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Abstract
Objectives Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune inflammatory disease of the central ner-
vous system. Accumulating evidence suggests there is a distinct pattern of brain lesions characteristic of NMOSD, and brain 
MRI has potential prognostic implications. However, the question of how the brain lesions in NMOSD are associated with its 
distinct clinical course remains incompletely understood. Here, we aimed to investigate the association between neurological 
impairment and brain lesions via brain structural disconnection.
Methods Twenty patients were diagnosed with NMOSD according to the 2015 International Panel for NMO Diagnosis cri-
teria. The white matter lesions were manually drawn section by section. Whole-brain structural disconnection was estimated, 
and connectome-based predictive modeling (CPM) was used to estimate the patient’s Expanded Disability Status Scale score 
(EDSS) from their disconnection severity matrix. Furthermore, correlational tractography was performed to assess the frac-
tional anisotropy (FA) and axial diffusivity (AD) of white matter fibers, which negatively correlated with the EDSS score.
Results CPM successfully predicted the EDSS using the disconnection severity matrix (r = 0.506, p = 0.028; q2 = 0.274). 
Among the important edges in the prediction process, the majority of edges connected the motor to the frontoparietal net-
work. Correlational tractography identified a decreased FA and AD value according to EDSS scores in periependymal white 
matter tracts.
Discussion Structural disconnection-based predictive modeling and local connectome analysis showed that frontoparietal 
and periependymal white matter disconnection is predictive and associated with the EDSS score of NMOSD patients.

Keypoints:
 ●  The structural disconnection-based predictive modeling showed that frontoparietal white matter disconnection is predic-

tive of disability in NMOSD patients.
 ● Correlational tractography identified decreased fractional anisotropy value according to EDSS in the periependymal 

local connectome.
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Summary statement.
The structural disconnection-based predictive modeling 

and local connectome analysis revealed that white matter 
disconnection is predictive and associated with the EDSS 
score of NMOSD patients.

Introduction

Neuromyelitis optica spectrum disorder (NMOSD) is an 
autoimmune inflammatory disorder of the central nervous 
system. In addition to severity, neurological disability in 
NMOSD patients is characteristic that almost always occur-
ring at the time of attacks with stepwise accumulation 
(Akaishi et al., 2020). The concept of NMOSD has been 
changed by the detection of an antibody against the water 
channel protein, anti-aquaporin-4 antibody (AQP4-IgG) 
(Lennon, Kryzer, Pittock, Verkman, & Hinson, 2005; Len-
non et al., 2004), which revealed that the involvement of 
the brain is not uncommon in NMOSD (Chan et al., 2011; 
Pittock et al., 2006a). After the discovery of AQP4-IgG, the 
incidence of brain MRI abnormalities increased to 50–85% 
using the revised 2006 NMO diagnostic criteria (H. J. Kim 
et al., 2015; W. Kim, Kim, Hyun Lee, Feng Li, & Jin Kim, 
2011). Accumulating evidence suggests that there is a dis-
tinct pattern of MRI lesions in NMOSD, including periepen-
dymal lesions surrounding the ventricular system and dots 
or patches of hyperintensities on T2-weighted or fluid-atten-
uated inversion recovery (FLAIR) sequences (Kim et al., 
2015; Wang et al., 2018), and it may be related to disability. 
For example, Cheng et al. reported that the Expanded Dis-
ability Status Scale (EDSS) scores were higher in patients 
with extensive brain lesions than in those without extensive 
lesions (Cheng et al., 2013).

NMOSD brain lesions are presumed to be initiated by 
AQP4-IgG binding AQP4 and activating human comple-
ment through the classical pathway, which destroys astro-
cyte foot processes (Misu et al., 2007; Roemer et al., 2007). 
The demyelination process related to NMOSD is not caused 
directly by the AQP4 antibody but is secondarily promoted 
by astrocytic injury (Dutra, da Rocha, Nunes, & Maia, 2018; 
Jasiak-Zatonska et al., 2016). Together, NMOSD causes 
autoimmune astrocytopathy where damage to astrocytes 
exceeds damage to both myelin and neurons (C. F. Lucchi-
netti et al., 2014). However, we do not fully understand how 
these brain lesions in NMOSD are associated with its rather 
severe and distinct clinical course.

Here, we aimed to investigate the association between 
neurological impairment and brain lesions via brain struc-
tural disconnection. The ‘disconnectome’ approach com-
bines the lesion location with structural connectomics to 
investigate the impact of resulting disconnections (Catani & 

Ffytche, 2005; Foulon et al., 2018; Ravano et al., 2021). The 
human brain can be modeled as a complex network com-
posed of localized but connected specialized areas, and dis-
connection leads to dysfunction (Bassett & Sporns, 2017; 
Catani & Ffytche, 2005). White matter lesions, although 
small, might lead to remote effects via disconnection of 
white matter tracts(C. Lucchinetti et al., 2000), thereby 
disrupting efficient communication in brain networks and 
resulting in cognitive or mood dysfunctions (Ter Telgte et 
al., 2018). Currently, accumulating evidence suggests that 
this structural disconnection can address the clinical pro-
gression of demyelinating diseases, such as multiple scle-
rosis (Ravano et al., 2021; Schoonheim et al., 2022). It has 
also been reported that the brain structural network is dis-
rupted in patients with NMOSD in comparison to healthy 
controls, and this disruption is related to EDSS scores or 
cognitive dysfunction (Cho et al., 2018; Zheng et al., 2021). 
However, previous studies have not accounted for the effects 
of the ‘lesions’ and their effect on the brain’s white matter 
disconnections. Modern neuroimaging techniques enable 
us to account for the distributed disconnections caused by 
lesions (Griffis, Metcalf, Corbetta, & Shulman, 2021). To 
support our hypothesis that white matter tract destruction 
occurs in NMOSD, we additionally performed correlational 
tractography to find a white matter local connectome that 
is related to the severity of the disability (Yeh, Badre, & 
Verstynen, 2016). By combining these two approaches, we 
aimed to investigate whether and how NMOSD lesions are 
associated with the severity of the disability in terms of its 
location and structural disconnection.

Materials and methods

Patients

Consecutive patients who visited the Seoul National Uni-
versity Hospital (SNUH) MS-NMO clinic from April 2014 
to April 2020 were prospectively enrolled in this study. This 
study was approved by the Institutional Review Board of 
SNUH (IRB number: H-1310-083-528), and informed con-
sent was obtained from each participant who was willing to 
enroll in this study. All processes related to this study were 
conducted in accordance with the Declaration of Helsinki. 
We conducted a single-center prospective study, screening 
27 patients with the following inclusion/exclusion criteria: 
(1) diagnosed with NMOSD with AQP4-IgG according to 
the 2015 International Panel for NMO Diagnosis (IPND) 
criteria(Wingerchuk et al., 2015), and (2) underwent MRI 
isotropic T2-weighted FLAIR and three-dimensional mag-
netization-prepared rapid gradient-echo (3D MPRAGE) 
T1-weighted MRI, both of which allow thin-section and 
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high-resolution imaging; 7 patients with incomplete MRI 
study (n = 3), clinical data (n = 4). Finally, 20 patients 
were enrolled in the present study. Clinical characteristics, 
including age, sex, expanded disability status scale (EDSS) 
scores(Schwid et al., 1997), number of attacks, number of 
brainstem lesions, and disease duration, were collected from 
the electronic medical record system of the hospital. EDSS 
is a widely used ordinal measure of autoimmune diseases 
of the central nervous system and a high score means more 
severe symptoms (Schwid et al., 1997).

MRI acquisition

All MR images were acquired using 3.0 T MR scanners 
(Ingenia CX, Philips Healthcare, Best, the Netherlands) 
with a conventional head gradient coil. T2 FLAIR imaging 
and T1-weighted imaging were acquired with the follow-
ing scan parameters: (1) three-dimensional (3D) isotro-
pic fast-spin echo sagittal FLAIR T2-weighted sequence 
(repetition time [TR] = 4800 ms, echo time [TE] = 265 
ms, inversion time = 1650 ms, echo train length = 175, 
field of view [FOV] = 230 mm, matrix = 230 × 230, 
and voxel size = 1 × 1 × 1 mm); (2) 3D high-resolution 
T1-weighted sequence (TR = 9.8 ms, TE = 4.5 ms, inver-
sion time = 1650 ms, flip angle = 8°, FOV = 230 mm, 

matrix = 230 × 230, slice thickness = 0.5 mm, no gap, and 
voxel size = 1 × 1 × 0.5 mm). (3) diffusion tensor imag-
ing (DTI) (TR = 9500 ms, TE = 75 ms, number of excita-
tions = 1, matrix = 128 × 128, FOV = 230 × 230 mm, number 
of slices = 80, slice thickness = 2 mm, slice gap = 0 mm, ori-
entation = axial, b = 1000 s/mm2 and one additional b0-vol-
ume). We used 32 nonlinear diffusion weighting gradient 
directions to estimate the intensity and direction of the dif-
fusion anisotropy.

MRI analysis

A schematic diagram of the analysis procedure is shown in 
Fig. 1. The white matter lesion ROIs were manually drawn 
section by section on the 3D FLAIR sequence by 2 authors 
(K.J.H., with 17 years of clinical experience in neuroradiol-
ogy, and I.H., with 6 years of clinical experience in neurora-
diology). After lesion segmentation, we performed multiple 
registrations for each of the FLAIR to T1 and T1 to Mon-
treal Neurological Institute (MNI) template brain image 
pairs by using the registration scheme provided by the ANTs 
software (antsRegistrationSyNQuick.sh (Avants, Epstein, 
Grossman, & Gee, 2008), which uses a mutual informa-
tion metric. Then, the lesion ROIs in the FLAIR space were 
transformed to MNI space.

Fig. 1 Schematic diagram of the 
analysis
 

1 3

666



Brain Imaging and Behavior (2023) 17:664–673

parcellation (i.e., atlas) that is also registered to the MNI 
brain template space. We used an automated anatomical 
labeling (AAL) template (Tzourio-Mazoyer et al., 2002) 
that was used in previous studies investigating structural 
connectivity in NMOSD patients (Cho et al., 2018; Zheng 
et al., 2021). The toolkit produces estimations based on the 
provided lesion segmentation and parcellation in the form 
of parcelwise disconnection matrices. Parcelwise discon-
nection matrices were estimated by using the Human con-
nectome project (HCP)-842 population-averaged streamline 
tractography atlas (Griffis, Metcalf, Corbetta, & Shulman, 
2020; Yeh et al., 2018). First, an atlas structural connectivity 

The Lesion Quantification Toolkit, a publicly available 
MATLAB software package for quantifying the structural 
impacts of focal brain lesions, implemented in MATLAB 
2020b (The MathWorks, Inc., Natick, MA) was used to 
estimate the white matter disconnections in patients with 
NMOSD brain lesions. In brief, the toolkit uses atlas-based 
approaches to estimate parcelwise disconnection matrices. 
To estimate the degree of disconnection using the Lesion 
Quantification Toolkit, two inputs are needed: (1) a binary 
lesion segmentation that is registered to the Montreal Neu-
rological Institute (MNI) template, which we prepared 
here by drawing it manually, and (2) a regional gray matter 

Fig. 2 Disconnection-based 
prediction of EDSS scores. 
Panel (A) shows the predictive 
ability of the connectome-based 
predictive model (CPM). The 
correlation between the observed 
and predicted EDSS scores using 
the disconnection severity matrix 
was significant in both the p 
value (0.028) and (B) permuta-
tion p value (0.013). Panel (C) 
shows the “consensus edges” in 
the disconnection severity matrix 
predicting EDSS scores. The 
figure on the left side of panel 
(D) shows that the “consensus 
edges” are visualized in orange 
as the number of edges between 
and within each pair of canonical 
networks. Canonical networks 
include the subcortical (SC), 
cerebellum (CBL), motor (Mot), 
medial frontal (MF), visual I 
(VI), visual II (VII), visual asso-
ciation (VAs), salience (SAL), 
default mode (DMN) and fronto-
parietal (FP) networks (Noble et 
al., 2017). Finally, the chord plot 
on the right shows the proportion 
of connections between canonical 
networks.
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For the LOOCV analyses, the model performance was 
assessed with Pearson’s correlation and percent variance of 
explained (cross-validated q2) (Barron et al., 2020; Ju et al., 
2020).

q2CV = 1−
∑N

i=1 (y
pred(N−k)
i − yi)

2

∑N
i=1 (yi − y

(N−k,i)
mean )

2

In the equation, ypred(N−k)
i

 denotes the ith predicted value, 
where, in particular, the ith subject was left out, and y(N−k,i)

mean  
is the mean of the training set. q2 evaluates the model 
with respect to both precision and accuracy and may even 
become negative to infinity when there is no lower bound-
ary (Schüürmann, Ebert, Chen, Wang, & Kühne, 2008).

For interpretation purposes, we identified those edges 
that appeared in every iteration of the leave-one-out process 
to yield “consensus edges (edges appearing in 100% of the 
LOOCV iterations across all subjects)” (Ren et al., 2021). 
Visualization of the edges was achieved using BioImage 
Suite (https://www.nitrc.org/projects/bioimagesuite/).

Diffusion MRI correlational tractography

Diffusion MRI correlational tractography was used to fur-
ther explore the local connectome related to the EDSS 
score. The diffusion data were reconstructed in the MNI 
space using q-space diffeomorphic reconstruction (Yeh & 
Tseng, 2011) to obtain the spin distribution function (Yeh, 
Wedeen, & Tseng, 2010). A diffusion sampling length ratio 
of 1.25 was used. The output resolution was 2 mm isotro-
pic. Fractional anisotropy (FA), generally interpreted as a 
quantitative biomarker of white matter “integrity”, was 
used in the correlational tractography analysis (M. Kim et 
al., 2022). Because there were previous studies that did not 
find any significant FA reduction in NMOSD patients com-
pared to healthy controls (Cacciaguerra, Rocca, Storelli, 
Radaelli, & Filippi, 2021; Liu et al., 2012), we also investi-
gated axial diffusivity (AD), which decrease has been asso-
ciated with axonal damage, and fragmentation (M. Kim et 
al., 2022). Diffusion MRI connectometry (Yeh et al., 2016) 
was used to derive the correlational tractography in which 
diffusion paremeters was negatively correlated with EDSS 
scores. A nonparametric Spearman partial correlation was 
used to derive the correlation, and the effect of sex and age 
was removed using a multiple regression model. A t-score 
threshold of 2 was assigned and tracked using a determinis-
tic fiber tracking algorithm to obtain correlational tractogra-
phy (Yeh, Verstynen, Wang, Fernández-Miranda, & Tseng, 
2013). The tracks were filtered by topology-informed prun-
ing with 4 iterations (Yeh et al., 2019). A length threshold 
of 20 voxel distances was used to select tracks. To estimate 

matrix was created using the HCP-842 streamline tractog-
raphy atlas and the AAL atlas. The structural connections 
between a parcel pair were defined as the number of atlas 
streamlines that bilaterally terminated within both parcels. 
Then, the lesion was embedded into the HCP-842 stream-
line tractography atlas, and the atlas was filtered to retain 
only the subset of streamlines whose trajectories inter-
sect the volume occupied by the lesion (i.e., disconnected 
streamlines) and terminate bilaterally within a parcel pair, 
creating a disconnection matrix. Finally, this raw discon-
nection matrix was converted to a ‘percent disconnection 
severity matrix’ relative to the atlas structural connectivity 
matrix. The values for each cell (i.e., parcel pair) in the final 
percent disconnection severity matrix correspond to the 
estimated disconnection severities for each pair of parcels 
(Griffis et al., 2021).

Disconnection-based prediction of EDSS scores

To find the association between the structural disconnection 
and EDSS scores, we used connectome-based predictive 
modeling (CPM), a data-driven protocol for developing pre-
dictive models of brain–behavior relationships (Shen et al., 
2017), to predict patients’ EDSS scores from their discon-
nection severity matrix. Below, we briefly explain how the 
CPM procedure works. First, we separated the subjects into 
a 19-person training set and one test set in each iteration, 
which is a leave-one-subject-out cross-validation (LOOCV) 
process. LOOCV was performed to protect against overfit-
ting (Shen et al., 2017). Then, across all subjects in the train-
ing set, each edge in the connectivity matrices was related 
to the EDSS using Pearson’s correlation to determine edges 
whose disconnection severity was correlated with EDSS 
scores. Important edges were selected using a significance 
testing p value threshold of 0.05. Next, for each subject, 
the edges identified were summed into a single-subject 
value. Next, a linear regression predictive model was built 
using the single-subject summed value of the disconnec-
tion matrix (independent variable) and the EDSS score (the 
dependent variable). Next, summary values were calculated 
for the left-out subject in the testing set. The resulting value 
was the predicted EDSS score for the current test subject.

Table 1 Clinical characteristics of the study population
NMOSD (n = 20)

Age (years) 46.16 ± 12.33*

Sex (Male: Female) 3:17
Disease duration (months) 46.2 ± 45.1*

Treatment-naïve patients 8 (40.0%)
Number of attacks 1–8 (3.75 ± 2.17) *

EDSS 3.31 ± 2.78*

EDSS, Expanded Disability Status Scale. * indicates the mean ± stan-
dard deviation.
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Results

Patients

The mean age of the patients was 46.16 ± 12.33 years, and 
15% (6 out of 20 patients) were male. The disease dura-
tion was 46.2 ± 45.1 months, and the number of attacks 
was up to 8 (mean, 3.75 ± 2.17 times). Among the enrolled 

the false discovery rate, a total of 4000 randomized permu-
tations were applied to the group label to obtain the null 
distribution of the track length.

Data Availability

Code to reproduce the result, anonymized data and result 
tract file of correlational tractography is available at osf.io/
ty4bq.

Fig. 3 Representative disconnection status of patients with relatively 
low and high EDSS scores. The tracts and regions of interest (ROIs) in 
blue are for a patient with an EDSS score of 3, whose lesion volume 
was 795,160 voxels. The ROIs indicate the manually segmented white 
matter lesions, and the tracts are the estimation of disconnection due 

to the lesions. Note the orbitofrontal distribution of the lesions and 
disconnected tracts (blue arrow). In contrast, the patient with an EDSS 
score of 6, whose lesion volume was 903,333 voxels (colored in red), 
showed a frontoparietal distribution of the lesions and affected tracts to 
the corticospinal tract (red arrow).
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disconnections of the motor and frontoparietal networks 
emerged as being most informative in predictions (Fig. 2C). 
In other words, the more severe disconnections involving 
these networks are predictive of severe EDSS scores.

The EDSS score is used as a general measure of physical 
disability, and mobility is weighted as the primary determi-
nant of higher EDSS scores (Banwell, 2013). We found that 
this weighting of disability in EDSS scores can be linked 
to the distribution of important edges we discovered: the 
motor and frontoparietal network. In previous literature, 
disconnection of the frontoparietal network is considered 
to underlie motor neurological deficits, such as apraxia. 
The contemporary view of praxis suggests at least three 
distinct connecting circuitries are involved: the dorsolat-
eral frontoparietal, ventrolateral frontoparietal and medial 
frontoparietal circuits (Catani & Ffytche, 2005). These cir-
cuitries largely overlap with the disconnected edges that we 
discovered. This implies that the disconnection of networks 
in praxis due to NMOSD may lead to severe EDSS scores.

The existence of white matter disconnection according 
to the EDSS score is supported by the second analysis we 
conducted, correlational tractography, using the concept of 
the local connectome. Although the structural disconnection 
estimates provided good approximations (Ravano et al., 
2021), we wanted to validate the presence of connectome 
disturbance related to EDSS scores via advanced diffusion 
imaging. As Ravano et al. suggested, a microstructural anal-
ysis of tissue properties within lesions (e.g., DTI-derived 
metrics, such as FA and AD in our case) in addition to dis-
connection analysis would allow a more precise estimation 
of connectivity damage (Ravano et al., 2021). Impressively, 
correlational tractography revealed that the integrity of 
white matter tracts located in the periventricular area has 
a negative correlation with EDSS scores. In other words, 
disintegrity of the local connectome with periependymal 
distribution showed more severe neurological impairment 
(Fig. 4). This is an interesting result because it is in line with 
previous studies reporting the anatomical location of brain 
lesions in NMOSD patients. More specifically, NMOSD 
is understood as a consequence of AQP4-IgG, namely, a 
“water channelopathy” (M. Kim et al., 2022). AQP-4 is 
largely distributed in periependymal surfaces, and lesions 
specific to NMOSD are more frequently localized in the 
periependymal areas, as we show in the Fig. 4B (Pittock, 
Weinshenker et al., 2006).

There are limitations in this study. First, the small number 
of patients who we enrolled may limit the generalizability 
of our results. We used LOOCV to overcome the limitation, 
however, LOOCV and small sample sizes can still lead to 
overfitting (Scheinost et al., 2019). We used openly avail-
able toolboxes and made our codes available, and to help 
future validation study with larger dataset. Second, spine 

NMOSD patients, the mean EDSS score was 3.31 ± 2.78, 
the number of treatment-naïve patients was 8 out of 20 
(40%) (Table 1). Three patients were free of brain lesions. 
All enrolled patients had AQP4-IgG-seropositive NMOSD, 
which was confirmed using a cell-based assay.

Disconnection-based prediction of EDSS scores

CPM successfully predicted the EDSS scores using the dis-
connection severity matrix (r = 0.506, p = 0.028; q2 = 0.274; 
Fig. 2A and B). There were 165 edges included in the “con-
sensus edges” (Fig. 2C). We further grouped the “consensus 
edges” into predefined canonical networks, including the 
subcortical (SC), cerebellum (CBL), motor (Mot), medial 
frontal (MF), visual I (VI), visual II (VII), visual association 
(VAs), salience (SAL), default mode (DMN) and frontopa-
rietal (FP) networks (Noble et al., 2017). Among 165 edges, 
there were 19 Mot – FP connecting edges, followed by 16 
edges connecting the nodes within Mot and 15 edges con-
necting nodes within the FP network (Fig. 2D). The distinct 
disconnection patterns of patients with two different EDSS 
scores are representatively illustrated in Fig. 3.

Correlational tractography

As the EDSS scores increased, fractional anisotropy of the 
white matter tracks passing left fornix, corpus callosum, 
forceps major, right fornix, and left optic radiation signifi-
cantly decreased, as well as axial diffusivity (FDR = 0.048 
and 0.053, respectively, FDR value less than 0.1 is worth 
mentioning to achieve better sensitivity for exploratory 
analysis (Yeh et al., 2016). In other words, for all of these 
periependymal tracts, the tract integrity showed a significant 
negative correlation with EDSS scores. Figure 4 A presents 
these significant WM tracts and Fig. 4B shows overlapped 
lesion segmentations from 17 NMOSD patients with brain 
lesions.

Discussion

In this study, we aimed to investigate whether and how 
structural disconnection in NMOSD patients and is related 
to their disability. We first used a lesion-based quantification 
of structural disconnection severity combined with the CPM 
approach. The result showed a significant prediction abil-
ity based on the disconnection severity matrix. This result 
implies that structural disconnection by the lesions is asso-
ciated with the degree of disability in NMOSD patients. To 
interpret the result, we grouped the contributing predictors, 
namely, “consensus edges”, by the predefined canonical net-
works. Across the LOOCV process, the within and between 
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that relatively low prediction accuracy of high EDSS scores lesions were not included in this study, which may cause 
ambulatory problems and affect EDSS scores. We speculate 

Fig. 4 Correlational tractography identified a decreased FA and AD 
value in periependymal white matter tracts according to EDSS scores. 
Panel A shows result of correlational tractography. The periependy-
mal area, which shows high AQP4 channel expression, is known to 
be a typical anatomical location in NMOSD patients. The local con-

nectome analysis shows white matter tracts, in which the fractional 
anisotropy (FA) and axial diffusivity (AD) values negatively correlated 
with EDSS scores (FDR = 0.048 and 0.053, respectively) (top row). 
The affected area corresponds to the lesions segmented in 17 NMOSD 
patients with brain lesions (Panel B).
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