016. In alternative EBDM
fMRI studies, one identified VS activation Westbrook et al.,
2019 and a second specified dACC, dIPFC, inferior frontal
sulcus, intraparietal sulcus, SPL, IPL, and al activity related
to cognitive effort, and dACC, dmPFC, dIPFC, intrapari-
etal sulcus activation to physical effort Chong et al., 2017.
Importantly, one alternative EBDM fMRI found no signifi-
cant VS and vmPFC activation during subjective valuation
of either cognitive or physical effort Chong et al., 2017.
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Table 1 (continued)

Variable of Interest Neuroimaging Results

Group

Authors

Task

& Demographics
Mean age 28.96

(SD 7.00)

& Imaging Methodology

fMRI and sSMRI

| activation in R caudate and IsTG for high-probability

Reward Magnitude:

trials.

WB & ROI (R & L caudate, L superior

temporal gyrus)

| activation in superior temporal gyrus activity related to

HC:

hard tasks with high probability.

N=25 (15F)
Mean age 28.36
(SD 7.87)

HC:

| activation in R caudate related to hard tasks with high

probability

diffusion ten-

electroencephalogram; DTI=

functional magnetic resonance imaging; sMRI =structural magnetic resonance imaging; EEG=

whole brain; ROI=region of interest; fMRI=

WB=

=ven-

female; SD =standard deviation; vmPFC

medial frontal cortex; OFC

dorsal anterior cingulate cortex; SMA =supplementary motor areas; M1 =primary motor cortex; CMA

major depressive disorder; SCZ =schizophrenia; F

healthy controls; MDD =

continuous theta burst stimulation; HC

tromedial prefrontal cortex; vVIPFC

dmS

sor imaging; cTBS

ventral striatum;

orbitofrontal cortex; VS =

=dorsomedial prefrontal cortex; MFC =

ventrolateral prefrontal cortex; dmPFC

nucleus accumbens; dACC

posterior cingulate cortex; PPC

RT =reaction time

cingulate motor

blood-oxygen-level-dependent imaging; SV =subjective value;

dorsomedial striatum; NAcc=

right; L=Ieft, BOLD

posterior parietal cortex; IPS =intraparietal sulcus; R=

area; PCC

Croxson et al. (2009): neuropsychological task does not include an element of choice

s

Effort valuation

In EEfRT fMRI studies during effort valuation, one study
showed no significant activity differences Arulpragasam
etal., 2018 (see Fig. 2b). One EEfRT-variation fMRI study
demonstrated increased vmPFC activation as the relative
value for certain option increased Hogan et al., 2019, one
identified increased dACC and bilateral insula activation
related to chosen effort values during choice phase Hogan
et al., 2020, one identified cingulate motor areas and basal
ganglia activation related to effort valuation Bonnelle et al.,
2015 and one EEfRT-variation sMRI study demonstrated
increased cortical thickness in motor cortex areas associ-
ated with higher subjective cost of effort in decisions Umesh
et al., 2020. One alternative EBDM fMRI study identified
increasing ACC/insula activity with larger effort Prévost
etal., 2010.

Reward magnitude

In EEfRT fMRI studies, two reported greater vimPFC activa-
tion Giustiniani et al., 2020; Klein-Flugge et al., 2016, one
demonstrated increased anterior VS activity Suzuki et al.,
2021, one demonstrated nucleus accumbens, caudate, PCC,
and medial frontal gyrus activity Huang et al., 2016 and
one found no significant clusters of activation Arulpragasam
et al., 2018 when viewing reward magnitudes (see Fig. 2c).
One EEfRT EEG study demonstrated increased vmPFC
amplitudes following a reward vs. absence of reward Gius-
tiniani et al., 2020. One alternative EBDM fMRI study found
increased vmPFC and VS activation related to increasing
rewards Westbrook et al., 2019. A second alternative EBDM
fMRI study found increased ACC, superior parietal lobe, al,
posterior OFC, frontal eye field, fusiform gyrus, dIPFC, mid-
brain/substantia nigra, striatum and inferior parietal cortex
activity for high relative to low reward targets Stoppel et al.,
2011. One alternative EBDM EEG study identified increased
event-related potentials (ERPs) following gains versus losses
Bogdanov et al., 2022 while a second EEG study demon-
strated gains eliciting significant RewP amplitudes relative
to losses Bowyer et al., 2021.

Choice difficulty

No study using the EEfRT assessed choice difficulty. One
EEfRT-variation fMRI study identified greater ACC acti-
vation with increased choice difficulty Hogan et al., 2019
(see Fig. 2d). One alternative EBDM fMRI study identi-
fied greater pre-SMA and dACC activation related to deci-
sion difficulty Westbrook et al., 2019. A second alternative
EBDM fMRI study identified no significant clusters of acti-
vation signaling choice difficulty Chong et al., 2017.

@ Springer
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Choice probability

Of the EEfRT fMRI studies, one found significant nucleus
accumbens, and cingulate cortex signals related to choice
probability Huang et al., 2016 (see Fig. 2e). Of the EEfRT-
variation studies, one combined fMRI/DTTI study identified
increased SMA, M1, and cingulate motor area activation
related to choice probability Bonnelle et al., 2015, and one
combined fMRI/sMRI study identified decreased right cau-
date activity related to hard tasks with high probability Yang
et al., 2016.

Patterns of neural activation associated with other
identified effort-based decision-making constructs

Reward valuation

One fMRI EEfRT study reported recruitment of the vmPFC,
and dACC Arulpragasam et al., 2018. Another fMRI study
using an alternative EEfRT task identified the VS and
vmPFC as coding the subjective value of delayed rewards
with decreasing activity with longer delays Prévost et al.,
2010.

Effort anticipation/effort prospect

Of the EEfRT fMRI studies, one study demonstrated recruit-
ment of pre-SMA regions Klein-Flugge et al., 2016, one
study found VS activity related to anticipation and initiation
of effortful movement Suzuki et al., 2021, and one study
found no brain regions encoding effort cost Arulpragasam
et al., 2018. Of the EEfRT-variation studies, one study
identified increased left primary sensory cortex activation
Aridan et al., 2019, one study identified increased dACC
and decreased vmPFC activity related to expected costs of
the chosen option Nagase et al., 2018, one study identified
decreased dACC activation related to increased effort expec-
tation Croxson et al., 2009 and one study found increased
SMA, M1 and cingulate motor activity related to the antici-
pation of an effortful motor response Bonnelle et al., 2015.
One study using an alternative EBDM task found greater
dACC, pre-SMA and VS activation related to effort antici-
pation Kurniawan et al., 2013. An additional alternative
EBDM fMRI study identified superior parietal lobe, frontal
eye field, fusiform gyrus, lingual gyrus, dmPFC and dIPFC,
SMA and occipital pole activity related to the anticipa-
tion of hard tasks relative to easy ones Stoppel et al., 2011.
One EBDM EEG study identified larger contingent nega-
tive variation (CNV) amplitudes for low- versus high-effort
conditions, and more negative stimulus-preceding negativ-
ity (SPN) amplitudes for high- versus low-effort conditions
Zhang & Zheng, 2022.

Reward anticipation

Of the EEfRT fMRI studies, one study identified greater
vmPFC activity when reward information was presented first
Arulpragasam et al., 2018. One EEfRT EEG study found no
significant signals when waiting for reward after easy and
hard tasks Giustiniani et al., 2020. Of the EEfRT-variation
fMRI studies, one study identified increased dACC and
insula activation Croxson et al., 2009 and one study found
increased SMA and cingulate motor area activation related
to reward expectancy Bonnelle et al., 2015. One alternative
EBDM fMRI study identified superior parietal lobe, medial
temporal gyrus, medial PFC and occipital pole activity in
anticipation of high vs. low rewards Stoppel et al., 2011. One
alternative EBDM EEG study found greater SPN amplitudes
during high effort conditions relative to low effort condi-
tions suggesting that individuals devoted greater anticipa-
tory attention to upcoming performance feedback when
they exerted more effort Wang et al., 2017. There were no
significant effects of caudality or laterality of EEG electrode
placement Wang et al., 2017. A second alternative EBDM
EEG found larger SPN amplitudes over right hemisphere
when high potential rewards were anticipated vs. low poten-
tial rewards, particularly following a low effort task Yi et al.,
2020, while a third EEG study identified increased negative-
going SPN amplitudes only for low-effort versus high-effort
trials Bowyer et al., 2021. A fourth EEG study identified
larger CN'V and more negative SPN amplitudes for gain rela-
tive to neutral conditions, particularly over the right hemi-
sphere Zhang & Zheng, 2022.

Effort expenditure

Of the EEfRT fMRI studies, one study identified increased
SMA and putamen activation Klein-Flugge et al., 2016,
one showed increased dorsal VS activity related to
initiation of effortful movement Suzuki et al., 2021, and
one study identified increased Nacc activation related to
increased willingness to expend high-level effort Huang
et al., 2016. One EEfRT sMRI study found no association
between NAcc volume and subjects’ willingness to
exert effort Mathar et al., 2016. Of the EEfRT-variation
fMRI studies, one identified vmPFC activity related to
decreasing physical-demand Aridan et al., 2019, one found
greater posterior parietal/occipital cortex, and middle- and
posterior cingulate cortex, left postcentral gyrus, and left
precuneus activity during hard task Culbreth et al., 2020,
and one study identified increased NAcc and cingulate
cortex activity related to No-risk/No-effort choices versus
No-risk Maximum-effort Bernacer et al., 2019b. One
EEfRT-variation EEG study identified increased M1 and
cingulate cortex amplitude related to effort costs Harris
& Lim, 2016. One alternative EBDM fMRI study found

@ Springer
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Subjective Valuation

pre-SMA

‘Putamen

Effort Valuation

Reward Magnitude

Medial frontal
gyrus

D Choice Difficulty

Fig.2 Brain regions associated with effort-based decision-making
constructs observed in studies using the Effort-Expenditure for
Rewards Task. A) Subjective valuation recruits the dorsal anterior
cingulate cortex (dACC) Arulpragasam et al., 2018; Klein-Flugge
et al., 2016 pre-supplementary motor areas (pre-SMA) Klein-Flugge
et al,, 2016 the ventromedial prefrontal cortex (vinPFC) Arulpra-
gasam et al., 2018 and bilateral putamen Klein-Flugge et al., 2016. B)
Effort valuation recruits the vmPFC Hogan et al., 2019, dACC, and

decreased vmPFC and VS activation related to increased
effort Westbrook et al., 2019. One alternative EBDM fMRI
study identified increased ACC, superior parietal lobe, al,
posterior OFC, frontal eye field, inferior parietal cortex,
midbrain/substantia nigra and striatum activity for hard
versus easy tasks Stoppel et al., 2011. One alternative
EBDM EEG study found greater parietal (Cz, CPz and Pz)
amplitudes during high-effort relative to low-effort tasks
Ma et al., 2014. A second alternative EBDM EEG study
identified more positive Reward Positivity (RewP) ERP
in high-cognitive effort versus low-cognitive effort trials
Bogdanov et al., 2022, while a third EEG study identified
increased effort-P3 amplitudes following high-effort

@ Springer

Choice Probability

Medial frontal
gyrus

Posterior
Cingulate

Arulpragasam et al., 2018

. Hogan et al., 2019
' Hogan et al., 2020

Huang et al., 2016

___ Cingulate

. Klein-Fligge et al., 2016

Suzuki et al., 2021

bilateral insula Hogan et al., 2020. C) Reward magnitude recruits the
vmPFC Klein-Flugge et al., 2016, medial frontal gyrus Huang et al.,
2016, bilateral ventral striatum (VS) Suzuki et al., 2021 and poste-
rior cingulate Huang et al., 2016. D) Choice difficulty recruits the
dACC Hogan et al., 2019 and E) Choice probability recruits the VS
and cingulate Huang et al., 2016. A 5-mm sphere was placed around
reported coordinates from each study

expenditure vs. low-effort expenditure trials, no significant
effects of effort level on RewP amplitudes, and increased
feedback-P3 amplitude following low-effort vs. high-
effort expenditure Bowyer et al., 2021. A fourth EEG
study demonstrated increase P3 amplitudes during effort
expenditure for both high-effort and gain conditions relative
to low-effort and neutral conditions Zhang & Zheng, 2022.

Prediction error/expectation violation
One EEfRT fMRI study demonstrated dACC and insula

activity encoding prediction error signaling Arulpragasam
et al., 2018 and one EEfRT-variation fMRI study identified
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increased dACC and pre-SMA activation related to behav-
ioural inconsistency Bernacer et al., 2019b.

Reward-effort integration

Of the EEfRT fMRI studies, one study identified SMA
and dACC integrating information from reward and effort
cues during the decision phase Klein-Flugge et al., 2016
and one study identified the putamen integrating effort and
reward information Arulpragasam et al., 2018. One study
demonstrated VS sensitivity to discounted reward values by
effort, where VS response to reward was significantly lower
after effort cues Suzuki et al., 2021. Of the EEfRT-variation
fMRI studies, one study demonstrated decreased vmPFC
activation, and increased dACC and pre-SM activation
related to cost—benefit weighing Bonnelle et al., 2015. One
alternative EBDM fMRI study found increased M1 activity
associated with the subjective value of high reward/high
effort choices Prévost et al., 2010. One alternative EBDM
fMRI study identified one single activation cluster within
the left primary visual cortex during the integration of
anticipatory reward- and effort-related cues Stoppel et al.,
2011. Increased superior parietal lobe, striatum, midbrain/
substantia nigra and frontal eye field activation is also
observed during the integration of reward- and effort-related
targets Stoppel et al., 2011. One alterative EBDM EEG study
found more negative feedback-related negativity (FRN)
signals during neutral feedback relative to positive feedback
and more positive P300 amplitudes during positive feedback
relative to neutral feedback in the high effort condition. No
significant differences emerged during low effort trials
Ma et al., 2014. A second alternative EBDM EEG study
demonstrated trending RewP amplitude differences between
gains and losses during low-effort vs. high-effort condition,
and trending feedback-P3 amplitude difference between
high- and low-effort conditions for gains vs losses Bowyer
et al., 2021. Lastly, a third alternative EBDM EEG study
found no significant incentive and effort interactions during
anticipation phases of a modified Monetary Incentive Delay
Task, but larger P3 amplitude difference between gain versus
neutral trials during high-effort relative to low-effort tasks
Zhang & Zheng, 2022.

Discussion

This review systemically synthesized studies examining
neural components of costs/benefit analysis to shed light on
the neurobiology guiding EBDM. Findings across 20 studies
illustrate cognitive valuation systems, highlighting roles for
the vmPFC, dACC, pre-SMA, M1, ACC, PCC, insula and
VS in EBDM across healthy and psychiatric populations.

Understanding how subjective value is represented in the
brain, and how effort costs are represented and integrated, is
critical for value-based decision-making. When evaluating
reward and effort cues, and monitoring chosen and unchosen
options, EBDM paradigms identified a network including
the vimPFC, dACC, insula, SMA, motor cortices, PPC, PCC
and VS in healthy individuals Arulpragasam et al., 2018;
Bernacer et al., 2019b; Croxson et al., 2009; Harris & Lim,
2016; Klein-Flugge et al., 2016; Prévost et al., 2010; West-
brook et al., 2019. ROI investigations implicated specific
brain regions in subjective valuation Bernacer et al., 2019b;
Croxson et al., 2009; Harris & Lim, 2016; Prévost et al.,
2010; Westbrook et al., 2019 which were further substan-
tiated by whole-brain analysis Arulpragasam et al., 2018;
Klein-Flugge et al., 2016; Prévost et al., 2010; Westbrook
et al., 2019. EEfRT paradigms can emphasize the dynamics
of choice by independently varying effort and reward levels,
thereby tracking the neural substrates of expectations and
their violation. A computational modeling approach showed
differential recruitment between subjective aspects of expec-
tation and discounting Arulpragasam et al., 2018; specifi-
cally, vimPFC recruitment occurred for expected subjective
values, when reward information was presented first, high-
lighting its role in forming reward-based predictions Arul-
pragasam et al., 2018; Rushworth et al., 2012. Accordantly,
another EEfRT variation study also demonstrated how
greater vimPFC amplitude related to net values (subjective
value — effort cost) further underscoring its role in reward
processing Harris & Lim, 2016. Although vmPFC activity
relates largely to aspects of expectation Rushworth et al.,
2012, reward/effort signals also modulate activity through-
out distinct striatal regions Croxson et al., 2009. Localiza-
tion of function across striatal regions is also reported with
cost—benefit cue-related activations on an EEfRT variation
task and supports an integrative role in the VS, but more
of a segregation of information across other adjacent areas.
For example, a delay and effort discounting task demon-
strated how increased VS activity encodes the subjective
value of delayed rewards Prévost et al., 2010, suggesting
a central role monitoring current versus long-term reward
values. Additionally, greater VS and midbrain activation dif-
ferentially relate to high benefit values, specifically to high
rewards discounted by effort Croxson et al., 2009. Consist-
ent with the VS signaling expected subjective values driven
by reward size Diekhof et al., 2012, increases in expected
reward magnitude were strongly related to rostral VS activ-
ity Croxson et al., 2009. In contrast to the rostral VS, the
putamen showed increased signaling as anticipated effort
expenditure decreased Croxson et al., 2009. Thus, there is
some evidence for the VS integrating cost—benefit informa-
tion to form a net valuation signal, whereas the putamen
may provide a segregated signal about costs or benefits in
isolation Croxson et al., 2009.
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Reciprocally, with decreasing subjective value, the
dACC and anterior insula increase activity, highlighting an
important role in encoding subjective value discounting, as
expectations are updated, or violated Arulpragasam et al.,
2018; Prévost et al., 2010. This demonstrates critical differ-
ences in how the brain computes and monitors value-based
predictions during effortful choices Arulpragasam et al.,
2018; Rushworth et al., 2012. The dACC, insula, SMA
and putamen also play key roles in encoding the subjective
value between chosen and unchosen options; these regions
are particularly active when individuals alternate between
choices, but show decreased activity when decisions remain
consistent Bernacer et al., 2019b; Klein-Flugge et al., 2016.
More specifically, the dACC signals a subjective value dif-
ference: increasing activity during unchosen options, while
decreasing activity during chosen options Klein-Flugge
et al., 2016; Rushworth et al., 2012. Likewise, EEfRT-var-
iation studies show increased dACC activation relating to
subjective value in inconsistent decisions Bernacer et al.,
2019b; Rushworth et al., 2012. Behaviorally, subjective
valuation also decreases on highly inconsistent/unpredict-
able response patterns Bernacer et al., 2019b. These results
accord with previous studies highlighting the dACC role in
choice difficulty and inconsistent decisions Centanni et al.,
2021; Rushworth et al., 2012; Shenhav et al., 2014, suggest-
ing that dACC activation in response to difficulty or conflict
may be due to evaluating behavioural change and choice
monitoring Kolling et al., 2016; Rushworth et al., 2012.
Similar to fMRI, increased EEG amplitudes in the dmPFC,
precuneus, and PPC relate to valuation processes more gen-
erally Harris & Lim, 2016. Together, these findings under-
score the dACC role in monitoring choice expectations for
reward maximization (i.e., attentional and deliberate goal-
directed behaviours while monitoring unchosen options),
whereas more dorsal areas of the brain like the PCC are
more important for consistent decisions/monitoring chosen
options. Alternative EBDM tasks additionally demonstrate
increased vimPFC, VS, PCC, and dACC activation relative to
subjective valuation more generally Westbrook et al., 2019,
suggesting a shared network integrating information from
multiple sources.

Effort valuation

Regions encoding effort costs, when separated from rewards,
recruit vmPFC Hogan et al., 2019, dACC Hogan et al., 2020;
Prévost et al., 2010, insula Hogan et al., 2020; Prévost et al.,
2010, basal ganglia and ventrolateral prefrontal cortex Bon-
nelle et al., 2015. The vmPFC activity increases relative to
subjective value of future efforts, suggesting this region
encodes subjective costs underlying prospective physical
effort choices Hogan et al., 2019. The dACC and bilateral
insula also increase activation in relation to chosen effort
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value Hogan et al., 2020; Prévost et al., 2010, suggesting
a role for both the ACC and insula in cognitive control
required at the time of choice Centanni et al., 2021; Hogan
et al., 2019. These regions may represent a sustained control
network processing multiple demands, and maintaining the
overall reward value of an environment to prevent behav-
ioural errors Centanni et al., 2021; Rushworth et al., 2012.
Indeed, recruitment of the medial PFC and ACC during both
effort valuation and effort expenditure in preclinical models,
support these findings Rudebeck et al., 2006; Rushworth
et al., 2012; Walton et al., 2009. Nevertheless, not all studies
show dACC activity when effort costs are presented alone
Arulpragasam et al., 2018, suggesting a role in expectation
formation/strategy updating rather than effort valuation pro-
cesses. Decreased cingulate motor and basal ganglia areas
relate to effort valuation in healthy participants, suggest-
ing that cingulate areas of the brain play a crucial role in
signaling action requiring substantial effort Bonnelle et al.,
2015. Increased cortical thickness in the hand knob region
of the precentral gyrus is linked to higher subjective effort
costs Umesh et al., 2020, suggesting that brain characteris-
tics beyond functional activity may influence effort valua-
tion processes Galaro et al., 2019. Therefore, isolating effort
valuation from reward information gives rise to a network
of brain regions including frontal and motor cortices which
reflect participants’ preparedness for completing future
effortful tasks.

Reward magnitude

Recruitment of vmPFC and VS areas corresponding with
reward magnitude Giustiniani et al., 2020; Klein-Flugge
et al., 2016; Suzuki et al., 2021; Westbrook et al., 2019
are consistent with a parametric relationship and existing
evidence of activation in these areas linked with increas-
ing reward magnitudes more broadly Croxson et al., 2009;
Kroemer et al., 2014; Peters & Biichel, 2010; Schmidt et al.,
2012; Skvortsova et al., 2014. The vmPFC increases activa-
tion to reward-seeking behaviors Klein-Flugge et al., 2016,
further supporting its role in forming reward-based predic-
tions Rushworth et al., 2012. While central during antici-
patory phases of decision-making, the vimPFC also plays
a unique role during reward consumption; MIDT studies
show how vmPFC activity during reward outcomes corre-
lates with the subjective value of the reward received Old-
ham et al., 2018. Further, an EEfRT variation task applying
EEG showed vmPFC activity increases following reward
consumption; in the context of delayed updating of reward
value, a focused signaling on immediate outcomes could
maintain maladaptive decision-making strategies Giustiniani
et al., 2020.

Although the VS is implicated in expected subjective val-
ues Arulpragasam et al., 2018, its function in effort-based
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decision-making can be specified to reward-related informa-
tion Suzuki et al., 2021. Reward anticipation beyond EBDM
recruits the VS, highlighting its role in forming initial pre-
diction signals Galtress et al., 2012; Haber & Knutson, 2010;
O'Doherty et al., 2004. Additionally, the VS is sensitive to
temporal properties of anticipation (i.e., discounting), as
activity increases with preference for immediate rewards
Cooper et al., 2013; Hariri et al., 2006, suggesting its role in
receiving rewards and forming positive reward expectations
signals Oldham et al., 2018. Indeed, delays of only a few
seconds on delay discounting paradigms decrease signaling
of predicted reward values in the VS, indicating a tempo-
ral sensitivity to reward responses Gregorior-Pippas et al.,
2009. Beyond EBDM paradigms, studies using the MIDT
in healthy participants demonstrate distinct anticipation
and outcome processes with reward anticipation linked to
VS activation, and reward receipt linked to vmPFC activa-
tion Breiter et al., 2001; Knutson et al., 2000, 2001, 2003;
McClure et al., 2004. Similarly, VS and vmPFC activation
relate to greater rewards on EEfRT variation tasks West-
brook et al., 2019, suggesting a joint valuation network;
significant increases in activation with increasing reward
magnitudes and significant decreases in activation with
increasing efforts Westbrook et al., 2019.

Choice difficulty

Studies separating choice difficulty from effort valuation
show that ACC activity may result from cognitive control
associated with choice difficulty regarding decisions about
effort, rather than effort valuation per se Hogan et al., 2019.
A frontoparietal network, including dACC, dIPFC and IPS
activation during difficult trials on a Cognitive Effort Dis-
counting Task, highlights greater sensitivity to decision dif-
ficulty than subjective valuation Westbrook et al., 2019. Fur-
thermore, ‘cost—benefit’ weighing — which becomes more
difficult to evaluate when costs and benefits are of similar
magnitudes — negatively correlated with vmPFC BOLD
responses, and positively correlated with dACC and pre-
SMA activity Bonnelle et al., 2015, suggesting that vimPFC
activity may also be sensitive to aspects of decision ease/
difficulty Bonnelle et al., 2015. Further, positive correlations
with dACC and pre-SMA activity may suggest more brain
resources needed to prepare for and perform effortful tasks,
and thus, higher subjective experiences of effort costs Bon-
nelle et al., 2015. Consistent with previous EBDM studies,
these studies highlight the dACC role in processing choice
difficulty Hogan et al., 2019 and underscore SMA activa-
tion in preparation for more difficult motor tasks Kurniawan
et al., 2013. Activation in the middle cingulate cortex and
PCC also show increased BOLD signals during difficult
decisions Culbreth et al., 2020 further supporting the role of
cingulate areas in decision-making difficulty. Nonetheless,

not all studies show dACC activity correspondence with
effort magnitude Arulpragasam et al., 2018; Chong et al.,
2017. Individuals might avoid more difficult tasks because
error rate is higher, not because of effort costs, and as such,
the distinction of this area’s activity between physical exer-
tion or more generalized decision-making processes needs
clarification.

Activity in the SMA Bonnelle et al., 2015, cingulate areas
Bonnelle et al., 2015; Huang et al., 2016, M1 Bonnelle et al.,
2015 and caudate Huang et al., 2016; Yang et al., 2016 also
correlate with choice probability, particularly in anticipation
of effortful motor responses Bonnelle et al., 2015. These
regions may play a critical role in monitoring physical
exertion; the higher the probability of accepting an offer,
the greater the motor preparation in anticipation of effort.
Indeed, functional connectivity between the ACC and SMA
is decreased with behavioural apathy Bonnelle et al., 2015
further characterizing the role of this network in maintaining
dysregulated effort allocation. Using the traditional EEfRT
task, the right caudate decreases activation when contrast-
ing high and low probabilities in participants with MDD,
suggesting that disrupted caudate signaling may underlie
motivational anhedonia in MDD Yang et al., 2016. Cortical
regions including the temporal and frontal lobes calculate
valuation information and subsequently modulate subcorti-
cal activation; altered connectivity in MDD may underlie
motivational anhedonia and shift choices away from high-
cost/high-reward options Kurniawan et al., 2010. Similarly,
participants with schizophrenia have less neural response in
the NAcc, posterior cingulate gyrus and left medial frontal
gyrus on high-probability trials compared to healthy par-
ticipants on the EEfRT task Huang et al., 2016 suggesting
that this network may be involved in reducing willingness to
allocate effort. Outside of EBDM, neuroimaging studies of
motivational deficits in MDD and schizophrenia highlight
dysfunctions of the caudate and NAcc during decision-mak-
ing processes Kurniawan et al., 2010; Pizzagalli et al., 2009;
Salamone et al., 2007a; Treadway et al., 2012, consistent
with the idea of a shared network maintaining inabilities to
initiate behavior/physical engagement.

Clinical implications

Identifying key neural processes involved in choice behav-
iors has important clinical implications. Current pharma-
cological interventions such as selective serotonin reuptake
inhibitors (SSRIs) can negatively impact EBDM processes
Presby et al., 2021. For example, preclinical models demon-
strate that SSRIs behaviorally suppress high effort activity
Presby et al., 2021, exacerbate motivational deficits underly-
ing psychiatric conditions Marin & Wilkosz, 2005 and main-
tain EBDM impairments Yohn et al., 2016. Animal models
have also highlighted the implication of dopamine (DA) in
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EBDM; decreasing DA in the NAcc shifts preferences to
low-cost/low-reward options while enhancing DA increases
high-cost/high-reward choices Bardgett et al., 2009; Sala-
mone et al., 2007b, 2009. These findings are also modeled
in human studies, whereby d-amphetamine (an indirect DA
agonist) enhanced willingness to exert effort when reward
probability was lower and did not alter effects of reward
magnitude on willingness to exert effort Wardle et al.,
2011. Importantly, amphetamine-based drugs additionally
increased motivation to invest both the cognitive and physi-
cal effort in individuals with attention-deficit/hyperactivity
disorder relative to healthy controls, thus providing evidence
for catecholamines in motivating effortful behaviours Chong
et al., 2023. Neuronal activity in the subthalamic nucleus,
the most common target for deep brain stimulation in Par-
kinson's disease, has also been shown to encode the subjec-
tive value of both effort and reward information required
for cost—benefit computations Baunez & Lardeux, 2011.
Therefore, DA replacement therapy (i.e., levodopa) may
strengthen links between subthalamic nucleus activity and
behaviours, leading to an increased acceptance for efforts
associated with low rewards Zénon et al., 2016.

While neuroimaging studies of EBDM demonstrate
decreased activation of specific subcortical regions in schiz-
ophrenia Huang et al., 2016, depression Yang et al., 2016,
and small vessel cerebrovascular disease Saleh et al., 2021,
using novel non-invasive neuromodulation techniques, such
as transcranial direct current stimulation (tDCS), can be a
promising treatment intervention for upregulating dysfunc-
tional EBDM circuits. For example, stimulating the fron-
topolar cortex using anodal tDCS can increase the amount
of cognitive and physical effort participants were willing to
expend Soutschek et al., 2018. Furthermore, tDCS strength-
ens the function of cost—benefit computations Soutschek &
Tobler, 2020, and transcranial alternating current stimula-
tion over dmPFC increases the willingness to exert effort for
rewards Soutschek et al., 2022, highlighting changes in goal-
oriented behaviors following stimulation. Neurologically
and psychologically, healthy participants receiving anodal
stimulation of the dIPFC exert more effort on trials with
higher reward magnitudes and on trials with lower probabil-
ity of receiving rewards Ohmann et al., 2018, highlighting
the efficacy of stimulating the dIPFC in increasing motiva-
tion in instances where rewards/benefits are not guaranteed.
Further, one EEfRT fMRI study demonstrated increased
activation in posterior parietal/occipital cortex, the middle
cingulate cortex, the PCC, left postcentral gyrus and left pre-
cuneus during ‘hard task’ choices in both individuals with
schizophrenia and healthy controls Culbreth et al., 2020.
Therefore, upregulating the activity of prefrontal regions
may hold potential as a treatment target to offset increased
activation in functionally connected decision-making
regions. Nonetheless, downregulating reward-related process
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also demonstrates promising effects, as in the case for bipo-
lar disorder Nusslock & Alloy, 2017, depression Ng et al.,
2019 and addictions Sazhin et al., 2020 whereby specific
aspects of the disorder can manifest with elevated responses
to reward. A clearer mechanistic understanding of the func-
tions of neurostimulation could greatly improve motivational
deficits in disorders characterized by low motivation.

Beyond neurostimulation, network changes also occur
with shifts in environmental and internal states. Habit
acquisition stemming from physical fitness programs lead to
changes in neural patterns, where the functional connectivity
between the striatum, ACC and amygdala are strengthened
when making behavioural choices that involve no risk and
no effort Bernacer et al., 2019b. Although no significant
associations are observed between the structural properties
of the NAcc and the willingness of participants with obesity
to expend effort for rewards Mathar et al., 2016, shifts in
cost processing following habit formation appear to attenu-
ate effort costs in EBDM tasks Bernacer et al., 2019b, sug-
gesting that executive functioning processes like decision-
making are not fixed, but rather modifiable and make for a
suitable target for treatment. Furthermore, fatigue has impor-
tant implications for choice behavior. Behaviorally, people
are more likely to exert effort in situations when fatigue is
low Miiller et al., 2021. However, as fatigue increases, high
effort/low reward trials that were once deemed worthy of
the costs at the beginning of decision-making task lose all
value Miiller et al., 2021. This suggests that changes in the
willingness to work can also be a reactive process, resulting
from changes in internal states rather than shifts in valua-
tion and expectation Miiller et al., 2021 and is particularly
relevant when considering the clinical utility of EBDM para-
digms with clinical disorders affected by fatigue Chaudhuri
& Behan, 2004; Wolpe et al., 2024. At a neural level, the
integration of effort valuation and levels of fatigue recruits
the VS and frontal pole Miiller et al., 2021. Moreover,
evidence suggests that the medial frontal gyrus processes
longer-term unrecoverable states of fatigue, impacting both
EBDM, performance, and choice behavior in other decision-
making tasks more broadly, while the anterior rostral cingu-
late plays a key role in sustaining motivation during effortful
task Miiller et al., 2021. As such, different brain regions are
involved in signaling different facets of fatigue (chronic vs
state) Miiller et al., 2021. Understanding natural shifts in
connectivity resulting from environmental and internal states
has large clinical implications and may be a suitable target
for treatment interventions.

Strengths, limitations and future directions
With the exception of a meta-analysis Lopez-Gamundi

et al., 2021, this is the first study to systematically review
the literature examining the structural and functional
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anatomy across specific EBDM constructs and psychi-
atric populations. Limitations include the predominant
use of monetary rewards (with the exception of one study
using erotic images Prévost et al., 2010 across paradigms;
while essential for establishing/validating reward pro-
cessing trends, future studies should examine how effort-,
reward- and valuation-related process differ across incen-
tive types (e.g., food, substances and behaviors). Impor-
tantly, EEG studies may also be limited in their capacity
to identify activation in particular subcortical regions.
Additionally, effort modalities across studies are diverse
(e.g. physical/cognitive/financial effort), limiting findings
and conclusions. Inconsistencies in choice variability
(i.e., increased selection of high-effort tasks versus dis-
engagement), valuation differences (i.e., social economic
status impacts on valuation of monetary reward), state and
trait effect may also all contribute to performance differ-
ences between psychiatric disorders. Additionally, not all
studies included in our systematic review used an effort-
based decision-making task that incorporate choice ele-
ments Croxson et al., 2009; Kurniawan et al., 2013; Ma
et al., 2014; Stoppel et al., 2011; Vorobyev et al., 2015;
Wang et al., 2017; Yi et al., 2020; Zhang & Zheng, 2022.
Some studies also introduce model-derived estimates that
model subjective or effort valuation [e.g. Arulpragasam
et al. 2018, Klein-Flugge et al. 2016, Hogan et al. 2020];
explicitly fitting these parameters at the participant level
can minimize or eliminate within-individual differences
and maximize detection of the experimental effort val-
ues of interest. These model-derived values can further,
through paradigm design, build functions to model shift-
ing subjectivity parameters with specific experimental
manipulations. This can work to parse out potential over-
lap between effort valuation signals that may be incorpo-
rated into the subjective valuation regressors and instead
focus on group- or population-level characteristics, rather
than individual-level differences. In this way, integrating
computational modeling with neural analysis can provide a
neurobiological account of neural comparator processes as
effort values change. How well individuals understand task
instructions may also influence performance. Large-scale
replication studies as well as studies comparing across
psychiatric conditions are therefore needed to generate
valid conclusion. This work is important in establishing
EBDM constructs and identifying noticeable character-
istics in healthy populations, which can subsequently
inform findings across psychiatric conditions. Neverthe-
less, meta-analyses on the topic are warranted to identify
neural regions that may not be captured by traditional
methods and may be implicated in EBDM, thereby reduc-
ing potential reinforcing biases in the literature, especially
considering that qualitative reviews tend to focus less on
lack of effects. Given that we observed no effects related

to effort valuation, reward magnitude and choice diffi-
culty, these constructs merit further investigation. In our
review, differences in EBDM tasks, sample characteristics,
measured constructs and ROIs, restrict direct comparisons
across studies. While our review includes peer-reviewed
articles from many countries including the United States
Arulpragasam et al., 2018; Culbreth et al., 2020; Harris
& Lim, 2016; Hogan et al., 2019, 2020; McGuire & Bot-
vinick, 2010; Prettyman et al., 2021; Suzuki et al., 2021;
Umesh et al., 2020, United Kingdom Bonnelle et al., 2015;
Croxson et al., 2009; Klein-Flugge et al., 2016; Kurniawan
et al., 2010, 2013; Miiller et al., 2021; Saleh et al., 2021,
China Huang et al., 2016; Yang et al., 2016, Germany
Mathar et al., 2016; Soutschek & Tobler, 2020, France
Giustiniani et al., 2020; Prévost et al., 2010, Israel Aridan
et al., 2019, Spain Bernacer et al., 2019b, Japan Nagase
et al., 2018, Switzerland Abivardi et al., 2020, the Neth-
erlands Mies et al., 2018; Westbrook et al., 2019, Belgium
Schouppe et al., 2014, Finland Vorobyev et al., 2015, Italy
Perri et al., 2019, our inclusion of only English-published
work may result in findings from non-English studies
being overlooked.

Concluding remarks

EBDM paradigms can disentangle motivational facets
on choice behavior. Although heterogeneous regions are
recruited, brain networks most implicated include the
vmPFC, dACC, SMA, M1, specific cingulate, insular and
VS areas. The vmPFC and VS both appear as part of a
core valuation network tracking both effort and subjective
value and reward magnitude, while the dACC conversely
highlights effort costs. The review demonstrates specific
brain regions involved in valuation, preparedness and
monitoring processes; the vmPFC in forming reward-
based predictions, the VS encoding expected subjective
values driven by reward size, the dACC in monitoring
choice expectations for reward maximization, while SMA,
M1 and cingulate motor areas in preparedness to expend
effort. A better understanding of these networks and their
changing connectivity will provide greater insights into
the development, maintenance and treatment of psychiatric
conditions characterized by maladaptive EBDM strategies.
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