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Abstract
Motor disability is a dominant and restricting symptom in multiple sclerosis, yet its neuroimaging correlates are not fully 
understood. We apply statistical and machine learning techniques on multimodal neuroimaging data to discriminate between 
multiple sclerosis patients and healthy controls and to predict motor disability scores in the patients. We examine the data 
of sixty-four multiple sclerosis patients and sixty-five controls, who underwent the MRI examination and the evaluation 
of motor disability scales. The modalities used comprised regional fractional anisotropy, regional grey matter volumes, 
and functional connectivity. For analysis, we employ two approaches: high-dimensional support vector machines run on 
features selected by Fisher Score (aiming for maximal classification accuracy), and low-dimensional logistic regression on 
the principal components of data (aiming for increased interpretability). We apply analogous regression methods to predict 
symptom severity. While fractional anisotropy provides the classification accuracy of 96.1% and 89.9% with both approaches 
respectively, including other modalities did not bring further improvement. Concerning the prediction of motor impairment, 
the low-dimensional approach performed more reliably. The first grey matter volume component was significantly correlated 
(R = 0.28-0.46, p < 0.05) with most clinical scales. In summary, we identified the relationship between both white and grey 
matter changes and motor impairment in multiple sclerosis. Furthermore, we were able to achieve the highest classification 
accuracy based on quantitative MRI measures of tissue integrity between patients and controls yet reported, while also pro-
viding a low-dimensional classification approach with comparable results, paving the way to interpretable machine learning 
models of brain changes in multiple sclerosis.
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Introduction

Multiple sclerosis is an autoimmune disease of the central 
nervous system. With an increase in the age-standardized 
prevalence, the latest epidemiological studies report 2.2 mil-
lion cases worldwide, ranking it as the most common demy-
elinating disease (Wallin et al., 2019; Leray et al., 2016).

Multiple sclerosis presents itself by a wide and hetero-
geneous spectrum of symptoms, ranging from cognitive 
and visual impairments to motor disabilities (Dobson and 
Giovannoni, 2019). Of these, motor impairment is the most 
dominant and restricting. Gait and postural control changes 
are present already in recently diagnosed minimally impaired 
patients and worsen over time (Martin et al., 2006; Burschka 
et al., 2012). Reduction in mobility together with fatigue 
increase risk of fall and injury, endangering the patient and 
reducing self-confidence (Giannì et al., 2014). More than 
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40% of people with multiple sclerosis report walking dif-
ficulties, which are identified as the most challenging dis-
ease aspect. However, the majority of people with multiple 
sclerosis do not voluntarily seek medical advice regarding 
walking impairments  (Heesen et al., 2008; Asch, 2011; 
LaRocca, 2011).

Despite motor deficit being a major concern of people 
with multiple sclerosis, detailed motor function evalua-
tion is rarely performed in practice. Consequently, the 
literature relating motor deficits to brain imaging in mul-
tiple sclerosis is limited, often focusing on single neu-
roimaging modality (Sbardella et al., 2015; Jakimovski 
et al., 2018; Steenwijk et al., 2014; Tona et al., 2014). 
Moreover, the studies generally feature a small sample 
size, low degree of impairment, and high number of statis-
tical tests, weakening the findings reproducibility. These 
limitations call for methods that not only detect group 
differences in neuroimaging features, but also provide 
continuous quantitative prediction of the level of symp-
toms, and ultimately may prospectively characterize and 
predict health development in a clinical setting. There-
fore, a methodological shift from pure hypothesis testing 
to predictive modeling (in statistical, or even forecasting 
sense) is needed, along with the increase of the sample 
sizes; machine learning is thus a natural candidate.

Machine learning has the potential to allow integra-
tion of multiparametric datasets with identification of fea-
ture sets that promise diagnostic or prognostic relevance 
for individual patients. Note that apart from promising 
improvement of the diagnostic and prognostic capabili-
ties by providing accurate classification and prediction 
models, machine learning can also help getting insight 
into the disease character and mechanisms in case that 
the estimated models are reasonably interpretable. Thus, 
it has become more widespread in clinical research 
recently (Woo et al., 2017), but its implementation is not 
always straightforward. Particularly for limited sample 
sizes, care is needed to prevent model overfitting and sus-
tain generalization to a wider population.

Progress has been made towards the application of 
machine learning methods in multiple sclerosis  (Staf-
ford et al., 2020). The most common task is the classifi-
cation of subjects into patients and controls, sometimes 
also considering the degree of impairment and the phe-
notype of the disease  (Bendfeldt et  al.,  2012; Kocevar 
et al., 2016; Zurita et al., 2018; Marzullo et al., 2019; Eitel 
et al., 2019; Tozlu et al., 2021). Most of the classification 
approaches use the support vector machines (SVM) (Vapnik 
and Chapelle, 2000), a broadly used algorithm in neuro-
science for its ability to deal with the common high data 

dimensionality (especially in cases, when the number of fea-
tures exceeds the number of instances), and for its compu-
tational effectiveness (learning time is considerably shorter 
than in neural networks). Although theoretically, no prior 
dimensionality reduction is needed, it is usually desirable. 
Previous studies commonly employed Fisher Score (FS) (He 
et al., 2006), which quantifies the power of variables to dis-
tinguish between the studied classes. However, the conse-
quences of working only with a pre-selected set of features 
optimized for predictive power is often poorly discussed and, 
if not done carefully (i.e., blind to the test dataset), may lead 
to overfitting.

In this work, we build imaging-based models that provide 
efficient yet interpretable biomarkers for motor impairment 
in multiple sclerosis. We first identify imaging biomarkers 
across imaging modalities using machine learning for the 
simple task of distinguishing people with multiple sclerosis 
from controls. We subsequently construct predictive models 
for more subtle differences in motor performance among 
people with multiple sclerosis.

Materials and methods

The study design

Participants with multiple sclerosis were recruited from 
multiple sclerosis centers across the Czech Republic. The 
inclusion criteria were: positive diagnosis of multiple scle-
rosis (Polman et al., 2011); spastic paraparesis as a promi-
nent clinical feature; stable clinical status for at least three 
months preceding the study (determined by neurologist); 
physical ability to undergo clinical testing – consistent with 
the Expanded Disability Status Scale (EDSS) score ≤ 7.5. 
Participants with disturbed mobility for reasons not related 
to multiple sclerosis (e.g. fractures, pregnancy, stroke) 
were excluded. All phenotypes of multiple sclerosis were 
accepted: RR – Relapsing-remitting; PP – Primary Pro-
gressive; and SP – Secondary Progressive. We analyzed 64 
participants with multiple sclerosis and 65 healthy controls 
statistically matched for age and sex (Table 1). Participants 
were informed about the experimental setup and provided 
written informed consent in accordance with the Declaration 
of Helsinki. The study design was approved by the Ethics 
Committee of the Faculty Hospital Královské Vinohrady.

Clinical assessment

Participants with multiple sclerosis underwent a set of 
standardised assessments with the Berg Balance Scale 
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(BBS) (Podsiadlo and Richardson, 1991; Berg et al., 2009); 
Timed Up and Go (TUG) test, The Multiple Sclerosis 
Impact Scale (MSIS); and Multiple Sclerosis Walking Scale 
(MSWS) (Hobart et al., 2001, 2003; Fischer et al., 1999).

MRI data acquisition

Imaging was performed with a 3T magnetic resonance 
scanner (Siemens Trio Tim, Erlangen, Germany) using a 
12-channel phased-array head coil. The protocol consisted 
of T1-weighted and T2-weighted anatomical scans, DTI and 
resting-state fMRI. The parameters were: DWI: TR = 9,100 
ms; TE = 96 ms; FOV = 260 x 211.25 mm; 64 contiguous 
axial slices; 2 mm thickness; b = 0 and 1100 s/mm; 64 gra-
dient directions; voxel size = 2.03 x 2.03 x 2mm; Resting-
State fMRI: BOLD single-shot echo-planar images TR = 
2500 ms, TE = 30 ms, flip angle = 70◦ , 64 × 64 matrix, FOV 
= 192 mm2 , 44 contiguous axial slices, 3 mm thick, 240 
volumes, acquisition time = 10 min. T1 volumetric imaging: 
TR = 2300 ms, TE = 4.63 ms, flip angle = 10◦ , matrix = 
256 × 256, FOV = 256 mm2 , 156 contiguous sagittal slices, 
1 mm thick.

Image processing

DTI was preprocessed using the FSL tools (FMRIB Software 
Library v5.0, http://​www.​fmrib.​ox.​ac.​uk/​fslwi​ki, FMRIB, 
Oxford, UK) and MRtrix3 v3.0_rc3 (Tournier et al., 2019). 
The data were denoised (dwidenoise )  (Veraart 

et al., 2016b, a), Gibbs ringing artefacts were corrected 
(mrdegibbs) (Kellner et al., 2016). The volumes with 
low quality (visually checked) were discarded. Subsequently, 
eddy-current induced distor tions and movement 
displacement was corrected by the eddy tool. Finally, we 
generated FA maps (Basser et al., 1994; Westin et al., 2002) 
and applied TBSS (Smith et al., 2006). We parcellated the 
resulting skeletonized images using the white matter ICBM-
DTI-81 atlas (Mori et al., 2005) containing 48 regions and 
computed the mean FA for each region, which resulted in 48 
FA features per subject.

The fMRI data were preprocessed using a combination 
of the SPM12 software package (Wellcome Department 
of Cognitive Neurology, London, UK); CONN toolbox 
(McGovern Institute for Brain Research, MIT, USA) running 
under MATLAB (The Mathworks) and FSL routines. Due 
to near-gaussianity of fMRI data  (Hartman et  al.,  2011; 
Hlinka et al., 2011), we quantified FC for each pair of AAL 
atlas regions (Tzourio-Mazoyer et al., 2002) by the Pearson 
correlation coefficient (116 regions provide 6,670 FC features 
per subject).

Segmentation of the T1 images into white matter, gray 
matter, and cerebrospinal fluid was a part of the CONN 
pipeline employed for fMRI processing. We computed the 
GM region volumes using the AAL atlas (116 GMV features 
per subject). Additionally, the T1 scans were processed 
using Voxel-Based Morphometry in CAT12 (Keller and 
Roberts, 2008), using default settings involving bias-field 
and noise correction, segmentation into gray and white 
matter, and normalization to MNI space using DARTEL 
algorithm to a 1.5 mm isotropic adult template  (Yassa 
et al., 2009). Total intracranial volume was estimated to be 
used as a covariate in statistical analyses.

Statistical analysis

Classification

For the classification task, we developed two strategies:

•	 Fisher-score as a dimensionality reduction step, classi-
fication by support vector machines with linear kernel 
(FS-SVM)

•	 Principal component analysis as a dimensionality reduc-
tion step, classification by logistic regression (PCA-LR)

The first approach uses the SVM classifier that can, in 
principle, deal with high-dimensional data, although it 
may be prone to overfitting, especially when it is combined 
with informed feature selection procedure such as the 
commonly used Fisher-score  (He et al., 2006). In this 

Table 1   Description of the dataset: All values are listed as medians 
and ranges; RR – Relapsing-Remitting; PP – Primary Progressive; SP 
– Secondary Progressive; EDSS – Expanded Disability Status Scale; 
BBS – Berg Balance Scale; TUG – Timed Up and Go Test; MSIS 
– Multiple Sclerosis Impact Scale; MSWS – Twelve Item Multiple 
Sclerosis Walking Scale

Women Men All

Healthy controls
Number 32 33 65
Age 43 (31-68) 40 (31-68) 41 (31-68)
People with multi-

ple sclerosis
Number 39 25 64
RR/SP/PP 23/14/1 15/6/4 38/20/5
Age 47 (22-70) 43 (29-68) 45 (22-70)
EDSS 4.5 (1.0-6.5) 4.5 (1.5-7.5) 4.5 (1.0-7.5)
BBS 44.0 (15-56) 35.0 (5-56) 42.0 (5-56)
TUG​ 10.0 (5-27) 13.0 (6-109) 11.0 (5-109)
MSIS 67.0 (63-100) 80.0 (34-114) 72.5 (33-114)
MSWS 34.0 (12-59) 39.0 (25-60) 36.5 (12-60)
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approach, the features are selected into the classifier based 
on their individual classification power on the data in the 
training set. The box constraint (parameter C) for SVM 
was fixed to 1.

The latter approach uses a classical method of linear 
regression that can only deal with a small number of input 
features. To obtain these, we use PCA of the original fea-
tures, a standard dimension reduction approach that avoids 
overfitting by being blind to the patient/control labels. 
Unlike in the Fisher score method, the transformation of the 
data is based on their explained variance in general and is 
not influenced by class labels.

For each strategy, we constructed four classifiers: based 
on FA, FC, GMV, and their combination, using leave-one-
out cross-validation (see Fig. 1). All neuroimaging features 
were transformed to z-scores prior to the dimensionality 
reduction step and model fitting.

To further assess how the classification accuracy depends 
on the number of features, we evaluated each classifier for 
a range of thresholds. For the FS-SVM combination, we 
included 1%, 10%, 25%, 50%, 75%, and 100% of the features 
with the top Fisher Score. For the low-dimensional PCA-LR, 
we included one to ten PCA components. We consider sen-
sitivity, specificity, and overall accuracy as measures classi-
fication quality and compare the classifiers using the McNe-
mar test. All analyses were conducted using Matlab2018b, 
The MathWorks, Natick, 2018.

Prediction of the motor impairment

We applied an analogous approach for the prediction of 
motor impairment. In particular, we replaced SVM by 
support vector regression (SVR) and LR by linear regres-
sion (LinR). For dimensionality reduction, we sorted 

the features according to the Spearman correlation with 
the predicted scale instead of using FS. The use of PCA 
based on the variability explained remained unchanged. 
In each iteration, we performed a dimensionality reduc-
tion step on N-1 patients, constructed a model and pre-
dicted the clinical scale score for the remaining patient. 
Model quality was assessed by the correlation between 
the prediction and the original scale. Prior to the regres-
sion analysis, Box-Cox normalization was applied to 
the clinical scales. To avoid outlier and nongaussianity 
effects, Spearman correlation was employed for the final 
model fit assessment.

Results

Classification

All neuroimaging modalities allowed successful classifica-
tion (albeit not necessarily at the same degree of complex-
ity), with the best modality-specific accuracy ranging from 
75 to 96 percent (Fig. 2, Table 3, Table 4).

The SVM classifier based on FA performed the best; the 
baseline classifier with a single FA feature reached 85% 
accuracy, the accuracy for the full feature set was 96%. The 
accuracy generally grew with feature count, although did not 
show significant performance differences beyond using 25% 
of the features (Fig. 2A, Fig. 5).

The SVM classifiers based on FC or GMV achieved about 
70 percent accuracy and were not generally improving with 
feature count.

We also assessed the possibility to further improve the 
classification by combining the features across modalities. 
The baseline classifier based on the combination of features 

Fig. 1   A general scheme of the classification pipeline: In every 
iteration, one subject is left out. Either FS or PCA is computed on 
the training dataset, and the desired transformation (n terms of the 
number of components or features) is then applied. The classifier is 

trained using N-1 subjects and subsequently tested on the remaining 
subject. After N rounds, the classification accuracy is evaluated. Full 
lines on the image illustrate the data flow, whereas the dashed lines 
stand for data transformations
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from all modalities (containing 69 features) performed better 
than the corresponding classifier based on FA (90% vs 85% 
respectively), however, with a rising amount of features, the 
accuracy declined to 81% (full dataset).

In the low-dimensional PCA-LR approach, models using 
only the first PCA component of FA or GMV reached an 
accuracy of 78% and 69% respectively (Fig. 2B). The first 
component of FC provided insignificant classification; 
nevertheless, the third alone reached an accuracy of 70%. 
The lack of classification power of the first two components 
in fMRI suggests that, unlike the previous two modalities, 
the main source of variance does not relate strongly to the 
patients-controls differences. Notably, the three components 
with substantial classification power (the first FA, the first 
GMV, and the third FC component) were significantly 
correlated (Spearman correlations: R(FA,GMV) = 0.6 , 
R(FA,FC) = 0.47 , R(GMV ,FC) = 0.46) , therefore the 
combined model was not more effective.

Moreover, the model consisting of the first, second, and 
the third PCA component of FA reached an accuracy of 
90%, not significantly worse than the full FA data SVM 
classifier ( p = 0.121 ). Similarly, the classifiers based on 
the GMV or FC did not perform significantly worse than 
their counterparts in FS-SVM models (except one and two-
dimensional FC models). Nevertheless, their accuracy was 
inferior to that of FA.

Prediction of the motor impairment

In contrast to the classification for the prediction of the 
motor impairment, the results were not dominated by the 
FA. The best results in the SVR prediction were reached 
when using the FC (Fig. 3, 5). Especially for the MSWS 
scale, the prediction was consistently significant, reaching up 

to R = 0.79 . The FA and GMV prediction ability varied with 
the number of features included and did not exceed R = 0.50 
for any combination of feature type, count and clinical scale. 
The results of PCA in combination with linear regression 
complement those reached by SVR (Fig.  4, Table  6). 
While FC components were only successful in predicting 
the MSWS scale, when using the GMV features, the low-
dimensional model significantly predicted almost all scales 
(EDSS, BBS, TUG, and MSWS).

Discussion

Classification

In our study, the model using only the regional average 
of FA in combination with SVM reached among the 
highest accuracy yet reported in the literature – 96% 
(sensitivity = 98%; specificity = 94%). The performance 
improved with features added. These results justify SVM 
use for classification based on similar imaging datasets. 
However, the accuracy of low-dimensional PCA-LR is also 
relatively high - a simple three-dimensional model using the 
first three FA components reached 90%.

Interestingly, the combined models using FA, FC and 
GMV were not superior to individual modality models. For 
SVM this may be caused by the almost perfect accuracy 
for FA diminishing space for improvement. The lack of 
accuracy improvement in the low-dimensional scenario 
is due to high correlation between the well-performing 
components of each modality - the three modalities thus did 
not provide synergistic performance effect.

We observed similar performance of the approaches, con-
trasting with the commonly observed dominance of SVM in 

Fig. 2   Classification accuracy 
of Support Vector Machines 
classifiers (A) and Logistic 
Regression classifiers (B): 
overall accuracy (full line), sen-
sitivity (dashed line with dots) 
and specificity (dashed line) for 
different thresholds. Classifiers 
based on fractional anisotropy 
(FA), functional connectivity 
(FC), and gray matter volume 
(GMV) correspond to orange, 
green and gray line respectively, 
the classifier based on the com-
bination of features corresponds 
to the blue color
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classification tasks. One might speculate concerning poten-
tial data overfitting in practice due to the class-informed 
choice of features in combination with a small data size 
- something we avoided by careful design of the pipeline. 
From this perspective, we would advocate the use of PCA as 
a class-independent data transformation method that is not 
prone to this type of bias. Moreover, it reduces the model 
dimensionality, providing more easily interpretable results.

Zurita et al. (2018) also used the SVM approach in com-
bination with the FS feature selection, reaching 88.9% clas-
sification accuracy between patients (EDSS higher than 1.5) 
and healthy controls, combining structural and functional 
connectivity. However, this classifier used almost 6,000 
features; whereas our PCA-based classification reached 
89.9% accuracy using only three. Contrary to our observa-
tion, their classification based on the FA was less accurate 
than using FC. Dominance of our FA-based model may 

stem from using robust regional averages and TBSS skel-
eton rather than noisy high-dimensional voxel-wise analysis. 
Our complementary analysis in which we applied SVM to 
the FC matrices generated using the Harvard-Oxford Atlas 
slightly outperformed the AAL atlas results, reaching 80% 
accuracy using 75% of features; still not matching the values 
reported (Zurita et al., 2018); additional investigation with 
liberal preprocessing only decreased the performance.

Another study  (Kocevar et  al., 2016) used structural 
connectivity matrices, to derive graph-theoretical indices. 
SVM classification using combined features reached 92% 
precision comparing 12 subjects with clinically isolated 
syndrome to 24 healthy controls. While a small sample was 
analyzed, the results line up with other literature exploring 
the classification potential of structural connectivity graph 
using other classification methods (Marzullo et al., 2019; 
Charalambous et al., 2019).

Fig. 3   The Spearman correlation of the Support Vector Regression 
models prediction with the clinical scales: Models based on fractional 
anisotropy, functional connectivity, and gray matter volume corre-
spond to orange, green and gray line respectively, models based on 

the combination of all features corresponds to the blue color. EDSS 
– Expanded Disability Status Scale; BBS – Berg Balance Scale; TUG 
– Timed Up and Go Test; MSIS – Multiple Sclerosis Impact Scale; 
MSWS – Twelve Item Multiple Sclerosis Walking Scale

23Brain Imaging and Behavior  (2023) 17:18–34



1 3

Neuroimaging correlates of motor disability

We did not identify any study that applied machine learning 
analysis to explore the relationship of specialized motor 
impairment scales and brain imaging, although models 
have been proposed combining structural, functional and 
cognitive impairment  (Schoonheim et  al.,  2010, 2015). 
Tommasin et  al. (2018) reported that general disability 
(measured through EDSS) had a direct linear relationship 
with lesion load, the inverse of thalamic volume, and 
functional connectivity in bi-frontal region pairs. With a 
similar approach and atlas for FC quantification, we did not 
observe correlation with EDSS (or other clinical measures), 
after appropriate multiple comparison correction. However, 
the SVR consistently confirmed significant predictive power 
of FC, indicating a presence of a more complex, multivariate 
relationship. Jakimovski et al. (2018) studied the correlation 

between walking disability (represented by 25 Foot Walk and 
the expanded TUG) and selected MRI-derived measures and 
DTI-measures maps; the DTI measures were not associated 
with the scales. Using regression analysis, the best predictor 
for the expanded TUG proved to be the cortex volume, R2 
= 0.176, comparable with our results in TUG ( R2 = 0.153 
with the first GMV component). Steenwijk et al. (2014) 
reported partial correlations between different measures of 
the corticospinal tract and disability. Although corticospinal 
tract FA was correlated neither with EDSS, nor with MSWS, 
there was a significant correlation for the cortical thickness 
of the cortical area connected to it.

Our results indicate that the first GMV principal 
component is significantly correlated with numerous 
motor impairment scales. The same holds for the first FA 
component. For FC, the first and the second components 
played a role in regression, with the most noticeable results 

Fig. 4   The Spearman correlation of the Linear regression models 
prediction with the clinical scales: Models based on fractional anisot-
ropy, functional connectivity, and gray matter volume correspond to 
orange, green and gray line respectively, models based on the combi-

nation of all features corresponds to the blue color. EDSS – Expanded 
Disability Status Scale; BBS – Berg Balance Scale; TUG – Timed 
Up and Go Test; MSIS – Multiple Sclerosis Impact Scale; MSWS – 
Twelve Item Multiple Sclerosis Walking Scale
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in the MSWS scale. Overall, the results of PCA-LinR are 
more reliable than the SVR results. The prediction quality 
did not vary significantly with dimensionality, whereas the 
SVR prediction using the FA and GMV features varied with 
the number of features.

Classification of phenotypes

The study included numerous phenotypes of multiple 
sclerosis. Acknowledging that there are structural 
differences between the subtypes (Schoonheim et al., 2015; 
Bozzali et  al.,  2002; Rovaris et  al.,  2002; Filippi and 
Rocca, 2011; Filippi et al., 2019), we further investigated 
the SVM’s ability to separate the relapsing-remitting and 
the secondary progressive group. The highest accuracy 
of the FS-SVM classifier was using all the GMV 
features – 75.9% (sensitivity 64.0%; specificity 81.6%). 
Considerable successes have been reported by groups which 
based the classifier on the graph representation of structural 
connectivity and combined the information with either 
SVM or graph convolutional neural networks  (Kocevar 
et al., 2016; Marzullo et al., 2019), albeit the insufficient 
sample size calls for further research.

Limitations

The application of machine learning methods in 
neuroscience is generally limited by sample size. We 
analyzed 64 multiple sclerosis patients and 65 healthy 
controls, which is a considerable size in this area of 
research. Nevertheless, the group of multiple sclerosis 
patients was not homogeneous in terms of the phenotype, 
potentially decreasing the classification power and accuracy 
of the regression models. Importantly, we took transparent 
precautions not to overfit the models, in particular, feature 
selection was carried out in a manner blind to the labels in 
the testing set. On the other hand, the degree of patients’ 
impairment was on average higher than in other studies, 
which makes this project unique, but also warrants caution 
when interpreting the comparison with other works in the 
classification task.

However, beyond the numerous advantages, there are 
limitations associated with machine learning application. 
For SVM, the biggest concern may be associated with the 
dimensionality of the FC. The number of support vectors 
rose drastically with the number of features added to the 
model; nevertheless, the accuracy remained unchanged 

and inferior to the FA. The same applies to the PCA, where 
there were substantial differences between the variability 
explained by the first component among the three modali-
ties. While the first component of GMV explained 71.7%, for 
FC, it was only 8.6%. Thus, while we can generally recom-
mend using logistic regression combined with prior dimen-
sion reduction by PCA, selecting the first component is not 
necessarily optimal.

Finally, in this work, we focused on the comparison of 
two specific analytical pipelines, for which we presented the 
results. However, as is the case in most data-oriented work, it 
is possible that better performance could be achieved using 
different algorithms. For example, as suggested by on of the 
reviewers, methods with regularization might be applied, 
reducing the need for dimensionality reduction, although 
also making it more challenging to control for the number 
of features included. To explore this direction, we performed 
logistic regression with the LASSO regularization known 
for the sparsity of its solutions; the observed performance 
is comparable to that logistic regression run on the PCA 
variables (Table 7).

Conclusions

In the current study, we confirmed the widespread decrease 
of white matter integrity in patients with multiple sclerosis 
and demonstrated that localized white matter changes are 
related to motor symptoms. Using state-of-the-art machine 
learning methods, we showed that the white matter changes 
are specific and sensitive enough to provide 96% accuracy 
in recognizing patients from healthy controls. We further 
proposed an approach to construct low-dimensional classi-
fiers with competitive performance, paving the way to robust 
and interpretable clinical tools.

We employed multimodal machine learning models, 
showing that the utilization of synergy between the modali-
ties remains a challenge in the current settings, both due 
to potential redundancy between the features and problems 
with increasing the dimension of the feature set.

Finally, we fitted predictive models for the motor disabil-
ity in multiple sclerosis, suggesting that while the disease 
itself is most apparent in decreased white matter integrity, 
the functional motor changes may indeed be more reflecting 
the accumulated cortical atrophy and changes in functional 
connectivity.
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Table 2   Pairs of regions 
of AAL atlas, where FC 
significantly differs between 
patients and controls

Pair of significantly  
correlated regions

z-statistic ranksum corrected p-value

p-value

Supp Motor Area L Cingulum Mid R -5.73510 2,942 0.00007 0.00000
Supp Motor Area L Cingulum Mid L -5.38181 3,017 0.00025 0.00000
Cerebelum 9 R Vermis 1 2 -4.90605 3,118 0.00207 0.00000
Supp Motor Area R Cingulum Mid R -4.82126 3,136 0.00238 0.00000
Temporal Sup R Vermis 4 5 -4.69878 3,162 0.00349 0.00000
Amygdala R Thalamus L -4.54333 3,195 0.00616 0.00001
Amygdala R Thalamus R -4.44912 3,215 0.00820 0.00001
Rolandic Oper L Supp Motor Area R -4.42086 3,221 0.00820 0.00001
Cerebelum 9 L Vermis 1 2 -4.33136 3,240 0.01068 0.00001
Frontal Sup Medial R Cerebelum Crus2 R -4.28425 3,250 0.01068 0.00002
Frontal Med Orb L Cerebelum 6 R -4.27012 3,253 0.01068 0.00002
Frontal Mid R Cerebelum Crus2 R -4.26070 3,255 0.01068 0.00002
Temporal Sup L Vermis 4 5 -4.25599 3,256 0.01068 0.00002
Supp Motor Area R Cingulum Mid L -4.18062 3,272 0.01293 0.00003
PallidumR Thalamus R -4.18062 3,272 0.01293 0.00003
Frontal Mid R Cerebelum 7b R -4.10525 3,288 0.01684 0.00004
Putamen R Vermis 4 5 -4.08170 3,293 0.01754 0.00004
Rolandic Oper L Insula R -4.06757 3,296 0.01760 0.00005
Frontal Mid R Cerebelum Crus1 L -4.04872 3,300 0.01788 0.00005
Rolandic Oper L Cingulum Mid R -4.03930 3,302 0.01788 0.00005
Cingulum Ant L Thalamus L -4.02046 3,306 0.01817 0.00006
Cingulum Mid R Heschl R -4.01104 3,308 0.01817 0.00006
Rolandic Oper L Supp Motor Area L -4.00162 3,310 0.01817 0.00006
Supp Motor Area L Cingulum Ant R -3.98749 3,313 0.01817 0.00007
Occipital Inf R Parietal Sup L -3.98278 3,314 0.01817 0.00007
Frontal Sup R Cerebelum Crus2 R -3.95922 3,319 0.01929 0.00008
Insula R Cingulum Ant L -3.94038 3,323 0.02010 0.00008
Amygdala R Cerebelum Crus2 R -3.92625 3,326 0.02024 0.00009
Amygdala R Putamen R -3.92154 3,327 0.02024 0.00009
Frontal Sup Medial L Cerebelum Crus2 R -3.90270 3,331 0.02037 0.00010
Frontal Sup L Precuneus R -3.89328 3,333 0.02037 0.00010
Cingulum Post R Temporal Sup R -3.88385 3,335 0.02037 0.00010
Cingulum Mid L Thalamus R -3.87914 3,336 0.02037 0.00010
Insula L Vermis 4 5 -3.87914 3,336 0.02037 0.00010
Frontal Mid R Cerebelum Crus1 R -3.87443 3,337 0.02037 0.00011
Rolandic Oper L Cingulum Mid L -3.85088 3,342 0.02173 0.00012
Insula L Thalamus R -3.84146 3,344 0.02173 0.00012
Supp Motor Area L Cingulum Ant L -3.83204 3,346 0.02173 0.00013
Insula L Insula R -3.83204 3,346 0.02173 0.00013
Frontal Sup R Cerebelum Crus1 R -3.80378 3,352 0.02376 0.00014
Amygdala R Cerebelum 9 R -3.78022 3,357 0.02514 0.00016
Cingulum Mid L Heschl R -3.77551 3,358 0.02514 0.00016
Frontal Inf Oper R Frontal Sup Medial R -3.77080 3,359 0.02514 0.00016
Temporal Mid R Cerebelum Crus2 R -3.76609 3,360 0.02514 0.00017
Frontal Sup Medial L Precuneus R -3.75667 3,362 0.02552 0.00017
Cingulum Ant L Heschl L -3.74254 3,365 0.02574 0.00018

Appendix 
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Table 2    (Continued) Pair of significantly  
correlated regions

z-statistic ranksum corrected p-value

p-value

Frontal Sup R Cerebelum Crus1 L -3.73312 3,367 0.02574 0.00019
Insula L Cingulum Mid L -3.73312 3,367 0.02574 0.00019
Occipital Mid L Occipital Inf R -3.73312 3,367 0.02574 0.00019
Heschl R Temporal Inf R 3.71427 4,949 0.02665 0.00020

Frontal Inf Orb L Cingulum Mid L -3.71899 3,370 0.02665 0.00020
Cingulum Ant R Thalamus L -3.70014 3,374 0.02764 0.00022
Supp Motor Area L Heschl L -3.67659 3,379 0.02975 0.00024
Cingulum Ant L Thalamus R -3.66717 3,381 0.03029 0.00025
Insula R Vermis 4 5 -3.66246 3,382 0.03029 0.00025
Frontal Sup R Cerebelum 6 L -3.63420 3,388 0.03157 0.00028
Frontal Inf Tri L Vermis 4 5 -3.63420 3,388 0.03157 0.00028
Frontal Inf Orb L Cingulum Ant L -3.62948 3,389 0.03157 0.00028
Supp Motor Area L Insula L -3.62948 3,389 0.03157 0.00028
Pallidum R Thalamus L -3.62948 3,389 0.03157 0.00028
Frontal Mid R Vermis 6 -3.62477 3,390 0.03162 0.00029
Putamen L Putamen R -3.62006 3,391 0.03169 0.00029
Cingulum Ant L Temporal Pole Sup R -3.60122 3,395 0.03259 0.00032
Cingulum Ant L Cerebelum 9 L -3.59651 3,396 0.03259 0.00032
Caudate R Putamen R -3.59651 3,396 0.03259 0.00032
Cingulum Mid L Heschl L -3.58709 3,398 0.03280 0.00033
Supp Motor Area L Insula R -3.58709 3,398 0.03280 0.00033
Rolandic Oper R Temporal Inf R 3.60122 4,925 0.03259 0.00032
Cingulum Ant R Cerebelum 9 L -3.57767 3,400 0.03351 0.00035
Temporal Sup R Cerebelum 4 5 L -3.56354 3,403 0.03486 0.00037
Frontal Mid L Cerebelum Crus1 L -3.54941 3,406 0.03627 0.00039
Insula R Cingulum Mid L -3.52585 3,411 0.03910 0.00042
Precuneus R Vermis 6 -3.52114 3,412 0.03926 0.00043
Frontal Med Orb R Cerebelum 6 R -3.50701 3,415 0.04030 0.00045
Frontal Sup R Temporal Inf R -3.50701 3,415 0.04030 0.00045
Insula L Cingulum Ant L -3.50230 3,416 0.04048 0.00046
Putamen L Vermis 4 5 -3.49759 3,417 0.04067 0.00047
Occipital Inf R Parietal Sup R -3.48817 3,419 0.04159 0.00049
Hippocampus R Cerebelum 9 L -3.46933 3,423 0.04405 0.00052
Frontal Sup Medial R Temporal Mid R -3.45990 3,425 0.04505 0.00054
Insula R Cingulum Mid R -3.45519 3,426 0.04528 0.00055
Cingulum Ant L Heschl R -3.45048 3,427 0.04552 0.00056
Supp Motor Area L Heschl R -3.43164 3,431 0.04764 0.00060
Temporal Inf R Vermis 7 -3.43164 3,431 0.04764 0.00060
Cingulum Post L Cerebelum 6 R -3.42693 3,432 0.04790 0.00061
Rolandic Oper L Cerebelum Crus2 L 3.41751 4,886 0.04901 0.00063
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Fig. 5   P-values of McNemar test between all thresholds and classi-
fiers: Support Vector Machines (left), Logistic Regression (right). 
Threshold values in Support Vector Machines stand for the percent-
age of all features, in Logistic regression they represent the number of 

PCA component added to the model. FA – Fractional Anisotropy; FC 
– Functional Connectivity; GMV – Grey Matter Volume; all – combi-
nation of all three modalities

Table 5   The results of the Support Vector Regression models across 
modalities for all thresholds: FA – Fractional Anisotropy; FC – Func-
tional Connectivity; GMV – Grey Matter Volume; all – combination 
of all three modalities; EDSS – Expanded Disability Status Scale; 

BBS – Berg Balance Scale; TUG – Timed Up and Go Test; MSIS 
– Multiple Sclerosis Impact Scale; MSWS – Twelve Item Multiple 
Sclerosis Walking Scale

Fisher Score and SVR percentage of features

1% 10% 25% 50% 75% 100%

EDSS FA 0.05 0.14 0.39 0.36 0.25 0.33
FC 0.46 0.39 0.30 0.24 0.32 0.35
GMV 0.30 0.43 0.30 0.04 0.02 -0.03
all 0.16 0.36 0.33 0.25 0.31 0.38

BBS FA 0.48 0.17 0.30 0.23 0.11 0.33
FC 0.11 0.36 0.28 0.39 0.41 0.43
GMV 0.40 0.42 0.22 0.25 0.32 0.19
all -0.27 0.37 0.28 0.45 0.46 0.50

TUG​ FA -0.27 0.26 0.33 -0.02 0.00 0.18
FC 0.12 0.31 0.32 0.28 0.35 0.40
GMV 0.06 0.19 0.39 -0.01 0.25 0.23
all 0.17 0.31 0.35 0.31 0.39 0.44

MSIS FA 0.02 0.08 -0.08 -0.27 -0.05 -0.07
FC 0.12 0.24 0.15 0.17 0.32 0.38
GMV 0.17 -0.07 -0.19 0.06 0.12 -0.04
all 0.17 0.24 0.14 0.15 0.30 0.37

MSWS FA 0.34 0.21 0.26 0.31 0.02 0.00
FC 0.79 0.44 0.52 0.52 0.54 0.60
GMV 0.23 0.17 0.08 0.17 0.11 0.01
all 0.78 0.45 0.49 0.51 0.53 0.59
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