
Vol.:(0123456789)1 3

https://doi.org/10.1007/s11682-021-00511-x

ORIGINAL RESEARCH

Pattern of cerebellar grey matter loss associated with ataxia severity 
in spinocerebellar ataxias type 3: a multi‑voxel pattern analysis

Jianping Hu1 · Xinyuan Chen2 · Mengcheng Li1 · Hao‑Ling Xu3 · Ziqiang Huang1 · Naping Chen1 · Yuqing Tu1 · 
Qunlin Chen1 · Shirui Gan4,5 · Dairong Cao1,6,7 

Accepted: 16 July 2021 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Spinocerebellar ataxias type 3 (SCA3) patients are clinically characterized by progressive cerebellar ataxia combined with 
degeneration of the cerebellum. Previous neuroimaging studies have indicated ataxia severity associated with cerebellar 
atrophy using univariate methods. However, whether cerebellar atrophy patterns can be used to quantitatively predict ataxia 
severity in SCA3 patients at the individual level remains largely unexplored. In this study, a group of 66 SCA3 patients and 
58 healthy controls were included. Disease duration and ataxia assessment, including the Scale for the Assessment and Rat-
ing of Ataxia (SARA) and the International Cooperative Ataxia Rating Scale (ICARS), were collected for SCA3 patients. 
The high-resolution T1-weighted MRI was obtained, and cerebellar grey matter (GM) was extracted using a spatially 
unbiased infratentorial template toolbox for all participants. We investigated the association between the pattern of cerebel-
lar grey matter (GM) loss and ataxia assessment in SCA3 by using a multivariate machine learning technique. We found 
that the application of RVR allowed quantitative prediction of both SARA scores (leave-one-subject-out cross-validation: 
correlation = 0.56, p-value = 0.001; mean squared error (MSE) = 20.51, p-value = 0.001; ten-fold cross-validation: correla-
tion = 0.52, p-value = 0.001; MSE = 21.00, p-value = 0.001) and ICARS score (leave-one-subject-out cross-validation: cor-
relation = 0.59, p-value = 0.001; MSE = 139.69, p-value = 0.001; ten-fold cross-validation: correlation = 0.57, p-value = 0.001; 
MSE = 145.371, p-value = 0.001) with statistically significant accuracy. These results provide proof-of-concept that ataxia 
severity in SCA3 patients can be predicted by the alteration pattern of cerebellar GM using multi-voxel pattern analysis.
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Introduction

Spinocerebellar ataxias type 3 (SCA3) is the most com-
mon autosomal dominant ataxia worldwide. SCA3 belongs 
to polyglutamine diseases caused by abnormal CAG repeat 
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expansions within the coding region of ATXN3 (Hershe-
son et al. 2012; Klockgether et al. 2019). SCA3 patients 
are clinically characterized by degeneration of the cer-
ebellum and cerebellar interconnection. The predominant 
symptoms in SCA3 are cerebellar ataxia with progressive 
external ophthalmoplegia, dysarthria, dysphagia, dystonia, 
rigidity, pyramidal signs, and peripheral neuropathy (Gui-
marães et al. 2013; Rezende et al. 2018).

To evaluate disease severity and clinical outcome, 
several well-validated scales, such as the Scale for the 
Assessment and Rating of Ataxia (SARA) (Trouillas et al. 
1997) and the International Cooperative Ataxia Rating 
Scale (ICARS) (Schmitz-Hübsch et al. 2006), have been 
developed. As a semiquantitative assessment of cerebellar 
symptoms on an impairment level, these scales are now 
widely used in clinical trials (Perez-Lloret et al. 2021). 
Moreover, previous neuroimaging studies showed that 
damage of infratentorial structures is significantly associ-
ated with SARA, ICARS, and disease duration (D’Abreu 
et al. 2012; Fahl et al. 2015; Jacobi et al. 2012; Kang et al. 
2014; Schulz et al. 2010).

Although previous Voxel-based morphometry (VBM) 
studies have revealed the correlation between atrophy of 
the cerebellar cortex and ataxia severity, these analyses 
were typically performed based on the whole brain tem-
plate (D’Abreu et al. 2012; Guimarães et al. 2013; Schulz 
et al. 2010). Due to limited contrast for cerebellar structures, 
whole-brain VBM analysis has been especially affected by 
inter-subjects misregistration in the infratentorial space. To 
circumvent this issue, a high-resolution atlas template of 
the human cerebellum and brainstem (SUIT, spatially unbi-
ased infratentorial template) has been developed, which pre-
serves more anatomical details of the cerebellum and has 
less spatial variance across individuals (Diedrichsen 2006). 
Recent studies have shown that the SUIT is more sensitive 
than the whole-brain template to identify cerebellar mor-
phological changes (Hirjak et al. 2015; Lindig et al. 2019; 
Wolf et al. 2015). Besides, conventional VBM analysis was 
usually performed by a mass-univariate approach, in which 
all the voxels are tested individually to detect statistically 
abnormal brain regions. However, co-varied and distributed 
effects across the brain voxels were ignored in the univari-
ate approach. Moreover, the univariate approach describes 
differences at the group level and cannot make a prediction 
at the individual level, which is more desirable in clinical 
practice.

Recently, machine learning techniques, such as Multi-
voxel pattern analysis (MVPA), have been increasingly 
used to discover the potential biomarkers within the neu-
roimaging data (Mateos-Pérez et al. 2018). As a multivari-
ate approach, MVPA can provides an ideal framework for 
investigating the relationship between the spatially distrib-
uted pattern of brain activation and clinical measurement, 

which can subsequently be used to predict the individual 
subject (Weaverdyck et al. 2020).

In the current study, we investigated the associations 
between alteration of cerebellar gray matter (GM) and 
clinical measurements (disease duration, SARA scale, 
and ICARS scale) in SCA3 patients by using the MVPA 
approach. We hypothesized that multivariate analysis 
would be sensitive to identify associations between cer-
ebellar GM atrophy and clinical measurements, and that 
alteration patterns of cerebellar GM atrophy can predict 
an individual’s clinical measurements in SCA3 patients.

Methods

Subjects

A group of 66 genetically confirmed SCA3 patients and 
58 age- and gender-matched healthy individuals were 
recruited between December 2018 and March 2020. 
Demographic and clinical data of the study population are 
given in Table 1. All the participants were right-handed. 
None of them had a history of alcohol abuse, previous neu-
rologic disorders, and contraindications for MRI exami-
nation. The local ethical committee approved the study 
protocol. All participants signed informed consent before 
the study procedure.

Clinical assessment

The severity of cerebellar ataxia was assessed based on the 
SARA scale and ICARS scale by an experienced neurolo-
gist within 3 days before the MRI scan. Disease duration 
was defined as the time from motor symptoms onset to 
MRI examination.

Table 1   Demographics and clinical characteristics of SCA3 patients 
and controls

Note: SCA3: spinocerebellar ataxias type 3; N: Number; SARA: 
Scale for the Assessment and Rating of Ataxia; ICARS: The Interna-
tional Cooperative Ataxia Rating Scale; *: two sample t test for age; 
** Chi-square tests for sex

Group SCA3 patients Health controls p value

N 66 58
Age (years) 41.83 ± 10.27 43.17 ± 13.21 0.52*
Sex (male/female) 34/32 32/26 0.68**
Disease duration 

(years)
8.49 ± 4.15 -

SARA​ 11.52 ± 5.46 -
ICARS 29.70 ± 14.66 -
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Image acquisition

All participants underwent an MRI examination using a 
3-Tesla Siemens Skyra scanner with a 20-channel head-neck 
coil. High resolution anatomical scans were acquired using 
T1-weighted 3D magnetization prepared rapid gradient-
echo (MPRAGE) sequence with the following parameters: 
repetition time = 2300 ms, echo time = 2.3 ms, inversion 
time = 900 ms, flip angle = 8, field of view = 256  × 256 
mm2, matrix = 256 × 256, bandwidth of 200 Hz/Px, 192 
slices per slab, voxel size = 1.0 mm×1.0 mm × 1.0 mm, 
acquisition time = 5.18 min.

Image Processing

Structural MRI data analysis was undertaken using Statisti-
cal Parametric Mapping software (SPM12, http://​www.​fil.​
ion.​ucl.​ac.​uk/​spm) based on MATLAB R2017b. Cerebellar 
data processing was performed using SUIT toolbox (v3.2) 
(http://​www.​diedr​ichse​nlab.​org/ imaging/suit.htm). Before 
data preprocessing, all the subjects’ images were visually 
checked to ensure acceptable image quality and were manu-
ally reoriented to the anterior commissure of each subject in 
order to minimize errors during the image processing. The 
processed steps were as follows: firstly, the cerebellum and 
brainstem structures were isolated from the surrounding tis-
sues, and tissue probability maps of cerebellar gray-matter 
and white-matter were obtained. The masks of cerebellar 
gray matter, cerebellar white matter and cerebellum were 
created with an absolute threshold of 0.2. Secondly, the 
cerebellar GM segmentation maps were then normalized 
and resliced to the SUIT template using the DARTEL algo-
rithm. Finally, the probability maps of cerebellar GM were 
smoothed with a 4-mm FWHM isotropic Gaussian filter in 
SPM12.

T1-weighted images were also processed using SPM12/
DARTEL to obtain total intracranial volume (TIV), which 
was calculated for each subject by adding the volume of gray 
matter, white matter, and cerebrospinal fluid. These TIV val-
ues were then used as covariates to account for individual 
differences in whole-brain volume in the following analysis.

Anatomical localizations were identified by the probabil-
istic MRI atlas of the human cerebellum (Diedrichsen and 
Zotow 2015; Diedrichsen et al. 2009).

Univariate SPM analysis

A voxel-wise two-sample t-test based on the smoothed and 
normalized cerebellar GM images was conducted to iden-
tify cerebellar GM differences between SCA3 patients and 
healthy controls. The sex, age, and TIV of each participant 
were entered as covariates of no interest. Results were con-
sidered significant at p-values < 0.05 after FWE correction 

at voxel-level with a minimum cluster extent of 499 vox-
els (corresponding to p-values < 0.05, FWE corrected at 
cluster-level).

In order to compare with the results of MVPA, we also 
investigated the relationship between cerebellar GM and 
clinical measurements (SARA scores, ICARS scores, and 
disease duration) in our SCA3 group by using a univariate 
VBM analysis. A multiple regression model was conducted 
to look for regions with either a linear increase or decrease 
in cerebellar GM associated with clinical measurement. The 
sex, age, and TIV were entered as covariates of no interest. 
Statistical inferences were made at p-values < 0.001 uncor-
rected at voxel-level with a minimum cluster extent 20 vox-
els. The results were also observed at a more conservative 
statistical threshold (p-values < 0.05 after FWE voxel -level 
correction with a minimum cluster extent 20 voxels).

Multi‑voxel pattern analysis

Regression-based MVPA was performed using the Pattern 
Recognition for Neuroimaging Toolbox (PRoNTo v2.1) 
(http://​www.​mlnl.​cs.​ucl.​ac.​uk/​pronto/). The smoothed and 
normalized cerebellar GM images were inputted as the input 
features, while different clinical measurement was entered 
as the regression target. We tested three pattern regression 
models implemented in PRoNTo: Relevance Vector Regres-
sion (RVR), Gaussian Process Regression (GPR) and Kernel 
Ridge Regression (KRR). We found that the results were 
similar across these regression models but RVR showed 
slighter better results. Therefore, we only present the results 
of RVR for the sake of brevity (the results of the other mod-
els were listed in the Supplementary Material). RVR is a 
sparse kernel-based pattern recognition method based on a 
probabilistic Bayesian framework. The model weights are 
initially assigned a Gaussian prior with mean zero and then 
are iteratively optimized through the training process. The 
optimized posterior distribution over the model weights 
can then be used to predict the target value for a previously 
unseen input vector by computing the predictive distribu-
tion (Tipping 2001). Although age, gender and TIV were 
considered potential confounders affecting the patterns of 
cerebellum grey matter, removing these confounds is likely 
to remove not only the variability related to the confounds 
but also variability associated with the labels in the data 
(Portugal et al. 2019). Herein, we performed the analysis 
without removing confounds. We also repeated the analysis 
considering age, gender and TIV as confounds (covariates) 
and submitted the results to the Supplementary Material.

The model performance was evaluated based on two 
different cross-validation strategies (leave-one-subject-out 
cross-validation and tenfold cross-validation) with normaliz-
ing the samples and mean-centering features across training 
data. Leave-one-subject-out cross-validation is a validation 
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method in which one sample is left out as the testing data, 
the other samples are used to train the model, and doing so 
N times so that each sample is left out once. In tenfold cross-
validation, the original sample is randomly divided into 10 
subgroups. One of the 10 subgroups is iteratively assigned 
as the testing data, and the remaining subgroups are used as 
training data until all subgroups have been used for testing 
data. The Pearson correlation coefficient and mean square 
error (MSE) between the actual value and predicted value 
across all subjects were computed to quantify the prediction 
accuracy. The significance of both the correlation coefficient 
and the MSE score was estimated using a permutation test 
with 1,000 iterations. Permuted p-value < 0.05 was consid-
ered significant.

In addition to the main aim of the current study, classifica-
tion-based MVPA was also performed to investigate whether 
healthy and SCA3 patients can be distinguished based on the 
alteration pattern of their cerebellum GM. Two pattern clas-
sification models, binary support vector machines (SVM) 
and Gaussian processes classification (GPC), were applied 
for the same cross-validation schemes and the same sample 
(124 subjects n = 66 SCA3 patients and n = 58 healthy indi-
viduals). We found that the results were similar in the SVM 
model and the GPC model. Therefore, we only presented 
the results of GPC model without removing confounds and 
submitted the results of SVM classification model to the 
Supplementary Material. The classification performance 
was evaluated using balanced accuracy and accuracies per 
class. A permutation test with 1000 permutations was used 
to determine the significance of the classification perfor-
mance measures.

To view the predictive model results, the weight maps 
were built at both the voxel level and region of interest 
(ROI) level. In the ROI level, each cerebellar subregion 
was defined by the SUIT atlas, and the mean of all voxel 
weights (absolute values) within cerebellar subregions were 
computed. Finally, all the labeled subregions were ranked 
according to the normalized weights that contributed to the 
pattern recognition modeling.

Results

Participants

All participants’ characteristics were presented in Table 1. 
There were no differences in terms of age, sex between 
SCA3 patients and healthy controls.

Univariate SPM analysis

Compared to the control group, SCA3 patients demon-
strated extensive GM volume reduction involving almost all 

cerebellar lobules, except the small part far away from the 
middle line in bilateral lobules VIIb, bilateral lobules VIIIa, 
and bilateral lobules VIIIb (Fig. 1). There was no evidence 
of increased cerebellar GM volume in the SCA3 group.

The cerebellar GM patterns associated with the SARA 
and ICARS scores were very similar (Fig. 2). With a less 
conservative statistical threshold (p-values < 0.001 uncor-
rected at voxel-level with a minimum cluster extent 20 vox-
els), cerebellar subregions showing significant negative asso-
ciations with SARA scores and ICARS scores were mainly 
found in bilateral lobules I_IV, bilateral lobules VIIIb, bilat-
eral lobules VIIIa, bilateral lobules VIIb, bilateral lobules 
CrusII, and bilateral lobules IX. However, under a conserva-
tive statistical threshold (p-values < 0.05 after FWE voxel 
-level correction with a minimum cluster extent 20 voxels), 
only small significant clusters involving bilateral lobules 
VIIb were shown (right: cluster size = 346 voxels, peak MNI 
coordinates x/y/z = 12/-68/-39, peak T = -6.31, left: cluster 
size = 49 voxels, peak MNI coordinates x/y/z =—-4/-74/-
39, peak T = -5.76 for SARA scale; right: cluster size = 308 
voxels, peak MNI coordinates x/y/z = 12/-68/-39, peak 
T = -6.24, left: cluster size = 95 voxels, peak MNI coordi-
nates x/y/z = -5/-74/-40, peak T = -5.73 for ICARS scale). 
There was no significant positive association between cere-
bellar GM volume and clinical measurements (SARA scores 
and ICARS scores). There were also no significant positive 
or negative associations between cerebellar GM volume and 
disease duration, even with a less conservative statistical 
threshold (p-values < 0.001 uncorrected at voxel-level with 
a minimum cluster extent 20 voxels).

Multi‑voxel pattern analysis

The application of RVR model to cerebellar GM allowed 
quantitative prediction of SARA scores with statisti-
cally significant accuracy (leave-one-subject-out cross-
validation: correlation = 0.56, p-value = 0.001; mean 
squared error = 20.51, p-value = 0.001; tenfold cross-
validation: correlation = 0.52, p-value = 0.001; mean 
squared error = 21.00, p-value = 0.001), and also allowed 
quantitative prediction of ICARS scores with statistically 
significant accuracy (leave-one-subject-out cross-valida-
tion: correlation = 0.59, p-value = 0.001; mean squared 
error = 139.69, p-value = 0.001; ten-fold cross-valida-
tion: correlation = 0.57, p-value = 0.001; mean squared 
error = 145.371, p-value = 0.001). In contrast, the application 
of RVR model did not allow accurate prediction of disease 
duration (leave-one-subject-out cross-validation: correla-
tion = 0.18, p-value = 0.089; mean squared error = 18.25, 
p-value = 0.098; ten-fold cross-validation: correlation = 0.17, 
p-value = 0.089; mean squared error = 18.86, p-value = 0.13).

The voxel-based and ROI-based weight maps of patterns 
contributing to the RVR model predictions were displayed 
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on the cerebellar flatmap (Diedrichsen and Zotow 2015). 
For the sake of brevity, we display the results of the model 
based on the leave-one-subject-out cross-validation in the 
main manuscript (the results of the model based on the 
tenfold cross validation and the other regression models 
can be found in the Supplemental Material: Fig.S01-S11, 

Table S01-S12). The weights distributions of the predic-
tive model between SARA scores and ICARS scores were 
similar. The top 10 cerebellar subregions contributing most 
to the RVR model for predicting different clinical scales 
(SARA scores and ICARS scores) were displayed in Fig. 3 
and Table 2. A total weighted value of these cerebellar 

Fig. 1   Comparison between SCA3 patients and the control group. 
Anatomical locations of the cerebellar lobules on the cerebellar flat-
map for orientation (A). Group differences between SCA3 patients 

and the control group are displayed on the cerebellar flatmap (B) and 
SUIT template (C)

Fig. 2   The result of univariate 
regression analysis. Cerebel-
lar regions showing significant 
negative association with SARA 
scale (A) and ICARS scale (B) 
at p-values < 0.001 uncorrected 
with a minimum cluster extent 
20 voxels. Significant clusters 
enclosed by the red circle were 
made at a more conservative 
statistical threshold (p-val-
ues < 0.05, FWE correction with 
a minimum cluster extent 20 
voxels)

383Brain Imaging and Behavior (2022) 16:379–388



1 3

subregions represented nearly 45% of the regression func-
tions’ total weights. Generally, the cerebellar lobules with 
the highest contributions to the predictions were bilateral 
lobules I_IV, bilateral lobules VIIIb, right lobules VIIIa, 
right lobules IX, left lobules V, Vermis VIIIa, Vermis IX 
for both SARA scale and ICARS scale, left lobules VIIb for 
SARA scale, and Vermis VIIIb for ICARS scale.

The application of GPC models to cerebellar GM 
allowed accurately discriminate SCA3 patients ver-
sus healthy individuals with statistically significant 
accuracy (leave-one-subject-out cross-validation: bal-
anced accuracy = 91.90%,p-value = 0.001, SCA3 
accuracy = 92.42%, p-value = 0.001 and healthy 
accuracy = 91.38%, p-value = 0.001; ten-fold cross-val-
idation: balanced accuracy = 90.39%, p-value = 0.001, 
SCA3 accuracy = 89.39%,  p-value = 0.001 and healthy 

accuracy = 91.38%, p-value = 0.001). The voxel-based and 
ROI-based weight maps of patterns contributing to these 
classification model predictions were also presented in the 
Supplemental Material (Fig.S12-S19, Table S13-S17). Gen-
erally, the top 10 cerebellar subregions that contribute most 
to classification were very similar to those that contribute 
most to prediction.

Discussion

The current study used an MVPA approach to investigate 
associations between the pattern of cerebellar GM loss and 
ataxia severity in SCA3 patients. The application of the RVR 
model to cerebellar GM images allowed the prediction of 
individual cerebellar ataxia. Moreover, those cerebellar 

Fig. 3   The result of Multi-voxel 
pattern analysis. Top panel: 
Scatter plot showing the actual 
score vs. the corresponding 
predicted score for the SARA 
scale (A) and the ICARS scale 
(B). Bottom panel: Voxel based 
predictive pattern maps for the 
RVR model predicting SARA 
(C) scores and ICARS (D) 
based on leave-one-subject-out 
cross-validation. The color 
bar indicates the weight of 
voxels for decoding the clinical 
scale. ROI-based pattern map 
based on the top 10 cerebellar 
subregions contributing most to 
the RVR model for predicting 
SARA (E) scores and ICARS 
(F). The color bar indicates the 
percentage of the total normal-
ized weights of each subregion. 
SARA: Scale for the Assess-
ment and Rating of Ataxia; 
ICARS: The International 
Cooperative Ataxia Rating 
Scale. r: Pearson correlation 
coefficient. RVR: Relevance 
Vector Regression
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subregions most contributing to the predictive model also 
demonstrated significant associations with these clinical 
scores in univariate regression analysis, which in turn sup-
ported our multivariate pattern analysis.

The cerebellum is the main structure affected by SCA3. 
Neuropathological and structural MRI studies have con-
firmed neuronal loss, structural or functional degeneration 
in the cerebellar cortex in SCA3 (Lukas et al. 2006; Reetz 
et al. 2013; Scherzed et al. 2012; Stefanescu et al. 2015). In 
line with the findings of previous studies, we also detected 
marked GM loss in the cerebellum when compared with 
health controls in the univariate analysis. Moreover, due to 
the use of the SUIT template to improve normalization of 
the cerebellum structures and registration of the infratento-
rial space, more extensive loss of the cerebellar GM vol-
ume, involving almost all lobules of the cerebellum, was 
identified in our study. In the present study, the cerebellum 
regions with the largest weights for both regression-based 
and classification-based MVPA were consistent with the 

result of current univariate analysis and previous literatures, 
suggesting that the close relationship between cerebellar GM 
atrophy and the progression of SCA3.

Cerebellar ataxia is the most prominent symptom of 
SCA3, which is characterized by progressive incoordina-
tion of body movement and gait. As two main scales for 
assessing the severity of cerebellar ataxia, both the SARA 
scale and ICARS scale have been previously validated to be 
practical and efficient in SCA3 patients (Perez-Lloret et al. 
2021). Although assessment items and assessment time were 
slightly different, the SARA scale and the ICARS scale were 
reported to be highly correlated (Yabe et al. 2008). There-
fore, in the present study, similar altered patterns of cerebel-
lar GM for the SARA score and ICARS score were illus-
trated both in the MVPA and univariate regression analysis.

In the MVPA, we found the cerebellar subregions that 
contributed most to the RVR model included lobules 
I_IV,lobules VIIIa, lobules VIIIb, and lobules VIIb. The 
damage of cerebellar subregions is highly symptom-spe-
cific. Lobules I_IV belongs to the cerebellum’s anterior 
lobe, which is considered a somatotopic representation of 
the superior cerebellar cortex (Guell & Schmahmann 2020; 
Lehman et al. 2020). Previous studies based on voxel-based 
lesion symptom mapping analysis have indicated that lesions 
located at lobules I_IV were correlated with ataxia of move-
ment, posture, and gait (Drijkoningen et al. 2015; Gellersen 
et al. 2017). Besides, as an important part of the sensorimo-
tor network, lobules VIIIa/b are supposed to the secondary 
representation of somatosensory; and lobules VIIb belonged 
to the executive network is involved in the execution of com-
plex motor task (Buckner et al. 2011; Habas et al. 2009; 
Stoodley & Schmahmann 2009). In some studies, these cer-
ebellar subregions have also been reported to be associated 
with motor impairments and cerebellar ataxia (Goel et al. 
2011; Lukas et al. 2006; Reetz et al. 2013). More interest-
ingly, similar to the result of MVPA, we found cerebellar 
GM loss in these subregions were also negatively associated 
with the SARA scores and ICARS scores in the univariate 
regression analysis, which further strengthens the evidence 
linking cerebellar GM loss with ataxia severity.

In the univariate analytical approach, each voxel in cer-
ebellar GM images is interpreted as a spatially independ-
ent unit and tested individually against the ataxia score. 
Although the univariate analysis is well suited to detect 
robust and localized effects, it is not very sensitive to detect 
the differences in spatially distributed patterns. In con-
trast to the univariate approach, MVPA, as a multivariate 
machine learning method, focus on whether the spatial pat-
tern of alterations across the brain is correlated with clini-
cal symptoms (Mateos-Pérez et al. 2018; Weaverdyck et al. 
2020). In recent neuroimaging studies, MVPA based on the 
RVR model has also been successfully applied to predict 
illness severity in patients with psychiatric or neurological 

Table 2   The top 10 cerebellar subregions contributing most to the 
RVR model based on leave-one-subject-out cross-validation for pre-
diction of SARA scores and ICARS scores

Note: Anatomical localizations were identified by the probabilistic 
MRI atlas of the human cerebellum. Weight: the normalized contri-
bution of each region and displayed as a percentage. Size: the voxels 
number of the patterns in each cerebellar region. Expected ranking: 
the ranking stability of each region across folds; SARA: Scale for the 
Assessment and Rating of Ataxia; ICARS: The International Coop-
erative Ataxia Rating Scale

Region Weight (%) Size (voxels) Expected Ranking

Prediction of SARA scores
  Left_I_IV 5.02 4895   33.47
  Vermis_VIIIa 4.67 1554   31.50
  Left_VIIIb 4.47 5756   31.49
  Right_IX 4.37 4857   29.79
  Right_VIIIb 4.35 5548   30.08
  Right_VIIIa 4.07 6339   27.29
  Right_I_IV 3.95 5491   26.05
  Left_VIIb 3.94 6474   24.36
  Vermis_IX 3.91 1019   24.74
  Left_V 3.89 6052   25.49

Prediction of ICARS scores
  Left_I_IV 5.71 4895   33.92
  Right_I_IV 4.51 5491   31.24
  Right_IX 4.51 4857   31.80
  Vermis_VIIIb 4.50 798     31.62
  Right_VIIIb 4.30 5548   29.06
  Vermis_VIIIa 4.16 1554   28.19
  Left_V 4.13 6052   28.35
  Vermis_IX 4.12 1019   27.21
  Left_VIIIb 4.06 5756   26.67
  Right_VIIIa 3.88 6339   25.15
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disorders (Abela et al. 2019; Tognin et al. 2013). Cerebellar 
ataxia is a neurological dysfunction of motor coordination 
that can affect limb movement, balance, and gait, as well 
as oculomotor control, depending on the different cerebel-
lar regions involved (Schoch et al. 2006). Due to different 
cerebellar subregions involved and different involvement 
degree, patients with cerebellar ataxia can take on different 
manifestations. This indicated that the alteration pattern of 
cerebellar cortex atrophy is important for predicting ataxia 
severity in SCA patients. In addition, it should be noted that 
most of significant clusters were eliminated after correction 
for multiple comparisons to control Type I error in the uni-
variate regression analysis. Therefore, these results suggest 
that MVPA might be more suitable for detecting the sub-
tle and spatially alterations across the cerebellum in SCA3 
patients, while these alterations could not be identified using 
a univariate approach.

In this study, we could not find the association between 
cerebellar cortex atrophy and disease duration, whether 
based on univariate regression analysis or based on MVPA. 
One of the possible explanations for our results is the floor 
effect (D’Abreu et al. 2012). Due to the average disease dura-
tion in our SCA3 group was about 8.49 years, the atrophy 
degree in the cerebellar cortex was usually so obvious that 
minor progressive changes would not be identified. In addi-
tion, previous studies also showed a diversity of the associa-
tion between disease duration and cerebellar cortex atrophy 
in SCA3 patients (D’Abreu et al. 2012; Goel et al. 2011; 
Schulz et al. 2010).

There were some limitations to the present study. Firstly, 
the present study is a single center study with relatively 
small sample size. More importantly, although we applied 
two different cross-validation strategies (leave-one-subject-
out cross-validation and tenfold cross-validation) to dem-
onstrate the reliability of the predictive model, ideally, the 
predictive model should be validated with truly independent 
samples. Thus, multi-center studies with larger sample sizes 
are necessary to confirm the robustness of predictive models. 
Secondly, previous studies have indicated that ataxia severity 
was also negatively associated with cerebellar white matter, 
brainstem, and supratentorial cerebral structure (de Rezende 
et al. 2015; Kang et al. 2014). In further research, it would be 
interesting to improve the prediction model by using multi-
modal image data (for example, combining T1weighted 
image and DTI image) involved the above brain structure.

Conclusions

In summary, unlike univariate analysis, MVPA focuses on 
a distributed pattern of alteration across the brain associ-
ated with clinical symptoms. Our results suggested that 
MVPA is a valid approach for predicting ataxia severity at 

the individual subject in SCA3 patients. This result also pre-
sents a novel perspective to elucidate cerebellar pathophysi-
ological alterations in SCA3 patients.
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