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Abstract
Subject-level independent component analysis (ICA) is a well-established and widely used approach in denoising of resting-
state functional magnetic resonance imaging (fMRI) data. However, approaches such as ICA-FIX and ICA-AROMA require 
advanced setups and can be computationally intensive. Here, we aim to introduce a user-friendly, computationally lightweight 
toolbox for labeling independent signal and noise components, termed Alternative Labeling Tool (ALT). ALT uses two fea-
tures that require manual tuning: proportion of an independent component’s spatial map located inside gray matter and posi-
tive skew of the power spectrum. ALT is tightly integrated with the commonly used FMRIB’s statistical library (FSL). Using 
the Open Access Series of Imaging Studies (OASIS-3) ageing dataset (n = 275), we found that ALT shows a high degree of 
inter-rater agreement with manual labeling (over 86% of true positives for both signal and noise components on average). In 
conclusion, ALT can be extended to small and large-scale datasets when the use of more complex tools such as ICA-FIX is 
not possible. ALT will thus allow for more widespread adoption of ICA-based denoising of resting-state fMRI data.
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Introduction

Resting-state fMRI is one of the most widely used meth-
ods in neuroscience, psychology and psychiatry research. 
However, one of the challenges of resting-state fMRI is the 
artifact removal as BOLD signal represents just 1–3% of the 
variability in the fMRI timeseries (Bianciardi et al., 2009; 
Biswal et al., 1995). A variety of methods exist for single-
echo fMRI acquisitions, including regression of motion 
parameters, white matter and cerebrospinal fluid signals, as 
well as several methods based on independent component 
analysis (ICA) of single-subject resting-state fMRI data. 
ICA-based methods, including i) semi-automated FMRIB’s 
ICA-based X-noiseifier (FIX) (Salimi-Khorshidi et  al., 
2014) ii) fully-automated ICA-based Automatic Removal 

Of Motion Artifacts (ICA-AROMA) (Pruim et al., 2015) 
and iii) hand classification (Griffanti et al., 2017) distin-
guish noise from signal with a high degree of accuracy 
(Dipasquale et al., 2017). In particular, ICA-FIX was able 
to preserve signal, while removing a substantial proportion 
of noise thus improving data quality. However, ICA-FIX 
can be challenging to set up and integrate into workflows. 
FIX requires a working installation of FSL, MATLAB, and 
R and further requires training the classifier on manually 
labelled data. While hand classification follows rules pro-
posed in (Bijsterbosch et al., 2017; Griffanti et al., 2017) and 
returns high-quality data, it is not viable for larger datasets. 
Following hand classification guidelines, we propose a sim-
ple Alternative Labeling Tool (ALT) that provides a user-
friendly alternative to FIX or AROMA. ALT uses two fea-
tures: i) the proportion of any given independent component 
that falls into a gray matter mask and ii) the component's 
distribution of the power spectrum. Here, we use an ageing 
dataset (OASIS-3) (LaMontagne, 2019), to test whether this 
denoising approach with some simple parameter optimiza-
tion reduces motion artifact compared with AROMA, FIX, 
and spike regression, common approaches to data denois-
ing (Ciric et al., 2017). We also tested whether ALT clas-
sification accuracy was consistent with the gold-standard 
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hand classification approach. We expected ALT to improve 
data quality which was assessed using four metrics based on 
functional connectivity (FC) estimates, including motion-FC 
relationships and their distance dependence, network identi-
fiability and loss of degrees of freedom.

Methods

Installation requirements ALT requires a single-subject 
Melodic (or ICA-feat) output from FSL that includes regis-
tration files, spatial maps and power spectra for each inde-
pendent component for each subject. ALT requires a work-
ing installation of FSL and either Octave (free and open 
source) or Matlab (commercial license), with no additional 
toolboxes needed (Table 1). A gray matter mask is provided 
based on the Harvard–Oxford cortical and subcortical atlas 
but alternative masks (in MNI152 space) can be supplied 
by the end user.

Algorithm description ALT includes the following three 
steps:

(1) In the first step, ALT generates labeling metrics that can 
be used for labeling in the subsequent step. First, ALT 
computes the proportion of the component’s spatial 
map that falls into a gray matter mask. This is achieved 
by registering the melodic_IC component maps to 
standard MNI152 space using linear registration. Non-
linear FNIRT registration often fails with older par-
ticipants or those with neurological conditions. An 
inclusive gray matter mask was selected in order to 
capture all signal components. In addition, ALT uses 
MELODIC-generated power spectra to assess the 
“skewness” of the power spectra. The power of signal 
components is concentrated in the frequency band that 
captures slower fluctuations, thus resulting in positively 
skewed power bands. We operationalize this metric as 

the proportion of the power spectrum concentrated in 
the leftmost third of the graph compared to the overall 
power. 

(2) Next, the ALT user is advised to optimize the “hyperpa-
rameters” of the cleaning script. Two parameters can be 
adjusted that control the thresholds for the gray matter 
proportion and for the power spectrum skewness. By 
default, the gray matter threshold is set to 0.5, meaning 
that only those components that (thresholded at z > 2) 
contain at least 50% of voxels that fall under the gray 
matter mask are labelled as signal. Further, the default 
power spectrum threshold is set to 0.6, meaning that 
only those components with at least 60% of their power 
concentrated in the leftmost third of the spectrum are 
labelled as signal. Components with less than 50% gray 
matter voxels or with more diffuse power spectra are 
labelled as noise. Components with less than 60% of 
the spectrum located in the leftmost tertile of the graph 
are also labelled as noise. These defaults may work 
well for some datasets such as OASIS3 data used here, 
but may need to be tuned depending on each unique 
dataset. Therefore, ALT users are advised to perform 
manual labeling on a small number of subjects in 
their sample (N=15-20) and use the following evalu-
ation step (3) to assess the performance of the ALT 
algorithm. Example labels from this classification are 
shown in Fig. 1.

(3) After the classification is completed, evaluation against 
manual labeling is advised. This is achieved by compar-
ing the ALT labels with manual labels considered as 
“ground truth”. This step generates a confusion matrix, 
including true positives (TP), false positives (FP), true 
negatives (TN), and false negatives (FN), calculated as 
follows:

TP =

Nr of components labeled as noise by ALT and as noise by manual approach

Nr of components labeled as noise by manual approach

Table 1  Overview of ICA-ALT (Alternative Labeling Tool), compared to ICA-FIX and ICA-AROMA

FMRIB’s statistical library = FSL; X-noiseifier = FIX; Automatic Removal Of Motion Artifacts = AROMA

ICA-ALT ICA-FIX ICA-AROMA

Software requirements FSL, MATLAB/ Octave FSL, MATLAB/ OCTAVE, R FSL
Python 2.7

Manual labelling requirements Optional, recommended for valida-
tion

Yes No

Strengths Easy to use and to interpret; 
provides evaluation metrics; per-
forms well on some datasets, easy 
to integrate with FSL MELODIC

Gold-standard automated labelling 
approach, uses machine learning 
to improve classification

A balance between requirement 
complexity and quality of denois-
ing; performs similarly to ICA-
FIX; integrated into fmriprep

Limitations Uses only two features of ICA 
components

Complex to install and run; 
requires manually labelled data
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Application to an ageing dataset (OASIS3) We showcase 
ALT’s performance using resting-state date from 275 par-
ticipants from the OASIS dataset.

MRI data MRI data were acquired on Siemens 3 T scan-
ners. The most common combination of T1-weighted 
image parameters was: voxel size = 1 × 1 × 1 mm 3, echo 
time (TE) = 0.003  s, repetition time (TR) = 2.4  s. The 

FP =
NoiseALT&Signalmanual

Signalmanual

TN =
SignalALT&Signalmanual

Signalmanual

FN =
SignalALT&Noisemanual

Noisemanual

most common parameter combination of the resting-state 
fMRI data was: voxel size = 4 × 4 × 4 mm 3 , TE = 0.027 s, 
TR = 2.2 s, scan duration = 6 min (LaMontagne et al., 2015).

MRI processing We used the FSL processing pipeline 
(Alfaro-Almagro et al., 2018) on the downloaded fMRI data 
in BIDS format. For independent component labeling, we 
apply ALT and compare its’ performance to ICA-FIX and 
ICA-AROMA. Briefly, we used the FSL (v6.0.1) FEAT (v 
3.15) with default settings for fMRI pre-processing (delet-
ing the initial 3 volumes, including linear detrending over 
100 s, realignment motion correction, and 5 mm Gaussian 
smoothing) and for ICA using the MELODIC tool (Beck-
mann and Smith, FMRIB Technical Report TR02CB1). 
MELODIC generates a number of components with distinct 
(but sometimes overlapping) spatial maps, power spectra and 
timeseries. We then used ALT to label these components as 
signal or noise and subsequently used fsl_regfilt to regress 
out the noise components, thus obtaining denoised data. As 

Fig. 1  Example signal (A) and noise (B) components. An example 
signal component and the two features used to classify it are shown 
in (A). The upper (A) panel shows a power spectrum, highlighting the 
leftmost tertile of the graph in green. Components with less than 60% 
of their power concentrated in this highlighted area were considered 
noise. The lower (A) panel shows a spatial map of the same compo-
nent, with the gray matter mask highlighted in green. Components 
were thresholded at z > 2. If less than 50% of their voxels were inside 

the gray matter mask, then the component was labeled as noise. Anal-
ogous data for a noise component from the same participant is shown 
in (B). The noise component’s spatial map was located primarily in 
the ventricles and outside the gray matter. Further, its power spectrum 
was not positively skewed. Spatial maps were transformed to the MNI 
standard space and are overlaid on the MNI152 template (axial slices 
at MNI Z coordinates of -29, -17, -5, 7, 19, 31, 43 and 55)
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mentioned above, ALT registers melodic_IC components 
to standard space using boundary-based linear registrations 
provided by FLIRT (Greve & Fischl, 2009; Jenkinson & 
Smith, 2001; Jenkinson et al., 2002), since nonlinear regis-
tration using FNIRT was less reliable with the older partici-
pants in OASIS3.

For subsequent comparisons, data was denoised using 
the strategies described below and registered to MNI152 
space using Freesurfer (v6.0, reg-feat2anat, bbregister and 
mri_vol2vol). Timeseries from a 229-region Power parcel-
lation (Power et al., 2011) were extracted using fslmeants. 
We did not include task-positive Power networks given that 
the fMRI data was obtained under resting-state conditions.

Overview of confound regression strategies

We compared ALT performance to a) ICA-FIX, b) ICA-
AROMA, and c) Spike regression with regression of 24 
motion parameters (Ciric et al., 2017; Parkes et al., 2018).

ICA‑FIX We used ICA-FIX (version 1.06.15) with Stand-
ard.RData as the training dataset and the standard threshold 
of 20 to generate signal and noise labels and fsl_regfilt to 
generate the denoised images. Note that FIX automatically 
defaults to nonlinear registration.

ICA‑AROMA We used AROMA (version v0.3-beta) with 
default settings to generate fMRI images with non-aggres-
sive denoising. We used the linear registration option (-aff-
mat only) with AROMA.

Spike Regression We generated a number of spike regressors 
corresponding to the number of volumes with a volume-to-
volume root mean square (RMS) displacement greater than 
0.25 mm. For each volume with relative RMS > 0.25, a new 
regressor was created that took a value of 1 for that volume 
and the value of 0 for all other volumes. These regressors 
were included alongside 24 motion parameters (6 motion 
parameters, 6 temporal derivatives, 6 quadratic terms, and 
6 quadratic expansions of the derivatives of motion). We 
did not include Global Signal Regression (GSR) given that 
the ICA-based denoising methods under consideration also 
don’t include GSR and inclusion of GSR vs non-GSR based 
denoising has been previously extensively compared (Ciric 
et al., 2017; Parkes et al., 2018).

Overview of outcome measures

Following established criteria of denoising assess-
ment (Ciric et al., 2017; Parkes et al., 2018), we used 

four metrics to assess denoising performance: motion 
quality control and FC (QC-FC) correlations; distance-
dependence of these QC-FC associations, loss of tempo-
ral degrees of freedom and modularity of networks con-
structed after denoising. Data from 275 participants in the 
OASIS3 dataset was used for these analyses.

QC‑FC correlations Firstly, we show the association between 
connectivities of each ROI-ROI pair with motion QC, quan-
tified as relative mean RMS. There were 229 × 229 = 26,106 
edges, each of which was correlated with mean RMS across 
the 275 participants. Significance was determined using 
false discovery rate (FDR), q < 0.05 (MATLAB mafdr.m 
function with Benjamini–Hochberg method (Benjamini & 
Hochberg, 1995)). We report median absolute correlations 
and the proportion of edges that were significant.

Distance‑dependence of QC‑FC correlations Centroids of 
the Power parcellation were obtained using fslstats and the 
Euclidean distance for each pair of ROIs was calculated 
(MATLAB norm function), resulting in 26,106 pairwise 
distances. We report correlations between the QC-FC cor-
relations and the ROI-ROI distance across edges.

Modularity of networks We used Louvain clustering as 
part of the Brain Connectivity Toolbox (Rubinov & Sporns, 
2010) to generate modularity quality (Q) of the connec-
tomes in the Power parcellation. This measure quantifies the 
degree to which structured sub-networks were found in the 
denoised connectomes. Connectomes were not thresholded 
and included signed data. We report mean Q values across 
subjects and the correlations between Q and motion (mean 
RMS) across subjects.

Loss of temporal degrees of freedom We quantified the loss 
of temporal degrees of freedom by calculating the sum of 
the number of regressors and the number of volumes flagged 
for spike regression.

Comparison with manual labels

In a subset of 30 OASIS-3 participants, we compared the 
ALT-generated labels with manual labels by two independ-
ent raters (GC and PZ, using evaluation.m script as part 
of ALT, in MATLAB R2016a). On average, 50–80 com-
ponents can be generated in any 6-minute fMRI scan. For 
particularly noisy fMRI scans, or high-resolution scans, 
the number of components may exceed 100. We compared 
ALT with FIX and FIX with manual labels using a simi-
lar confusion matrix approach used when comparing ALT 
with manual labeling.
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Results

Background demographics and cognitive status

Participants had a mean age of 70.1 (SD = 9.2). Among the 
full sample of 275 participants, 154 were female and 121 
were male. Forty-six participants had a clinical dementia 
rating score of 0.5, 13 participants had a clinical dementia 
rating score of 1 and 216 participants had a score of 0.

In the subset of those included in the hand classification 
comparison, participants had a mean age of 66.5 years old 
(SD = 9.4). Eighteen participants were female, while 12 were 
male, and 5 participants had a clinical dementia rating score 
of 0.5, while the remaining 25 participants had a clinical 
dementia rating score of 0.

ALT and AROMA perform well across all outcome 
measures

Both ALT and AROMA significantly reduced the motion 
artifact, with low median absolute QC-FC correlations 
(Fig.  2A, 2B) and a very small proportion of connec-
tivities related to motion (< 10%, Fig. 2C). Furthermore, 
motion artifacts were not distance-dependent after ALT and 
AROMA (-0.1 < r < 0). Motion artifacts were more strongly 
associated with the distance between regions of interest 

after FIX and spike regression with 24 motion parameters 
(Fig. 3). All methods resulted in good network identifi-
ability, with relatively high modularity (Q) values. ALT 
showed better network identifiability compared to other 
methods (Fig. 4). Network modularity was more strongly 
associated with motion after ALT denoising than after other 
methods (Fig. 4C). All methods resulted in relatively high 
numbers of regressors, and consequent loss of degrees of 
freedom. Smallest losses of degrees of freedom were found 
after AROMA, with highest numbers of regressors in the 
spike regression model (Fig. 5). Spike regression included 
separate regressors for volumes exceeding the motion-QC 
threshold and thus showed the largest number of additional 
regressors compared to ALT, AROMA, and FIX.

ALT is highly consistent with a hand classification 
approach

ALT-generated labels were highly consistent with manual 
labeling (Fig. 6A, B). In particular, True Positive rates for 
detecting noise components was on average 86.7% for Rater 
1 and 90.4% for Rater 2, with the lowest agreement rate 
for labeling all of a given subjects’ components being at 
just over 60%. Conversely, False Negative rates were very 
low (13.3% for Rater 1 and 9.6% for Rater 2). Although 
more variability was seen in the True Negative rates for 

Fig. 2  Associations between motion and functional connectivity (QC-
FC). ALT and AROMA reduced the relationship between connec-
tivity and motion the most compared to FIX using standard training 
data and spike regression with 24 parameters. Mean absolute QC-FC 
correlations were low for all methods except FIX with standard train-
ing data (A). Distributions of QC-FC correlations across subjects are 

shown in (B). Finally, only a small proportion of edges in the 229-
node network defined by Power et  al. (2011) was related to motion 
after ALT and AROMA denoising (C). Proportions are shown in (C). 
Smaller number of significant edges suggests better performance of 
the denoising algorithms
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ALT detecting signal components compared to hand clas-
sification, on average strong agreement was found (88.7% 
for Rater 1 and 85.9% for Rater 2). Inter-rater consistency 
was very high (True Positive rates of 93.6 and True Negative 
rates of 90.2, Fig. 6C).

ICA-FIX showed very similar consistency rates with 
manual labeling compared with ALT (TP = 82.5; FN = 17.5; 
TN = 92.4; FP = 7.6 for R1 and TP = 86.3; FN = 13.7; 
TN = 92.4; FP = 7.6 for R2, Fig. 6D and 6E). ALT and 
ICA-FIX showed high rates of agreement on noise labels 
(True positive rates for detecting noise of 91.3%) but less 
agreement on signal labels (TP = 91.3; FN = 8.7; TN = 61.8; 
FP = 38.2; Fig. 6F).

Discussion

Here, we introduce a computationally simple alternative 
labeling tool (ALT) for single-subject independent compo-
nent labeling and showcase its strong agreement with the 
gold standard hand classification approach. While other 
denoising approaches such as FIX may have higher efficacy, 
they require a lot of computational power and user training. 
ALT is more accessible since it does not have high compu-
tational requirements and can be applied to even very large 
data sets with good efficacy. Motion represents a significant 
confound in resting state fMRI studies (Power et al., 2012; 
Satterthwaite et al., 2013; van Dijk et al., 2012), and we 

Fig. 3  Distance dependence 
of the QC-FC correlations 
between motion and functional 
connectivity after denoising. 
AROMA and ALT performed 
similarly well, outperforming 
FIX with standard data and 
spike regression with 24 motion 
parameters. The QC-FC correla-
tions were only very weakly 
associated with the Euclidean 
distance between pairs of 
regions of interest (A). Gener-
ally, nodes that are spatially 
close to each other show higher 
impact of motion on connectiv-
ity. Datapoints were 26,106 
unique edges, calculated as 
(229 × 229–229)/2

Fig. 4  Network modularity 
(Q) and its association with 
motion after denoising. Network 
modularity was similar across 
all denoising methods, with 
higher values found after ALT 
and FIX. Connectivity matrices 
for the Power networks featur-
ing 229 regions are shown in 
(B). Nodes were ordered 
according to their member-
ship in the Power networks. 
Correlation between modularity 
and motion (mean RMS) was 
highest following ALT, and 
lowest after AROMA. Higher 
negative correlations suggest 
that network identifiability is 
higher in participants showing 
less motion, indicative of worse 
denoising performance
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show that ALT significantly reduces motion artifact, QC-FC 
correlations and QC-FC distance dependence. ALT’s per-
formance is very similar to AROMA and ALT labeling is 
close to manual labeling. Importantly, ALT is tied to FSL 
MELODIC processing suite and can be seen as a lightweight 
alternative to FIX, alongside AROMA.

ALT’s denoising performance was very similar to 
AROMA, although ALT resulted in slightly better net-
work modularity Q. Network modularity declines with age 
due to desegregation (Chan et al., 2014), hence across all 
approaches we find lower mean modularity Q compared 
to previous studies of younger adults (Ciric et al., 2017). 
ALT showed higher correlations between mean modular-
ity and motion, however, suggesting that participants with 
greater levels of motion were showing lower network modu-
larity. This correlation was relatively low (r=-0.18). ALT 
installation is easier for those using FSL and MELODIC 
and it’s less computationally demanding and quicker to run 
compared to AROMA. On the other hand, AROMA is inte-
grated in some processing pipelines such as fmriprep (Este-
ban et al., 2019). While ALT may not replace AROMA, we 
argue that ALT a viable alternative to AROMA given their 
performance is very similar.

We test the performance of these denoising algorithms 
in an ageing dataset (OASIS-3) that included participants 
with very mild cognitive impairment measured using the 
clinical dementia rating. It is important to validate denois-
ing approaches in datasets that may present unique chal-
lenges such as registration or the presence of clinical 
conditions. ALT alongside AROMA performed well at 
denoising this fMRI data.

Fig. 5  Mean number of confound regressors for each denoising algo-
rithm. Error bars show standard deviations

Fig. 6  Proportions of True 
Positives (TP), False Negatives 
(FN), True Negatives (TN) and 
False Positives (FP) for rater R1 
(A), and rater R2 (B) showed 
high consistency between ALT-
generated labels and manual 
labels. Inter-rater consistency 
(C) was similar to that of ALT 
with each of the raters. ICA-FIX 
also showed high consistency 
with manual labeling (D, E). 
FIX and ALT showed strong 
agreement on which compo-
nents were classified as noise 
labels, but only moderate agree-
ment on signal labels
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We do not compare these methods to global signal regres-
sion, since this debate has been extensively addressed else-
where (Ciric et al., 2017; Parkes et al., 2018). Our primary 
aim was to introduce ALT and assess its performance rela-
tive to comparable denoising methods that do not include 
global signal regression.

FIX consists of several steps: spatial ICA, component-
wise feature extraction, classifier training (hand-labelled 
data), components’ classification and denoising. The ICA 
step is performed with MELODIC (Beckmann & Smith, 
2004), similar to ALT. In contrast to FIX, ALT’s hand clas-
sification is an optional (recommended) step to validate the 
programs performance in any unique dataset. Not relying on 
manual labelling is important because it is time-consuming, 
operator dependent, and requires expert knowledge about 
signal and noise fluctuations’ spatial and temporal character-
istics. AROMA was created to automate ICA-based denois-
ing. Thus, it requires no such hand classification, but can suf-
fer from elevated signal removal in older adult populations 
due to motion and its classification performance is inferior 
to FIX (Carone et al., 2017). ALT on the other hand offers 
an automated alternative to FIX with the option to adjust 
performance to match manual labelling if there are concerns 
regarding the program’s performance in diverse datasets. 
ALT only uses two features, while FIX uses a random forest 
algorithm trained on over 150 features. Given that FIX uses 
additional information about the independent components, 
it is more suited to identify subtle patterns that distinguish 
signal and noise components based on the manual training 
labels.

A potential limitation of this study is the relatively 
high  quality  of fMRI data  we used to test ALT, which 
showed relatively low levels of motion despite the advanced 
age of the participant population that typically elevates head 
movement. Thus, in a noisier dataset, ALT may not always 
perform as well as in the above sample. Moreover, although 
ALT is a user-friendly alternative to FIX and AROMA, 
ALT still requires the installation of both FSL and either 
MATLAB or the free alternative Octave. We hope that ALT 
will make ICA denoising more accessible and facilitate the 
assessment of denoising algorithms to ensure the highest 
quality of resting-state fMRI data possible.
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