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Abstract
This study aimed to detect alterations in intra- and inter-network functional connectivity (FC) of multiple networks in acute 
brainstem ischemic stroke patients, and the relationship between FC and movement assessment scores to assess their ability 
to predict upper extremity motor impairment. Resting-state functional magnetic resonance imaging (rs-fMRI) data were 
acquired from acute brainstem ischemic stroke patients (n = 50) and healthy controls (HCs) (n = 45). Resting-state networks 
(RSNs) were established based on independent component analysis (ICA) and the functional network connectivity (FNC) 
analysis was performed. Subsequently, correlation analysis was subsequently used to explore the relationship between FNC 
abnormalities and upper extremity motor impairment. Altered FC within default mode network (DMN), executive control 
network (ECN), the salience network (SN), auditory network (AN), and cerebellum network (CN) were found in the acute 
brainstem ischemic stroke group relative to HCs. Moreover, different patterns of altered network interactions were found 
between the patients and HCs, including the SN-CN, SN-AN, and ECN-DMN connections. Correlations between functional 
disconnection and upper limb dysfunction measurements in acute brainstem ischemic stroke patients were also found. This 
study intimated that widespread FNC impairment and altered integration existed in brainstem ischemic stroke at acute 
stage, suggesting that FNC disruption may be applied for early diagnosis and prediction of upper limb dysfunction in acute 
brainstem ischemic stroke.

Keywords Functional network connectivity · Resting-state fMRI · Acute brainstem ischemic stroke · Upper limb 
dysfunction

Introduction

Acute ischemic stroke is a common and frequently-occurring 
disease, and the incidence is showing a younger trend (Iyer 
et al., 2019; Zhao et al., 2019). Because of its high disability 
rate and mortality rate (Powers et al., 2015), it often brings a 

heavy burden to the family and society. More than one-third 
of patients with acute ischemic stroke are often accompa-
nied by cognitive and lateral movement disorders, including 
attention, memory, executive, language, visual field defects, 
which adversely affects the outcome (Pohjasvaara et al., 
2002). Most of these damages are irreversible. Brainstem 
ischemic stroke accounting for 21.9% has a rapid onset and 
more dangerous condition compared with ischemic stroke 
in other parts (Mortality GBD, 2016). Studies have shown 
that early functional exercise is beneficial to the recovery 
of dysfunction. Therefore, the evaluation of early cognitive 
and movement disorders in patients with acute brainstem 
ischemic stroke is extremely important.

Over recent years, resting-state functional magnetic 
resonance imaging (rs-fMRI), by measuring the features of 
low-frequency blood oxygenation level-dependent (BOLD) 
fluctuations (Biswal et al., 1997; Hampson et al., 2002; 
Damoiseaux et al., 2006), has grown to become a reliable 
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method for exploring human brain functional connectiv-
ity (FC) (Biswal et al., 2010; Guerra-Carrillo et al., 2014; 
Buckner et al., 2013), especially for evaluating the FC of 
distant brain regions (Raichle, 2001; Ogawa et al., 1990). 
Previous studies mostly focused on acute cerebral stroke in 
the paraventricular and basal ganglia area (Yao et al., 2020). 
There were few studies exploring the FC changes in patients 
with acute brainstem ischemic stroke. Our previous research 
showed significantly decreased functional connectivity in the 
right medial prefrontal cortex (mPFC) and right precuneus 
within the anterior and posterior DMN in patients with acute 
brainstem ischemic stroke, respectively (Jiang et al., 2018). 
A study of 53 patients with acute ischemic brainstem stroke 
found significant differences in topological properties, sug-
gesting that the damaged brain network after a brainstem 
stroke tended to shift toward regular networks. The findings 
of disrupted topological properties of functional brain net-
works may help better understand the disease characteriza-
tion (Shi et al., 2021). The default-mode network (DMN), 
an important resting-state functional network of the brain, 
has been associated with emotional and cognitive process-
ing (Broyd et al., 2009; Mantini & Vanduffel, 2013). The 
cognitive decline has been related to the FC impairment of 
the DMN in ischemic stroke with variously located lesions 
(Tuladhar et al., 2013), such as the internal capsule, corona 
radiata, thalamus, occipital lobe and parietal lobe. However, 
little is known whether the regional spontaneous activity of 
the DMN is also damaged in patients with acute brainstem 
ischemic stroke. These studies mostly focused on a small 
number of changes in intra-network interactions, and did 
not analyze the interactions between each network. Inde-
pendent component analysis (ICA) has been proverbially 
used for identifying resting-state networks (RSNs) due to its 
ability to separate various brain function networks to define 
different remote interaction patterns (De Luca et al., 2006; 
Fox & Raichle, 2007). For the present, the function network 
connectivity (FNC) can be used to represent the temporal 
correlation between these RSNs (Jafri et al., 2008; Qin et al., 
2018). Therefore, observation of the RSNs and FNC may 
come up with more information to proceed the understand-
ing of the underlying neural mechanisms of cognitive and 
motor impairment in acute brainstem ischemic stroke.

We hypothesize that brainstem patients showed different 
functional brain network disruption and were related to the 
patients’ upper extremity motor dysfunction. The brainstem 
is the most common site for subcortical stroke involving 
the motor pathway and they could cause anterograde and 
retrograde degeneration in the pyramidal tract in the early 
stage of stroke. Previous studies indicated that topological 
properties of functional brain networks were disrupted (Shi 
et al., 2021). Herein, we aimed to systematically investigate 
the changes in RSNs of acute brainstem stroke and the inter-
actions between RSNs. The temporal correlation of brain 

networks’ activity was used to quantify their interactions 
and to predict the extent to which group differences could 
forecast the characteristics of movement disorders after 
stroke. This could guide the early rehabilitation after stroke 
and reduce the impact of motor dysfunction on the lives of 
stroke patients.

Materials and methods

Subjects and clinical data

A total of 50 patients with acute brainstem ischemic stroke 
(28 males and 22 females; age range: 45–87 years) were 
recruited from the emergency department of our hospital 
between February 2017 and February 2019. The inclusion 
criteria for patients with acute brainstem ischemic stroke 
were as follows: (a) age 45 years or older; (b) an initial 
Glasgow Coma Score (GCS) of 12–15 in the emergency 
department; (c) initial emergency room evaluation of acute 
brainstem ischemic stroke (accompanied by physical weak-
ness, language impairment and other symptoms of acute cer-
ebral stroke and confirmed by magnetic resonance images); 
and (d) CT scan as clinical evaluation to rule out cerebral 
hemorrhage. The exclusion criteria were as follows: (a) a 
history of a preceding acute cerebral stroke; (b) history of 
drug or alcohol misuse; (c) history of sedative use in hospi-
tals or emergency rooms; and (d) MRI contraindications. In 
addition, 45 healthy subjects (22 males and 23 females; age 
range: 48–78 years) were recruited as the healthy control 
(HC) group and matched for sex, and age. The same exclu-
sion criteria were adopted as the patient group. All HCs 
underwent the same motor function assessment as acute 
brainstem ischemic patients.

Motor function assessment

Fugl-Meyer assessment (FMA) was performed to assess 
upper extremity motor disorder. This test consisted of wrist, 
elbow, shoulder, forearm, hand movement and coordina-
tion. The assessment time was approximately 10 min, with a 
maximum score of 66, a higher score implies less upper limb 
dysfunction (Platz et al., 2005). Motor Assessment Scale 
(MAS) was also performed to assess upper extremity motor 
disorder (Poole & Whitney, 1988). The assessment time was 
approximately 10 min, with a maximum score of 48.

Imaging data acquisition

All MRI data were acquired within 8 days after stroke on a 
3.0 Tesla MRI scanner (Ingenia, Philips Medical Systems) 
with an eight-channel phased-array head coil. For this anal-
ysis, resting-state functional images were acquired axially 
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using a gradient echo-planar imaging sequence. The scanning 
parameters were as follows: repetition time (TR) = 2000 ms; 
echo time (TE) = 30 ms; gap = 0 mm; slices = 36; thick-
ness = 4 mm; field of view (FOV) = 240 mm × 240 mm; 
acquisition matrix = 64 × 64; and flip angle (FA) = 90°. 
The rs-fMRI sequence scan took 8 min and 6 s. Structural 
images were obtained using a three-dimensional turbo fast 
echo (3D-TFE) T1WI sequence and following scan param-
eters: TR/ TE = 8.1/3.7 ms; slices = 170; thickness = 1 mm; 
gap = 0  mm; FOV = 256  mm × 256  mm; FA =  8°; and 
acquisition matrix = 256 × 256. The structural sequence 
lasted 5 min and 28 s. During the scan, the subjects need 
to keep quiet and still, close their eyes and not think about 
any special things. In the meantime, foam padding was 
used to reduce the involuntary movement of the head, and 
earplugs were used to reduce the influence of noise on the 
participants. In addition, 3D gradient echo susceptibility-
weighted imaging (SWI) sequences (TR/ TE = 22/34 ms; 
slice thickness = 1 mm; FA =  20°; matrix = 276 × 319; and 
FOV = 220 mm × 220 mm) were also implemented to help 
detect hemorrhagic or other lesions.

Data preprocessing

Graph Theoretical Network Analysis (GRETNA) was 
applied to preprocess the functional image data for further 
analysis with the following stages (Wang et al., 2015). First, 
the first 10 volumes of each time series were removed to 
allow for participant adaptation to the scanning environment. 
Then the remaining volumes were slice-timing corrected 
and calibrated for head motion correction. Participant data 
were excluded from the analysis, including demonstrating 
head movement >2.0 mm translation or > 2.0° rotation. The 
rest of the dataset was spatially normalized to a template 
from the Montreal Neurological Institute (resampled voxel 
size = 3 × 3× 3  mm3), followed by a 6-mm spatial sequence 
with a Gaussian smoothing kernel. The corrected volumes 
were spatially normalized to the Montreal Neurological 
Institute space with resampled voxel size = 3 × 3 × 3  mm3, 
and finally spatially smoothed with a Gaussian smooth ker-
nel (full width at half maximum of 6 mm).

Independent component analysis

RSNs were selected with the group ICA software of fMRI 
toolbox software. ICA analysis is performed in three phases: 
(1) data reduction, (2) application of the ICA algorithm, 
and (3) back reconstruction for each individual subject. The 
number of independent components (ICs) was determined 
by using the minimum description length (MDL) criteria 
(Li et al., 2007). In phase one, reduce computational com-
plexity with principal component analysis (PCA), then the 
remaining reduction step was achieved again using PCA in 

view of a selected number of ICs. In phase two, run the 
proper ICA with the infomax algorithm. In the final phase, 
Single-subject individual time courses and spatial maps were 
group ICA (GICA) type back reconstructed and results were 
converted into z-scores to display.

Intra‑network connectivity analysis

Among the 32 components resulting from ICA, 12 compo-
nents were selected (7 nonartifactual RSNs) as the focus of 
the subsequent analyses (Fig. 1) through visual inspection 
according to previous rs-fMRI studies (Cerliani et al., 2015). 
The single-sample t test was first used to obtain the z-maps 
for each group and each RSN. The significance threshold 
was p < 0.01, corrected for multiple comparisons using FDR. 
Then, the group comparison of the z-maps of the RSNs was 
conducted using a two-sample t test restricted to the voxels 
within a union mask and was determined by the t test results 
of two single samples. Between-group effects were corrected 
by FDR correction, the significance threshold was p < 0.01. 
In the two-sample t test, regions with significant differences 
were chosen and used in the subsequent analysis from each 
RSN.

Inter‑network connectivity analysis

After ICA, the individual level time courses of the identified 
RSNs were obtained using the spatiotemporal double regres-
sion method. Then, the relationship between different RSNs 
time courses was studied by FNC analysis. During the analy-
sis, a time-domain band-pass filter (band-pass 0.00–0.25 Hz) 
was used to reduce the influence of low-frequency drift and 
high-frequency physiological noise on the time process. Sec-
ondly, we calculated the correlations between any two RSNs 
time courses of each subject. Then the FNC known as tem-
poral correlation is obtained by calculating the Pearson cor-
relation coefficient of the time courses of selected RSNs and 
generate the matrix of 12 × 12 (RSNs) × 95 (participants). In 
the general linear model was finally used to analyze which 
pairs of RSNs were significantly different between controls 
and patients, the age and sex as covariates. The significance 
threshold was p < 0.001, corrected for multiple comparisons 
using FDR.

Correlation analysis

The correlations between FC in the RSNs/FNC and the 
motor function assessments were calculated in acute brain-
stem ischemic stroke patients. In the two-sample t test, the 
brain region with a significant difference for each RSN was 
selected as the region of interest (ROI) to extract the coor-
dinates of the ROIs. Then the mean z-scores within the ROI 
was used to perform the relevant calculation. Moreover, the 
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FNC coefficients that showed a highly significant difference 
between two groups were also used in the correlations with 
the FMA and MAS scores.

Statistical analysis

An independent t test for continuous variables and a chi-
square test for proportions were used to assess clinical char-
acteristic and demographic between patients and HCs by the 
SPSS 19.0 software package (SPSS, Inc). The significance 

threshold was set as p < 0.05. Shapiro-Wilk tests were used 
to evaluate data normality, and p values >0.05 indicate a 
normal distribution of data. For RSN and FNC analysis, 
group comparisons between the acute brainstem ischemic 
stroke and HC group were performed using two-sample 
t tests. The significance threshold was set at p < 0.01 and 
p < 0.001 using FDR corrections respectively. Age and 
sex were used as covariates. Additionally, Pearson’s cor-
relation coefficients between functional connection strength 
and FMA scores were analyzed with a significance level of 

Fig. 1  Functional relevant 
RSNs. The spatial maps of 12 
independent components (ICs) 
were selected as the RSNs for 
further analysis. DMN, default 
mode network; ECN, executive 
control network; SN, salience 
network; VN, visual network; 
AN, auditory network; SMN, 
sensorimotor network; CN, 
cerebellum network
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p < 0.05. SPM12 was used for voxel-level statistical analysis 
of the RSNs, and MATLAB (MATLAB 2013a) was used for 
other statistical analyses, including FNC group comparisons 
and correlation analyses.

Results

Participants and clinical data

The final cohort in this study consisted of 50 acute brainstem 
ischemic stroke patients and 45 HC subjects, four patients 
were excluded because of excessive head motion artifacts 
after the fMRI data head motion check. The lesions in acute 
brainstem ischemic stroke group were all laterally distrib-
uted, with 25 cases on each side. The mean GCS scores for 
stroke patients were 14.24 ± 0.91. There was no significant 
difference in age and gender between the acute brainstem 
ischemic stroke group and the HC group (Table 1). Moreo-
ver, there was no brain hemorrhage or bleeding in the stroke 
patients.

ICA and component selection

A total of 32 ICs was extracted by ICA in this study, among 
which 12 components were selected as the RSNs for fur-
ther analysis in the light of previously published results 
(Fig. 1). Subsequently, seven networks with these compo-
nents were labeled as follows: the default mode network 
(DMN) (IC11 + 14 + 19) typically included the posterior 
cingulate cortex (PCC), medial prefrontal cortex (MPFC), 
inferior parietal, precuneus, and bilateral angular gyrus 
nodes. The executive control network (ECN) (IC16 + 20) 
included the left lateral frontoparietal network (LFPN) and 
the right lateral frontoparietal network (RFPN). The LFPN 
was mainly focused at the left middle frontal gyrus, superior 
parietal lobule, inferior parietal lobule, and angular gyrus; 
The spatial distribution of RFPN is similar to that of LFPN. 
The salience network (SN) (IC7) showed spatial patterns 

mainly consisting of the dorsal anterior cingulate (dACC), 
anterior insular cortices, part of the prefrontal areas. The 
visual network (VN) (IC1+ 10 + 12) included the primary 
visual cortex [the bilateral calcarine sulcus and medial extra-
striate regions (eg. the lingual gyrus and cuneus)] and the 
occipital part of the fusiform gyrus and extravisual (the 
occipital pole, the lateral occipital cortex). The auditory 
network (AN) (IC24) mainly included the bilateral intrapa-
rietal sulcus, middle temporal lobe and frontal eye field. The 
sensorimotor network (SMN) (IC23) comprised SMN1 that 
included the paracentral lobule, the supplementary motor 
area (SMA), and the pre- and postcentral gyri; SMN2 was 
mainly focused at the bilateral primary somatosensory cor-
tex, including postcentral and precentral gyri areas. The 
cerebellum network (CN) (IC15) had spatial patterns that 
primarily encompassed the cerebellum anterior lobe, cer-
ebellum posterior lobe, and declive.

Altered FC within RSNs

We found significant differences between the patient and 
HC groups within two RSNs, including the DMN and ECN 
(Table 2 and Fig. 2A). Compared with the HC group, the 
patients group exhibited decreased FC within the DMN 
[right frontal inferior orbital gyrus (R_FIO) and left tem-
poral middle gyrus (L_TM)] and ECN [right frontal middle 
gyrus (R_FM)]. Based on voxel-wise analysis, acute brain-
stem ischemic stroke group compared with the HC group did 
not demonstrate altered resting-state FC in the other selected 
RSNs.

Altered inter‑network FC

Three connections were found to be significantly altered 
for the FNC analysis. Relative to the HC group, the acute 
brainstem ischemic stroke group exhibited significantly 
decreased negative interactions in two RSN connections, 
including the SN-CN connection and SN-AN connection. 
Moreover, compared with the HC group, the patient group 

Table 1  Demographic characteristics and upper limb movement per-
formance in acute brainstem ischemic stroke patients and healthy 
controls

Data are the mean ± standard deviation; Abbreviations: NHISS 
National Institute of Health stroke scale, FMA Fugl-Meyer assess-
ment, MAS Motor Assessment Scale

Characteristics Patients (n = 50) Controls (n = 45) P value

Age(y) 66.50 ± 8.76 60.78 ± 7.12 0.121
Sex (Female/Male) 22/28 23/22 0.488
NHISS 3.34 ± 2.35 / /
FMA 54.82 ± 9.00 / /
MAS 40.74 ± 5.42 / /

Table 2  Brain regions with significant differences connectivity within 
RSNs between acute brainstem ischemic stroke patients and healthy 
controls

Abbreviations: DMN default mode network, ECN executive control 
network, R_FIO right frontal inferior orbital gyrus, L_TM left tempo-
ral middle gyrus, R_FM right frontal middle gyrus

Brain regions BA Peak MNI 
coordinates 
x,y,z(mm)

Peak T value Voxels

DMN R_FIO 47 24 15–27 −6.4780 96
L_TM 39 −48 -57 18 −5.6173 154

ECN R_FM 8 45 15 51 −6.2126 36
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showed increased FNC in the interaction between the DMN 
cortices (IC14) and ECN cortices (IC20). Additionally, 
DMN (IC14)-DMN (IC19), was also found to be signifi-
cantly decreased in the patients group compared with the 
HC group (Fig. 2B).

Correlation analysis

Correlations were performed between the mean z-scores 
of four ROIs in the five RSNs and FMA scores, we found 

no significant statistical differences. After performing the 
correlations between the FNC coefficients and the FMA 
scores in the acute brainstem ischemic stroke group, only 
the positive correlation was found between FC value of the 
SN-CN and FMA scores (r = 0.299, p = 0.035) (Fig. 3A). 
FC value of the SN-CN and MAS scores were also found 
to be positively correlated (r = 0.336, p = 0.017, Fig. 3B).

Fig. 2  Altered FC within and between each RSNs. (A) Group FC dif-
ferences within RSNs. Significant differences between the HC group 
and acute brainstem ischemic stroke group were found within three 
RSNs. (B) Group differences in static FNC. Three connections were 

found to be significantly altered (P < .001). DMN, default mode net-
work; ECN, executive control network; L, left; TM, temporal middle 
gyrus; R, right; FIO, frontal inferior orbital gyrus; FM, frontal middle 
gyrus

Fig. 3  Correlations between FNC coefficients and motor function in stroke group. (A) SN-CN connection was found to be positively correlated 
with FMA scores (r = 0.299, p = 0.035); (B) SN-CN connection was found to be positively correlated with MAS scores (r = 0.336, p = 0.017)
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Discussion

Extensive changes in network function connections after 
acute stroke will occur immediately and are important 
for recovery (Carter et al., 2012; Grefkes & Ward, 2014). 
Rs-fMRI research demonstrates that the FC between the 
ipsilesional and the contralesional primary sensorimo-
tor cortex is significantly diminished in acute ischemic 
stroke (Wang et al., 2010; Park et al., 2011; Golestani 
et al., 2013). Decreased FC with the ipsilesional primary 
motor cortex (M1) was also found in other brain regions 
such as the bilateral secondary somatosensory cortex, 
bilateral SMA, bilateral thalamus, bilateral cerebellum, 
contralesional premotor cortex, and contralesional poste-
rior parietal cortex (Carter et al., 2010).

The frontoparietal lobe is an important part of spatial 
attention, and the ECN is involved in numerous advanced 
cognitive tasks and plays an important role in adaptive 
cognitive control (McHugh et al., 2017). As we know, 
the DMN controls both primary perception and advanced 
cognition and is responsible for the integration of these 
two (Zhao et al., 2018). According to this notion, acute 
brainstem ischemic stroke patients showed decreased 
FC in the R_FIO and L_TM within the DMN as well as 
the R_FM within the ECN, indicating that dysfunction 
within the DMN and ECN might contribute to the cogni-
tive impairments observed in acute brainstem ischemic 
stroke patients. And it is a potential biomarker of cogni-
tive impairment caused by brainstem stroke. Longitudinal 
studies should be carried out to study whether low con-
nectivity in DMN can be used as an early biomarker, so 
that clinicians can predict the risk of cognitive impairment 
after acute brainstem stroke patient. Additionally, in this 
study, we have observed enhanced network connection 
between DMN and ECN, this result could be interpreted 
as a recruitment or compensatory reallocation of cognitive 
resources.

The SN is a large-scale edge network that co-activates 
signals needed for behavioral changes (Chen et al., 2016). 
The insular cortex is an important part of SN, which is 
mainly responsible for emotional processing, control of 
cognitive functions and behaviors, and also plays a piv-
otal role in integrating internal and external processes 
(Uddin, 2015). Cerebellum plays a key role in motor 
learning and cognitive processes, and previous studies 
have demonstrated that acute ischemic stroke patients had 
abnormal reduction between the bilateral cerebellum and 
the ipsilateral motor cortex27, (Adamaszek et al., 2017; 
Keren-Happuch et al., 2014; Fan et al., 2019; Stoodley, 
2016). In this study, the functional connection between 
SN and CN networks was decreased, and the FC value was 
related to the upper limb motor score, which may explain 

the upper limb motor dysfunction in patients with acute 
ischemic brainstem stroke. It is worth noting that the func-
tional connection between SN and AN is also reduced. 
This finding supports the hypothesis of auditory-motor 
decline (Skipper et al., 2017). The reduction of auditory 
input from the cochlea to the auditory system relates to 
a reduction in the recruitment of the articulatory cortex. 
Auditory impairment during stroke recovery and changes 
in auditory -related network connections deserve further 
study. This study further explores the changes in the con-
nections between brain networks after brainstem infarc-
tion, indicating that the brainstem is an important part of 
the connection between the central and peripheral nerves. 
Later, it affects the connections between a variety of brain 
networks, including SN-CN, SN-AN, and ECN-DMN. 
These findings support our hypothesis and are particularly 
important for understanding the pathophysiology of stroke, 
because motor reorganization is a mechanism of cortical 
injury after subcortical stroke, which disrupts the relevant 
network that supports motor behavior (Zhao et al., 2018). 
We used the time correlation of brain network activity 
to quantify brain network interactions and predicted the 
extent to which group differences can predict the char-
acteristics of movement disorders after stroke. This will 
guide early recovery after stroke and reduce the impact of 
motor dysfunction on the lives of stroke patients.

This study has several limitations. First, the sample in 
this study is limited, and only the functional connections of 
brain networks in the acute phase of brainstem stroke have 
been observed. The sample size needs to be expanded to 
conduct more longitudinal studies on the functional con-
nections within and between networks during the recovery 
period of brainstem stroke. Second, our research focused 
more on the relationship between brain network connections 
and upper limb dysfunction, and lacked an assessment of 
the connection with cognitive impairment. Our subsequent 
research will improve cognitive assessment and explore 
the relationship between the two. Moreover, our research 
was based on a limited network interaction model. There 
are other networks that have not been considered that may 
play an equally important role, such as attention networks 
(ATN) and self-referential networks (SRN). Alerting, ori-
enting, and executive control are independent components 
of attention (Rosenberg et al., 2017; Fan et al., 2005). ATN 
may be related to the following activities of the brain, (a) 
alertness, or preparing and maintaining alertness and vigi-
lance; (b) orienting, or directing overt or covert attention 
to a stimulus. SRN is crucial for representing knowledge 
pertaining to the self and that this is an important function of 
the resting state. Moreover, areas within this network allow 
for top-down modulation between sensory, self-referential, 
and higher-order processing (Bai et al., 2012; Mantini et al., 
2007; Northoff et al., 2006). Finally, although using ICA to 
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reveal the advantages of unconstrained brain connections, 
ICA cannot reveal the directionality of interactions between 
networks. Further research is needed to evaluate the direct 
influence and direction of each network in coupling with 
other networks in patients with acute ischemic brainstem 
stroke.

In conclusion, this study showed extensive early changes 
in static FNC during the acute phase of brainstem stroke. 
These network interactions can provide a powerful way to 
assess and predict upper limb movement disorders, and help 
us understand the neural mechanisms of upper limb move-
ment disorders after brainstem stroke.
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