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Abstract
Hippocampal atrophy is often considered as one of the important biomarkers for early diagnosis of Alzheimer’s disease (AD),
which is an irreversible neurodegenerative disorder. Traditional methods for hippocampus analysis usually computed the shape
and volume features from structural Magnetic Resonance Image (sMRI) for the computer-aided diagnosis of AD as well as its
prodromal stage, i.e., mild cognitive impairment (MCI). Motivated by the success of deep learning, this paper proposes a deep
learning method with the multi-channel cascaded convolutional neural networks (CNNs) to gradually learn the combined
hierarchical representations of hippocampal shapes and asymmetries from the binary hippocampal masks for AD classification.
First, image segmentation is performed to generate the bilateral hippocampus binary masks for each subject and the mask
difference is obtained by subtracting them. Second, multi-channel 3D CNNs are individually constructed on the hippocampus
masks and mask differences to extract features of hippocampal shapes and asymmetries for classification. Third, a 2D CNN is
cascaded on the 3D CNNs to learn high-level correlation features. Finally, the features learned by multi-channel and cascaded
CNNs are combinedwith a fully connected layer followed by a softmax classifier for disease classification. The proposedmethod
can gradually learn the combined hierarchical features of hippocampal shapes and asymmetries to enhance the classification. Our
method is verified on the baseline sMRIs from 807 subjects including 194 AD patients, 397 MCI (164 progressive MCI
(pMCI) + 233 stable MCI (sMCI)), and 216 normal controls (NC) from Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset. Experimental results demonstrate that the proposed method achieves an AUC (Area Under the ROC Curve) of 88.4%,
74.6% and 71.9% for AD vs. NC, MCI vs. NC and pMCI vs. sMCI classifications, respectively. It proves the promising
classification performance and also shows that both hippocampal shape and asymmetry are helpful for AD diagnosis.
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Introduction

Alzheimer’s disease (AD) is the most common neurodegen-
erative disorder in the world, characterized by the progressive
impairment of cognitive functions and ultimately resulting in

irreversible loss of neurons. It is one of the leading causes of
dementia affecting the late-life of humans. Mild cognitive im-
pairment (MCI) is considered as the prodromal stage and clin-
ical precursor of AD when suffered from memory loss. It can
be further divided into two types: stable MCI (sMCI) and
progressive MCI (pMCI). As the name suggests, pMCI indi-
cates that the subjects have a greater potential for further de-
terioration and conversion into AD, while sMCI subjects
show relatively stable symptoms (Minati et al. 2009; Prince
et al. 2015). Currently, there is no effective way found to cure
AD. However, some treatments can be taken to delay the
progression of AD, which has made the early diagnosis of
AD especially important and meaningful. Magnetic resonance
imaging (MRI) is a non-invasive and powerful imaging tool to
obtain three-dimensional images of the human brain (Herrup
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2011; Jacka et al. 2011). MRI of different modalities can char-
acterize the structural and functional brain changes related to
various brain development abnormalities, including AD and
its progression. Specifically, structural MRI is widely applied
for computer-aided diagnosis of AD and MCI, due to its sen-
sitivity to aging and atrophy of human brain.

The fast development of computer vision and machine
learning methods has motivated their applications on the
computer-aided-diagnosis of AD with MR images (Liu et al.
2013a, b; Suk et al. 2015; Zhang et al. 2011). The early diag-
nosis of dementia throughMR image computing and analyisis
can be performed on the whole brain or regions of interest
(ROIs). Compared with the whole brain, ROIs can provide
morphological measurements of brain regions for AD diagno-
sis (Herrup 2011; Suk et al. 2015; Zhang et al. 2011). Suk
et al. (2015) proposed to build a deep-stacked auto-encoder to
combine the latent information with the original features of
ROIs, achieving high diagnostic accuracy of AD classifica-
tion. Liu et al. (2015) proposed a novel diagnostic framework
with the deep-stacked autoencoder to learn high-level features
of ROIs and with a zero-masking strategy for fusion of fea-
tures from multiple image modalities.

Among all ROIs in the brain, the hippocampus is considered
to be the earliest region that suffered damage from dementia and
is strongly correlated to AD. Many studies have extracted fea-
tures from the hippocampus and its affiliated areas for AD diag-
nosis based on sMRI (Chupin et al. 2010; Cui and Liu 2018; Ho
et al. 2011; Jyrki et al. 2011; Shen et al. 2012). Since hippocam-
pal atrophy is often found in the early stage of AD, the shape and
volume analysis of the bilateral hippocampi based on MRIs are
usually investigated in most of the existing methods. Chupin
et al. (2010) proposed a fully automatic framework to segment
the hippocampus based on probabilistic and anatomical priors,
and the volumes of the segmented hippocampus were proved to
be significantly associated with AD. However, the volume cal-
culation only represents the global variation of the hippocampus,
which is limited by individual differences of hippocampus vol-
umes on different subjects. Therefore, shape analysis was then
proposed to focus on the morphological differences and changes
of the hippocampus, further improving the efficiency of AD
diagnosis (Beg et al. 2013; Emilie et al. 2009; Lindberg et al.
2012). Local atrophy of the hippocampus, which is relevant to
AD diagnosis, can be captured more precisely by shape analysis
methods. Lindberg et al. (2012) proposed a shape analysis meth-
od to map the hippocampus segmentation mask into the spher-
ical harmonic shape description (SPHARM-PDM) and found
that most atrophic deformation was mainly distributed in CA1
and subiculum areas inAD.Comparedwith the volume analysis,
this method can realize more comprehensive morphological and
structural analysis of the hippocampus. A hippocampus analysis
method was proposed to build a 3D Densely Connected
Convolutional Networks (DenseNet) to learn the features of hip-
pocampal regions which were further combined with the

SPHARM-PDM for AD diagnosis (Cui and Liu 2018). In this
method, the DenseNet was built on the local MR image patches
of the hippocampus to learn the visual features of MR image
while the SPHARM-PDMwas applied on the binary hippocam-
pal masks to extract the shape features. These two types of fea-
tures were combined to enhance AD classification. Moreover,
relevant studies found that there are also internal differences and
asymmetry in the atrophy between left and right hippocampus in
AD patients (Barnes et al. 2005; Hou et al. 2013; Maruszak and
Thuret 2014; Yue et al. 2018), which further provided an impor-
tant reference for early diagnosis and analysis of AD.

In this paper, we intend to propose a novel hippocampus
analysis method based on multi-channel and cascaded
convolutional neural networks (CNN), which can automatically
learn and extract the combined hierarchical representations of
hippocampal shapes and asymmetries from the binary hippo-
campal masks for AD diagnosis. First, the hippocampus seg-
mentation is performed on the T1-weighted MR images to gen-
erate two binary masks, and the asymmetry mask is obtained by
calculating the difference between the left and right hippocam-
pus masks. Second, multi-channel 3D CNNs are individually
trained with the hippocampal and asymmetry masks to hierar-
chically extract both shape and asymmetry features for image
classification. An upper 2D CNN is cascaded at the end of 3D
CNNs to capture the high-level correlation features. Finally, the
multiscale features learned by the multi-channel and cascaded
CNNs are combined for AD classification, and the saliency
maps are also investigated to gauge the importance of corre-
sponding hippocampal surface locations in AD classification
for interpretation. The proposed method can jointly learn the
combined hierarchical features of hippocampal shapes and
asymmetries and the ensemble classifier has a stronger recogni-
tion ability for AD. Our method is evaluated with the baseline
T1-weighted structural MR images from 194 AD, 164 pMCI,
233 sMCI, and 216 NC subjects from the ADNI dataset.

Compared with our previous works (Cui and Liu 2018), this
paper has great differences in the investigated features and the
deep neural network architecture of the proposed method for
hippocampus analysis inADdiagnosis. In this paper, we propose
to learn the combined features of hippocampal surfaces from the
binary hippocampal masks, while our previous works explored
the detailed visual features of MR images in the hippocampal
regions. The network in this paper consists of three-channel and
cascaded convolutional neural networks to hierarchically learn
the features, while the network proposed in the previous works
consists of the DenseNets with a set of dense blocks.

Materials and method

In this section, we present the proposed hippocampus analysis
method using the T1-weighted MR brain images. In the pro-
posed method, a multi-channel cascaded deep CNN model is
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proposed to gradually learn and combine the features of hip-
pocampal shapes and asymmetries for AD diagnosis. Figure 1
shows the flowchart of our proposed algorithm, which con-
sists of four main steps: 1) image acquisition and pre-
processing; 2) segmentation of hippocampus; 3) feature learn-
ing by multi-channel cascaded CNNs; 4) final ensemble clas-
sification. More details of these steps are provided in the fol-
lowing subsections.

Materials

The MR images under this study were collected from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset.
ADNI was initially launched in 2003 and funded as a private-
public partnership contributed by private companies and the
Foundations for the National Institutes of Health and the
National Institute on Aging. It is a longitudinal multi-center
study of healthy controls, mild cognitive impairment (MCI)
and AD. Magnetic resonance imaging (MRI), (18F)-
fluorodeoxyglucose positron emission tomography (FDG-
PET), genetic and biochemical biomarkers, as well as the clin-
ical and cognitive assessments, are captured for the partici-
pants at multiple time points. Their aim is to find out the
specific correlations among clinical diagnosis results, cogni-
tive assessments, the brain imaging, genetic and biochemical
biomarkers during the entire spectrum of AD. The initial five-
year study of ADNI, i.e., ADNI-1 was extended to ADNI-GO
in 2009 by a Grand Opportunities grant, and further extended
to ADNI-2, and ADNI-3 in 2011 and 2016 by competitive
renewals.

In this work, we use the baseline T1-weighted MR brain
imaging data fromADNI-1 for training the deep learningmodel

and evaluating the proposed classificationmethod. The baseline
ADNI-1 dataset applied here consists of 1.5 T T1-weightedMR
images of 807 subjects, including 194 AD, 164 pMCI, 233
sMCI and 216 normal controls (NC). The demographic and
clinical information of the studied subjects are shown in
Table 1, including the age, gender, education and clinical men-
tal scores. Pre-processing of the images was performed before
feature extraction. All MR brain images were preprocessed
using a nonparametric nonuniform intensity normalization al-
gorithm for correcting the inhomogeneity of image intensities,
followed by skull-stripping and cerebellum removal (Sled et al.
1998;Wang et al. 2011). The affine registration with 12 degrees
of freedom was then performed by setting the default parame-
ters to linearly register the 3D structural MR images to a tem-
plate image by using FSL 5.0 (Jenkinson et al. 2012; Smith
et al. 2004; Woolrich et al. 2009).

Hippocampus segmentation

In the existing clinical studies, the hippocampus has been
repeatedly proved to be the most closely related to dementia.
The decline in cognitive abilities is usually accompanied by
some significant hippocampal atrophy. To achieve hippocam-
pus analysis, it is necessary to segment the hippocampus from
the providedMR images. Here we develop the 3D deepU-Net
with a Dice-like loss function following (Liu et al. 2020) for
hippocampus segmentation on structural MR images, by
which a binary mask is generated for each hippocampus.
Then, the centroids of the two segmentation masks are further
computed for the translational alignments of the hippocam-
pus. After segmentation and alignment, a 3D image patch of
size 72 × 64 × 64 is cropped to cover each hippocampus mask,

Fig. 1 The flowchart of the proposed classification algorithm, where “3D
CNNs” denotes the deep 3D CNN models to learn the shape and
asymmetry features, “2D CNN” denotes the cascaded CNN model to

learn the high-level features, and “Fusion by full connection” denotes a
fully connected layer for the fusion of the shape and asymmetry features
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which is input into the subsequent CNN model for feature
extraction and classification.

Due to the bilateral symmetry of the human brain, the left
and right hippocampus are mirror-symmetrical to some extent.
To unify the training process, the left hippocampus patch is
flipped before fed into the deep CNN model. The asymmetry
of the left and right hippocampi is obtained by subtracting the
flipped left hippocampus mask and the right one, which is the
input to another deep CNN for learning features of hippocampal
asymmetry. To alleviate the potential overfitting problem and
improve the robustness and generalization performance of the
model, we also implement the data augmentation in this study.
Specifically, the collected 3D image patches are augmented by
shifting the coordinates of the two hippocampi and their margin
with 1–2 voxels. Finally, based on the binary masks from the
right and flipped left hippocampus as well as their mask mar-
gins, we construct and train three-channel CNN models, to re-
spectively extract the features of hippocampal shapes and
asymmetries for AD classification as shown in Fig. 1.

Feature learning by multi-channel cascaded
convolutional neural networks

After hippocampus segmentation, several convolutional neu-
ral networks (CNNs) are investigated to model the hippocam-
pal surface and automatically learn the complex features of the
hippocampus. Compared with traditional methods, CNN has
stronger feature extraction capabilities and can be automati-
cally optimized through gradient derivation, which greatly
reduces human interference. Here we construct multi-
channel and cascaded deep CNNs to learn the combined hier-
archical features of hippocampal shapes and asymmetries,
based on the hippocampus masks and their mask difference
for AD classification. The architecture of deep 3D CNNs is
shown in Table 2. Since the hippocampal mask is a 3D binary
image, the 3D convolutional kernel is used to efficiently en-
code the spatial features of the hippocampal surface.

The first layer is an input layer that accepts a 3D binary
mask image of fixed size (72 × 64 × 64 in the work). Then, the
convolutional layer convolves the input image with the kernel
filters, followed by a bias term and a non-linear activation
function, and a feature map is generated by each filter for
the representation. After the convolutional layer, there is a
max-pooling layer to down-sample the feature map and gen-
erate the compact and efficient features for distinguishing

images, which can help to achieve the robustness to some
variations. In this way, three convolutional and pooling layers
are alternatively stacked to gradually learn the hierarchical
representation of 3D hippocampal shapes. Next, a
convolutional layer followed by three fully connected layers
is added to learn and flatten the features in the high level. In
the fully connected layer, the output of each neuron is a linear
combination of all inputs from the previous layer, passed
through a nonlinearity. Since two hippocampi are symmetri-
cally distributed on both sides of the brain, we build the deep
CNNs of the same architecture for both hippocampi, but train
them with different masks to learn the features individually.

Besides, some recent studies show that the asymmetry of
two hippocampi in the human brain is an important biomarker
for AD diagnosis (Gordon et al. 2013; Leung et al. 2011; Shi
et al. 2010). Thus, we subtract the right and flipped left hip-
pocampus masks to generate the mask margin for each sub-
ject. Then, we build a 3D deep CNN to learn the features of
hippocampal asymmetry from the mask differences for AD
diagnosis. In our implementation, this deep CNN has the same
structure as the deep CNNs for the hippocampal masks. But it
is trained with the mask differences instead of the hippocam-
pal masks.

In this work, each deep CNN consists of 4 convolutional
layers, 3 max-pooling layers, and 3 fully connected layers, as
illustrated in Table 2. The sizes of the first three convolutional
filters are 3 × 3 × 3, the last convolution filter is 1 × 1 × 1, and
the numbers of kernels are set to 15, 25, 40 and 50 for 4

Table 1 Demographic and
clinical details of the studied
subjects from ADNI dataset (The
values are denoted as Mean ±
Standard Deviation, MMSE:
Mini-Mental State Examination;
CDR: Clinical Dementia Rating;
M: male; F: female.)

Diagnosis Number Age Gender (M/F) MMSE Education (year) CDR

AD 194 75.5 ± 7.7 99/95 23.2 ± 2.0 15.0 ± 2.8 0.8 ± 0.2

pMCI 164 74.8 ± 6.8 100/64 26.6 ± 1.7 15.7 ± 2.5 0.4 ± 0.1

sMCI 233 75.0 ± 7.7 156/77 27.3 ± 1.8 14.9 ± 2.8 0.4 ± 0.1

NC 216 76.0 ± 5.0 111/105 29.1 ± 1.0 15.8 ± 2.7 0.1 ± 0

Table 2 The architecture of deep CNNs

Layer Kernel size Stride Output size Feature volumes

Input – – 72 × 64 × 64 1

C1 3 × 3× 3 1 70 × 62 × 62 15

M1 2 × 2 × 2 2 35 × 31 × 31 15

C2 3 × 3 × 3 1 33 × 29 × 29 25

M2 2 × 2 × 2 2 16 × 14 × 14 25

C3 3 × 3 × 3 1 14 × 12 × 12 40

M3 2 × 2 × 2 2 7 × 6 × 6 40

C4 3 × 3 × 3 1 7 × 6 × 6 50

FC1 – – 1 × 1 × 1 1000

FC2 – – 1 × 1 × 1 60

FC3 – – 1 × 1 × 1 2
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convolution layers, respectively. Max-pooling is applied for
each 2 × 2 × 2 region, and Tanh is adopted as the activation
function in these layers because of its good performance for
CNNs. During the pre-training period, each CNN is optimized
individually to output the class probabilistic score by a
softmax layer. After the convolutional and max-pooling
layers, all the 3D feature maps are flattened to 1D vector
followed by two fully connected layers and a top-most
softmax output layer. The Adadelta gradient descent is used
to do the back-propagation and tune the trainable parameters.
The dropout strategy is also applied to reduce the overfitting
problem.

The final ensemble classification

In the above sections, the three-channel CNNs are trained with
the left and right hippocampus masks, and their mask differ-
ence to capture the features of 3D hippocampal shapes and
asymmetry. To make use of these features, we first build a
cascaded 2DCNN to combine the features learned by deep 3D
CNNs from two hippocampi as shown in Fig. 2. The output of
3D CNN is a feature vector of length 60. The cascaded 2D
CNN can learn the high-level correlation features between two
hippocampi. The cascaded 2D CNN consists of two
convolutional layers and two fully connected layers, followed
by a softmax classifier for AD classification.

Second, a fully connected layer is further appended in the
high level to combine the features learned by three-channel
CNNs and the cascaded 2D CNN to improve the AD classifi-
cation. There are 60 features generated by each deep CNN and
40 features learned by the cascaded 2D CNN. To train the
proposed multi-channel cascaded convolutional neural net-
works, the three 3D CNNs are individually trained.
Meanwhile, the 2D CNN and high-level fully connected layer
followed by a softmax layer are finely tuned to make the final
classification. Our proposed method is an end-to-end deep
learning network, which can gradually capture the combined
and hierarchical features of hippocampal shapes and asymme-
try for the classification of disease status. The hippocampal

features and disease classifier are jointly learned with the pro-
posed deep learning framework.

Experimental results

In this section, we first introduce the preparation of datasets
and the implementation of the proposed method. Then, the
extensive experiments on the classifications of different
groups of subjects are presented. Finally, we compare the
proposed method with other competing methods, followed
by the discussions on the salient regions for disease diagnosis.

Datasets and implementation

The proposed classification algorithm is evaluated on the T1-
weighted MR brain images from the ADNI dataset. The size
of MR images after initial preprocessing is 256 × 256 × 256
voxels. After hippocampus segmentation, a 3D image patch of
size 72 × 64 × 64, centered on the centroids of hippocampus
mask, is cropped to cover each hippocampus mask for feature
extraction.

The proposed method is implemented with the Keras
framework, accelerated by GPU of NVIDIA GeForce GTX
1080Ti and powered by Ubuntu16.04-×64. To train the 3D
CNNs, the initial weights are uniformed for the whole net-
work following default rules in Keras. Adadelta gradient de-
scent optimizer is adopted with a learning rate of 0.7. The
batch size is set to 32. The L2 regularization and dropout are
also applied to address the overfitting problem.

To better evaluate the classification performance, a 5-fold
cross-validation strategy is applied for the proposedmethod to
reduce the effects of random factors. Specifically, we random-
ly and evenly divided the dataset under study into 5 groups.
For each fold, we use one group as testing, another group as
validation and the rest for traning the model. In the experi-
ments, we use five classification performance measures for
evaluation, which are classification accuracy (ACC), sensitiv-
ity (SEN), specificity (SPE), receiver operating characteristic
(ROC) curve and the area under curve (AUC). ACC, SEN and

Fig. 2 The architecture of cascaded CNNs to learn the combined features from the left and right hippocampus

2334 Brain Imaging and Behavior  (2021) 15:2330–2339



SPE respectively reflect the proportion of all samples, positive
samples (AD/MCI/pMCI subjects) and negative samples
(NC/sMCI subjects) being correctly classified. The ROC
curve is a comprehensive indicator that reflects the sensitivity
and specificity of continuous variables. AUC is a summary of
the ROC curve to measure the ability of a classifier to distin-
guish two classes.

Evaluations on multi-channel cascaded CNNs

The first conducted experiment is to evaluate the performance
of multi-channel cascaded CNNs for AD classification. Two
3D CNNs are trained with the left and right hippocampus
masks to extract the features of hippocampal shapes. One
3D CNN is used to learn the asymmetrical features from the
mask difference between the left and right hippocampus. The
proposed method with multi-channel cascaded CNNs can
learn the combined hierarchical features of hippocampal
shapes and asymmetry. Thus, we compare the proposed cas-
caded CNNs for extraction of the combined features with the
3D CNNs for extraction of shape and asymmetry features,
which are denoted as “Proposed method”, “Shape” and
“Asymmetry”, respectively. Table 3 demonstrates the com-
parison of the classification performances using the hippo-
campal shapes, asymmetry and the proposed combination

method for classifications of AD vs. NC, MCI vs. NC and
pMCI vs. sMCI. Accordingly, the ROC curves for the classi-
fications of AD vs. NC, MCI vs. NC and pMCI vs. sMCI are
displayed in Fig. 3a, b and c, respectively. It can be observed
that the proposed method by multi-channel cascaded CNNs
performs better than the individual 3D CNNs for learning the
combined shape and asymmetry features.

Comparison with other methods

Next, we further compare our method with other methods
proposed in the literature. The hippocampal volumes are first-
ly computed based on hippocampus masks of every subject.
Besides, the shape analysis of the bilateral hippocampi is also
performed using the SPHARM-MAT (a toolbox in Matlab)
on the hippocampal mask, by which morphological shape
features of the hippocampus are extracted for AD classifica-
tion. In our implementation, 507 SPHARM coefficients are
obtained for each hippocampus mask to train a Multi-Layer
Perceptron (MLP) model, which is made up of two fully con-
nected layers for feature reduction and one softmax layer for
classification. For a fair comparison, we implement these
methods using the same training and test data. The same im-
age preprocessing processes are also applied for all the com-
pared methods. Table 4 shows the comparison of the

Table 3 Comparison of classification performances by three deep CNNs for learning hippocampal shapes and asymmetry and the cascaded CNNs for
learning the combined features on AD vs. NC, MCI vs. NC and pMCI vs. sMCI

Methods AD vs NC (%) MCI vs NC (%) pMCI vs sMCI (%)

ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC

Shape 85.0 79.5 89.9 86.7 72.7 78.4 62.2 72.7 69.8 53.7 81.1 70.0

Asymmetry 81.6 76.9 85.7 85.5 68.5 75.1 56.4 69.6 65.3 50.6 75.6 65.5

Proposed method 85.9 81.5 89.9 88.4 73.3 78.1 64.5 74.6 71.0 59.8 79.0 71.9

Fig. 3 Comparison of the ROC curves with the 3D CNNs to learn hippocampal shapes and asymmetry and the proposed cascaded CNNs to learn the
combined features for classifications of a AD vs. NC, b MCI vs. NC and c pMCI vs. sMCI
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classification performances with the methods mentioned
above. Furthermore, the ROC curves for classifications of
different groups are illustrated in Fig. 4a, b and c, respectively.
It turns out that our proposed method has an obvious advan-
tage over the hippocampal volumes and shape analysis
methods, which are also based on the binary hippocampus
segmentation masks. Compared with our previous works in
(Cui and Liu 2018), which built a DenseNet to extract the
features ofMR images in the local hippocampus, the proposed
method has lower classification performances. This is because
the proposed method focuses on hippocampal surface and
extracts features only from the binary hippocampus masks,
which have much less visual and appearance information than
the MR images. Nevertheless, the proposed multi-channel
cascaded CNNs achieves better classification performances
(about 3.5–7.5% improvements of AUC) than the traditional
SPHARM-PDM method, which also used the binary hippo-
campal mask for shape analysis. The results demonstrate that

the proposed deep learning method works well on modeling
the 3D surface of the hippocampal structure for disease
diagnosis.

Discussion

In clinical application, in addition to the performance of disease
diagnosis, how to identify the relevant biomarkers is also im-
portant for medical interpretation. Although the proposed cas-
caded convolutional neural networks can jointly extract features
from both hippocampus masks and asymmetry to achieve the
optimal classification performance of AD diagnosis, the learned
features cannot provide the important information for medical
interpretation. To better identify the most significant bio-
markers related to brain diseases, a visualization technique pro-
posed in (Simonyan et al. 2013) is applied to provide convinc-
ing clinical evidence to better understand the abnormalities of
the hippocampus surface caused by the disease. Specifically, a

Table 4 Classification
performance comparison of our
method with other published
methods for classifications of AD
vs. NC, MCI vs. NC and pMCI
vs. sMCI

Methods AD vs NC (%) MCI vs NC (%) pMCI vs sMCI (%)

Evaluation Perf. (%) Evaluation Perf. (%) Evaluation Perf. (%)

Hippocampal volumes ACC 77.7 ACC 67.8 ACC 65.5

SEN 69.2 SEN 71.9 SEN 51.2

SPE 85.3 SPE 60.3 SPE 75.5

AUC 82.2 AUC 69.8 AUC 65.8

Shape analysis ACC 82.8 ACC 70.7 ACC 68.5

SEN 80.5 SEN 75.6 SEN 52.4

SPE 84.8 SPE 61.8 SPE 79.8

AUC 84.9 AUC 70.9 AUC 64.4

Proposed method ACC 85.9 ACC 73.3 ACC 71.0

SEN 81.5 SEN 78.1 SEN 59.8

SPE 89.9 SPE 64.5 SPE 79.0

AUC 88.4 AUC 74.6 AUC 71.9

Fig. 4 Comparison of the ROC curves in different hippocampus analysis methods for classifications of a AD vs. NC, bMCI vs. NC and c pMCI vs. sMCI
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class saliency map is generated by calculating the gradient of
the normalized score in the correct classification corresponding
to the input image. The map with high saliency indicates that
the brain area is more relevant to diseases for a given image. In
the experiments, we generate the saliency maps of the hippo-
campusmasks for all test images, and then calculate the average
of them for illustration as shown in Fig. 5. The saliency maps
can characterize the contribution of different sub-regions to the
classification task, and gauge the importance of corresponding
hippocampal surface locations in the prediction of disease for
interpretation. Figure 5 (a), (b) and (c) show the saliency maps
of the left hippocampus, right hippocampus and their asymme-
try for the classifications of AD vs. NC,MCI vs. NC, and pMCI

vs. sMCI, respectively. The warmer color corresponds to the
larger salience in the hippocampal surface area for disease di-
agnosis, while blue and purple colors correspond to the smaller
salience. It is observed that the larger saliences are often present
in the global shape of the left and right hippocampi and their
asymmetry, especially in their medial parts for classification of
AD vs. NC than those of MCI vs. NC and pMCI vs. sMCI.

Conclusion

In this paper, we develop a novel deep learning classification
method based onmulti-channel cascaded convolutional neural

Fig. 5 The saliencymaps of the left hippocampus (left), right hippocampus (middle) and their asymmetry (right) for the classifications of aAD vs. NC, b
MCI vs. NC, and c pMCI vs. sMCI, respectively, which indicates the spatial importance of hippocampal surface
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networks to learn the combined hierarchical features of hip-
pocampal shapes and asymmetry from binary hippocampal
masks for AD and MCI diagnosis. The multi-channel 3D
CNNs are constructed and trained with the 3D hippocampus
binary masks and their mask difference to learn the features of
hippocampal shapes and asymmetry. Then, a 2D CNN is cas-
caded on the 3D CNNs to learn the high-level features be-
tween two hippocampus masks. The final classification is
made by the combination of all features from 3D CNNs and
cascaded 2DCNN. The proposedmethod can make full use of
the asymmetry and shape features to improve the disease clas-
sification. Experimental results and comparison on structural
MR images from the ADNI dataset demonstrate that the pro-
posed method has promising performances for disease classi-
fication. Besides, the saliency maps are also investigated to
gauge the importance of hippocampal surface locations in
disease diagnosis for interpretation.
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