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Abstract

Posttraumatic stress disorder (PTSD) is known to persist, eliciting early medical co-morbidity, and accelerated aging. Although
PTSD diagnosis has been found to be associated with smaller volume in multiple brain regions, posttraumatic stress (PTS)
symptoms and their associations with brain morphometry are rarely assessed over long periods of time. We predicted that
persistent PTS symptoms across ~24 years would be inversely associated with hippocampal, amygdala, anterior cingulate
volumes, and hippocampal occupancy (HOC = hippocampal volume/[hippocampal volume + inferior lateral ventricle volume])
in late middle age. Exploratory analyses examined prefrontal regions. We assessed PTS symptoms in 247 men at average ages 38
(time 1) and 62 (time 2). All were trauma-exposed prior to time 1. Brain volumes were assessed at time 2 using 3 T structural
magnetic resonance imaging. Symptoms were correlated over time (r=0.46 p <.0001). Higher PTS symptoms averaged over
time and symptoms at time 1 were both associated with lower hippocampal, amygdala, rostral middle frontal gyrus (MFG), and
medial orbitofrontal cortex (OFC) volumes, and a lower HOC ratio at time 2. Increased PTS symptomatology from time 1 to time
2 was associated with smaller hippocampal volume. Results for hippocampal, rostral MFG and medial OFC remained significant
after omitting individuals above the threshold for PTSD diagnosis. Even at sub-diagnostic threshold levels, PTS symptoms were
present decades after trauma exposure in parallel with highly correlated structural deficits in brain regions regulating stress
responsivity and adaptation.
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Introduction

Posttraumatic stress disorder (PTSD) has been linked to
stress-induced modulation of brain synaptic circuitry that con-
tributes to adverse psychological health and functioning
(Bennett et al. 2016; McEwen et al. 2015; Arnsten 2015).
Human and animal studies show that chronic stress is associ-
ated with structural brain changes, including changes in spine
density, dendritic length, and branching of neurons in multiple
brain regions connected with regulating stress responses
(McEwen et al. 2016; Davidson and McEwen 2012).
Attempts to understand the mechanisms by which PTSD has
long-reaching effects have focused on key brain structures
implicated in stress and emotion-regulation neurocircuitry
such as the hippocampus, amygdala, anterior cingulate cortex
(ACC), and prefrontal cortex (PFC) (O'Doherty et al. 2015;
Bennett et al. 2016; Fraser et al. 2015). Although few studies
have examined neurobiological consequences of PTSD in the
context of aging (McEwen and Morrison 2013), reviews of
the literature conclude that PTSD is likely to increase risk for
accelerated neurodegeneration (Lohr et al. 2015; Wolf and
Schnurr 2016; Wolf and Morrison 2017). Atrophy in stress-
response related brain regions, in particular the hippocampus,
is considered a risk factor for poorer aging, including demen-
tia (Bangen et al. 2018; Justice et al. 2015; Yaffe et al. 2010;
Tanpitukpongse et al. 2017).

Studies examining links between PTSD and brain mor-
phometry have focused on the hippocampus due to its links
with the hypothalamic-pituitary-adrenal axis (Bremner and
Vermetten 2001; Gilbertson et al. 2002; McEwen 2007).
Reviews and meta-analyses find fairly consistent evidence of
smaller hippocampal volume in adults with PTSD across a
wide range of ages and precipitating events (Logue et al.
2018; O'Doherty et al. 2015; Kiihn and Gallinat 2013).
Chronic and/or lifetime PTSD also appears to be inversely
associated with hippocampal volume (Apfel et al. 2011,
Chao et al. 2014). Smaller hippocampal volume also may be
a pre-existing risk factor for PTS symptoms (Gilbertson et al.
2002; Kremen et al. 2012). Amygdala and anterior cingulate
cortex (ACC) have also been examined in relation to PTSD
due to their putative role in stress processes, fear conditioning
and emotion processing (Kim etal. 2011; McEwen et al. 2016;
Morey et al. 2016); however, evidence for a relationship is less
consistent than for the hippocampus (O'Doherty et al. 2015).

In addition to the hippocampus, glucocorticoid receptors
(GR) are highly expressed in PFC regions where aberrant
GR signaling may be involved with PTSD (Arnsten et al.
2015; Etkin et al. 2011; Morey et al. 2016; Yang and Liang
2014; McEwen et al. 2016). Stress in animal models has been
shown to decrease dendritic arborization and spine density of
PFC neurons (Shansky and Morrison 2009) and animal stud-
ies indicate that the amygdala, ventral-medial prefrontal cor-
tex and hippocampus comprise the core synaptic circuitry

mediating behavior following traumatic events (Bennett
et al. 2016). Top-down cognitive functions of the prefrontal
cortex appear to be impaired by high levels of catecholamine
release during stressful conditions with ongoing stress expo-
sure leading to dendritic atrophy in PFC, dendritic extension
in the amygdala, and strengthening of the noradrenergic (NE)
system (Arnsten et al. 2015). Adults with PTSD show indica-
tions of PFC dysfunction (Arnsten et al. 2015). While the
stress hormone cortisol may impact prefrontal regions
(Kremen et al. 2010), human research provides a mixed pic-
ture regarding associations between PTSD and specific PFC
regions of interest (ROI) (McEwen et al. 2016; Y. Li et al.
2017; O'Doherty et al. 2015).

Sub-diagnostic PTS symptoms may be as strongly related
to psychological health and cognitive performance as a PTSD
diagnosis, yet few studies have examined associations be-
tween continuously measured posttraumatic stress (PTS)
symptoms and neuroanatomical structures (Franz et al. 2014;
Goldberg et al. 2014; Breslau 2009). Focusing only on indi-
viduals who cross the threshold for PTSD diagnoses unduly
limits attention to the relatively few individuals with diagno-
ses rather than on those who experienced trauma but do not
meet criteria for PTSD and who may, to an unknown degree,
still suffer. Because PTS symptoms in the present sample were
assessed at two points in time—at average age 38 when this
sample was first surveyed and approximately 24 years later
when neuroimaging occurred—we had the unique opportuni-
ty to examine relationships between PTS symptom persistence
and brain structure. Most research has been either cross-
sectional or short-term longitudinal rather than covering ex-
tended periods of time.

We hypothesized that persistence of PTS symptoms over
more than two decades would be associated with smaller hip-
pocampal, amygdala and ACC volumes in late midlife. In
addition, we predicted that PTS symptoms would be inversely
associated with hippocampal occupancy (HOC), an indicator
considered by some as a way of differentiating individuals
with a congenitally small hippocampus from those with a
small hippocampus relative to the size of the inferior lateral
ventricle—potentially an indicator of neurodegeneration
(Heister et al. 2011; Jak et al. 2015; Tanpitukpongse et al.
2017). We also hypothesized that volumes in these brain re-
gions would be associated with symptom change from time 1
to time 2; and that findings would remain significant after
omitting participants above the diagnostic threshold for
PTSD. We examined associations between the PTS measures
and specific PFC ROIs identified in a previous study of brain
structures associated with neuroimaging of stress responses
(Kremen et al. 2010). Given the mixed findings in the litera-
ture we considered these exploratory analyses.

Finally we examined the small number of monozygotic
(MZ; identical) twin pairs who were discordant for PTSD.
Because we did not have pre-trauma MRI data, it is possible
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that symptom-brain structure associations could represent pre-
existing brain differences. If so, those associations would be
consistent with brain structure differences being risk factors
rather than consequences of PTS symptoms (Gilbertson et al.
2002; Kremen et al. 2012). Comparisons of discordant mono-
zygotic twins allow for stronger inferences about cause versus
effect because they control for genes and rearing environment.
If the unexposed twin’s hippocampal volume does not differ
from that of the exposed twin, it would suggest that reduced
hippocampal volume is a risk factor. The smaller hippocam-
pus could not be due to exposure in the non-exposed twin, so
the inference is that it is due to genetic/familial risk. However,
because we do not have baseline MRI measures and the sub-
sample of MZ twins discordant for PTSD is small and thereby
underpowered, direction of causality cannot be addressed by
this paper.

Methods and materials
Participants

The Vietnam Era Twin Study of Aging (VETSA) is a longi-
tudinal study of risk and protective factors for brain and cog-
nitive aging that has been ongoing since 2002 (Kremen et al.
2006; Kremen et al. 2013). VETSA participants were recruit-
ed from the Vietnam Era Twin Registry (VETR), a nationally
representative community-dwelling non-patient sample of
male-male twin pairs who served in the United States military
at some point between 1965 and 1975 (Goldberg et al. 2002,
Goldberg et al. 1993). At the initial VETSA recruitment
(2002—2008), we randomly recruited participants from the
3322 VETR male twin pairs who had participated in the
Harvard Twin Study (Tsuang et al. 2001) and who were be-
tween the ages of 50 and 59. VETSA participants are similar
in health and lifestyle characteristics to American men in their
age range (Schoenborn and Heyman 2009). Although all
VETSA participants are veterans, the majority (~72%) report-
ed no combat exposure (Table 1).

The current study focused on the 370 participants who
completed the VETSA wave 2 MRI visit (2009-2013)
when participants were on average 62 years old (SD=
2.4; range = 56-67), and whose neuroanatomical imaging
data passed quality control (Kremen et al. 2013).
Analyses were conducted on the 247 participants with
MRI data who had also been exposed to trauma since
trauma exposure is a prerequisite for PTSD. Data collec-
tion occurred at University of California San Diego
(UCSD), Boston University, and Massachusetts General
Hospital (MGH). Institutional Review Board approval
was obtained at all sites and written informed consent
was obtained from all individual participants included
in the study.

@ Springer

Measures

Time 1 PTS symptom measures When participants were on
average 38 years old (time 1; SD=2.7; range 32-44;
1986/1987), they completed a mailed survey in which they
reported about combat exposure and PTS symptoms
(VETR-PTSD). These archived VETR data were used in the
present analyses. The time 1 13-item VETR-PTSD question-
naire assessed symptoms based on DSM-III-R and has high
reliability (alpha=0.89) and validity (Goldberg et al. 2014;
Goldberg et al. 1990; Magruder et al. 2014).

Time 2 PTS symptom measures When participants were on
average 62 years old (time 2; SD =2.4; range = 56-67), they
were mailed psychosocial questionnaire booklets a month pri-
or to the MRI and brought the completed questionnaire to the
test site where they underwent in-depth testing (Kremen et al.
2013). The reliable, valid, 17-item self-report DSM-IV-based
PTSD Checklist (PCL) civilian version (Weathers et al. 1993)
was part of the booklet. The PCL civilian version was used
because we were interested in response to all forms of trau-
matic exposure not simply those based on military experience.
Although the participants are veterans, this is a non-patient
community-based sample whose military service occurred
over 40 years ago. Many participants reported non-military
experiences as their most significant trauma. In an indepen-
dent study, the VETR-PTSD correlated r = 0.90 with the PCL
when administered at the same time (Magruder et al. 2014). In
the present sample, the two PTSD measures were correlated
r=0.46; p<0.0001 across the approximately 24 years.

In order to examine persistence of PTS symptoms, we stan-
dardized each PTSD measure to a mean of zero and standard
deviation of one and then averaged the two scores to create a
combined measure (avgPTS symptoms) that is likely to be
more reliable than either measure alone and is potentially in-
dicative of persistence/chronicity of PTS symptoms (Chao
et al. 2014). If someone had a high score at only one time
point, the average would be reduced. Change in PTS symp-
toms was estimated by subtracting time 2 symptoms from
those at time 1 using the standardized PTS measures. We de-
fined presumptive PTSD based on previously developed stan-
dard formulas. For the VETR-PTSD scale, each item was first
dichotomized (sometimes, often, or very often vs. almost nev-
er or never) to indicate severe symptom presence or absence.
Cluster severity was then determined based on the number of
symptoms associated with a cluster: for re-experiencing, at
least one severe symptom had to be present; for avoidance,
at least three symptoms, and at least two symptoms for arousal.
A presumptive diagnosis of PTSD was assigned when all three
symptom clusters met severity criteria (Goldberg et al. 1990).

MRI acquisition and processing At time 2, following the on-
site test day, eligible twins underwent structural 3 T magnetic
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Table 1 Sample demographics at

time of structural magnetic Variable

Mean (SD) or N (%)

resonance (MRI) brain imaging
(Time 2) Age (Time 1)

Age (Time 2)

Lifetime education
Lifetime main occupation

Own income

Center for Epidemiologic Studies-Depression

Ethnicity (non-Hispanic White)

38 years (SD =2.7); range 3244

61.8 years (SD 2.4); range 5667

13.8 (SD 2.1); Associates degree/some college
5.5 (SD 1.8); Small business owner

5.5 (SD 2.9); $50,000-$59,999 per year

6.5 (SD 7.4)

361 (87.4%)

Childhood trauma (# events rated as severe)

0 events

1 event

>1 event
Time 1 PTS symptoms
Time 2 PTS symptoms

325 (78.9%)

57 (13.8%)

30 (7.3%)

22.7 (SD 7.8); range 1357 out of 65
25.0 (SD 9.6); range 17-74 out of 85

Combat exposures (# types of exposures)

Not in South East Asia

In South East Asia, no exposure

1-5 exposures
6-16 exposures
Recent life events (past 2 years)
APOE ¢4 carrier
Alcohol drinks in past 2 weeks
None
<=1 per day
>1 but <2 per day
2 to <3 per day
> =3 per day
Ever smoked

266 (64.4%)

33 (7.9%)

77 (18.6%)

37 (8.9%)

9.0 (SD 7.6); range 0-55
100 (24.9%)

175 (36%)
213 (44%)
38 (8%)

25 (5%)

38 (8%)
249 (60.3%)

Chronic health conditions (# of conditions)

0 conditions

1 condition

2 conditions
>2 conditions

Any traumatic head injury with loss of consciousness

105 (25.4%)
176 (42.6%)
83 (20.1%)
49 (11.9%)
105 (25%)

resonance imaging (MRI) at either UCSD or MGH. Sixty-two
percent of the MRI scans were collected at UCSD and 38% of
the scans were collected at MGH. T1-weighted images were
acquired on a GE 3 T Discovery 750 scanner (GE Healthcare,
Waukesha, WI, USA) with an eight-channel phased array
head coil at UCSD, and a Siemens Tim Trio (Siemens USA,
Washington, D.C.) with a 32-channel head coil at MGH
(McEvoy et al. 2015). At UCSD, the 3D fast spoiled gradient
echo (FSPGR) T1-weighted image protocol was: TE =

3.164 msec, TR =8.084 msec, TI=600 msec, flip angle =

8°, pixel bandwidth =244.141, FOV =25.6 cm, frequency =

256, phase =192, slices = 172, slice thickness=1.2 mm. At
MGH, the 3D magnetization-prepared rapid gradient echo
(MPRAGE) T1-weighted image protocol was: TE =

4.33 msec, TR =2170 msec, TI= 1100 msec, flip angle =7°,

pixel bandwidth = 140, FOV =25.6 cm, frequency =256,
phase =256, slices = 160, slice thickness = 1.2 mm.

Raw dicom image files were pre-processed using an auto-
mated stream developed by the UCSD Center for Multimodal
Imaging Genetics. T1-weighted (T1) structural images were
corrected for gradient distortions (Jovicich et al. 2006) and B1
field inhomogeneity (Sled et al. 1998). Corrected images were
processed using the FreeSurfer v5.1 software (Fischl 2012) for
volumetric segmentation and cortical surface reconstruction
and parcellation derived from the Desikan-Killiany atlas
(Desikan et al. 2006) to determine regional cortical volumes
(Fennema-Notestine et al. 2016; Elman et al. 2017; Kremen
et al. 2010). All processed images were visually reviewed for
quality. Volumetric segmentation regions were excluded if
over- or under-estimated via consensus review, and the
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cortical surface and related image volumes were visually
reviewed and edited for technical accuracy in alignment with
standard, objective rules to improve the brain mask (i.e., re-
moving non-brain voxels) and white matter volume (i.e., fill-
ing hyperintense white matter lesions). Images with severe
scanner artifacts or excessive head motion were excluded
due to degraded image quality. All image processing was con-
ducted at UCSD. Twin pairs were assessed on the same scan-
ner to avoid the potential confounding effects of scanner
differences.

We created bilateral volumetric variables for amygdala,
hippocampus, ACC, and PFC ROIs, then statistically adjusted
for scanner (site) and intracranial volume (icv) estimated by
FreeSurfer. The nine PFC ROIs examined were: the superior
frontal gyrus (SFG), rostral and caudal middle frontal gyrus
(MFQG), pars orbitalis, pars opercularis, pars triangularis, me-
dial and lateral orbitofrontal cortex (OFC), and frontal pole;
these were chosen based on earlier work by Kremen et al.
(Kremen et al. 2010). Adjustments for scanner were made to
account for differences between the two scanner platforms
(Fennema-Notestine et al. 2007).

Hippocampal occupancy was calculated as hippocampal
volume/ (hippocampal volume + inferior lateral ventricle vol-
ume), first for each hemisphere and then averaged (Heister
et al. 2011). Developed and validated based on the unique
location of the hippocampus in relation to the inferior lateral
ventricle, the HOC is indicative of the size of the hippocampus
in relation to the ventricle and has often been interpreted as an
indirect cross-sectional estimation of mesial temporal lobe
atrophy with increases in the ventricle due to ex vacuo dilation
(Heister et al. 2011; Jak et al. 2015). In contrast, a small hip-
pocampal volume without an enlarged ventricle may reflect a
congenitally small hippocampus. More details on VETSA
methods have been reported elsewhere (Fennema-Notestine
et al. 2016; Kremen et al. 2013; Brouwer et al. 2017).

Covariates Number of childhood traumatic events rated as
severe was assessed retrospectively with the Pennebaker
Childhood Trauma Scale administered at time 2 (Pennebaker
1999; Pennebaker and Susman 1988). The combat exposure
score assessed at time 1 represents a sum of 18 combat-related
experiences during military service and was validated against
military record data (Janes et al. 1991; Lyons et al. 1993;
Goldberg et al. 1990). Participants entered military service
(on average) in 1968 at age 19.38 (SD = 1.4); the combat
exposure and PTS symptom questionnaires were completed
approximately 15 years (SD = 2.8) after discharge from mili-
tary service. These measures, as well as interview rater ratings
of traumatic events in response to a diagnostic interview at
approximately age 40 (Tsuang et al. 2001), were also used to
exclude participants who had not experienced trauma.

Other key covariates were identified based on literature
reviews of research on relationships between PTSD and
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cortical and subcortical brain structures. Childhood SES re-
flects a commonly used weighted averaging of father’s occu-
pation and education during the participant’s childhood
(<18 years) (Hollingshead and Redlich 1955). Young adult
cognitive ability was measured with the well-validated 100-
item Armed Forces Qualification Test (AFQT) administered at
average age 20 (Bayroff and Anderson 1963; Orme et al.
2001). History of head injury was coded as present if it in-
cluded any loss of consciousness. Apolipoprotein E (APOE)
genotype was coded as presence/absence of any €4 alleles.
Ethnicity was coded as non-Hispanic white versus other. All
of these measures were used as covariates in Model 1.

Covariates from time 2 (age 62) included global health,
depressive symptoms, smoking, stress, alcohol consumption,
and physical activity. Global health counted the presence of 15
major chronic conditions from the Charlson Comorbidity in-
dex (Charlson et al. 1994): diabetes, emphysema, asthma,
cancer, osteoarthritis, rheumatoid arthritis, stroke, heart attack,
heart failure, heart surgery, angina, hypertension, peripheral
vascular disease, cirrhosis, and AIDS. Depressive symptoms
were assessed with the Center for Epidemiologic Studies
Depression Scale (CESD) (Radloff 1977). Smoking was bina-
ry (ever smoked vs. never smoked). Recent adult events/
stressful experiences were assessed with the Holmes-Rahe
Life Events Inventory on which participants reported whether
any of 79 events occurred in the past 24 months at time 2
(Holmes and Rahe 1967). Current alcohol consumption was
quantified as: never drank or not currently drinking; 1 or fewer
drinks per day; 1-2 drinks per day; > 2 drinks per day in the
past two weeks (Franz et al. 2011; Paul et al. 2008). The
physical activity measure averaged two questions about fre-
quency of participating in physical fitness and/or walking and
hiking in the past month.

Statistical analyses

We conducted mixed effects models using SAS 9.4 with PTS
symptom measures as the independent variables, and specific
time 2 cortical and subcortical ROI volumes and HOC as
dependent variables. We ran separate analyses representing
two operationalizations of symptom persistence: the first in-
cluded time 1 PTS symptoms and change in PTS symptoms
from time 1 to time 2 as independent variables; the second
operationalization of persistence was the average of symp-
toms from the two timepoints. We report results in terms of
a) Model 1, which includes PTS symptom measures and co-
variates prior to time 1 [ethnicity (non-Hispanic white vs oth-
er), young adult general cognitive ability, APOF status (pres-
ence of any ¢4 allele [e4+] versus none [e4-]), head injury
(yes, no), number of combat exposures, number of severe
childhood traumas], age; and b) Model 2, which includes fully
adjusted models that added time 2 covariates measured con-
currently with the MRI measures.
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We present type III effects; these represent the unique var-
iance accounted for by each variable after controlling for all
other variables in the model. All measures were standardized
(mean =0; SD =1) prior to analyses. All models adjusted for
the clustering of twins within pairs by including twin pair ID
(i.e., family) as a random effect. Results are reported as two-
tailed and significance was set at p < 0.05. For the nine explor-
atory PFC regional analyses we applied false discovery rate
corrections for multiple comparisons; the Li and Ji (2005)
extension of the Benjamini-Hochberg approach (Benjamini
and Hochberg 1995) was used because of the intercorrelations
among measures.

Results
Descriptive statistics

VETSA MRI participants are predominantly non-Hispanic
white (87%). At time 2, when they were approximately age
62, the majority of the men were married (78%), 48% working
full-time, 23% were retired and not working, 11% retired but
working part-time, 8% were on disability, and the remainder
worked part-time. Average education was 13.8 years.
Demographic and psychosocial characteristics of the sample
are reported in Table 1. There were no significant between-site
differences in PTS symptoms or covariates.

The significant correlation between the VETR-PTSD and
PCL measures (r = 0.46; p < 0.0001) indicates moderate levels
of symptom stability across these approximately two and a
half decades. At time 1, 8.2% (N =34) of the sample had
symptoms above the cutoff for presumptive PTSD; at time
2, 6.1% of the sample met criteria. Only nine men (2.1%)
met criteria at both times. A fifth of the men experienced at
least one severe childhood trauma, and 27% experienced at
least one combat exposure during military service.

Associations with hippocampus, amygdala, and ACC
measures

In Model 1, adjusted for pre-time 1 covariates, PTS symptoms
at time 1 were associated with hippocampal and amygdala
volume, and HOC at time 2 (Table 2). Higher levels of symp-
toms at time 1 were associated with smaller volumes and
lower HOC time 2. Change in PTS symptoms from time 1
to time 2 was only associated with hippocampal volume at
time 2; a decrease in symptoms was related to larger hippo-
campal volume. AvgPTS was also significantly associated
with hippocampal and amygdala volumes, and HOC at time
2 (Table 3, Model 1).

In the full model (Model 2) that additionally included time
2 covariates, associations between time 1 PTS symptoms with
hippocampal volume remained significant while results for

hippocampal occupancy and amygdala were attenuated
(Online resource Table 1). Similarly, only hippocampal vol-
ume remained significant for avgPTS (Table 3; Model 2). No
relationships were found between any PTS symptom measure
and ACC measures.

Prefrontal cortex: Exploratory analyses

We only report here results for the PFC analyses that remained
significant following corrections for multiple comparisons;
corrected p-values are presented in parentheses. With regard
to PFC measures, in Model 1, PTS symptoms at time 1 and
avgPTS (Tables 2 and 3 respectively) were inversely associ-
ated with rostral MFG (p = 0.007), and medial OFC volumes
at time 2 (p = 0.013). Men with higher symptoms had smaller
volumes in these brain regions. In Model 2 results for the
rostral MFG remained significant for both PTS measures
(Table 3 and Online resource Table 1); associations with me-
dial OFC were no longer significant when corrected.
However, both time 1 symptoms and avgPTS now had a sig-
nificant relationship with pars triangularis volume. There were
no associations between symptom change over time and any
PFC measure.

Omitting participants with presumptive PTSD

We examined associations between PTS symptoms and mea-
sures that had been significant in the above analyses after
omitting participants with presumptive PTSD (Table 4).
Both avgPTS and time 1 PTS symptom associations with
hippocampal, rostral MFG, and medial OFC volumes
remained significant when individuals with presumptive
PTSD diagnoses were excluded. Change in symptoms from
time 1 to time 2 was associated with hippocampal and medial
OFC volumes; having smaller hippocampal volume at time 2
was related to increases in PTS symptoms.

Discordant twin analyses

We compared brain volume measures using paired t-tests for
the ten pairs of MZ twins discordant for presumptive PTSD at
time 1. None of the subcortical, ACC or PFC volumes were
significantly different at time 2 (see Online resource Table 2).
The median effect size was small (Cohen’s d of approximately
0.075).

Discussion

In a nonclinical sample of men spanning two and a half de-
cades, those with higher levels of PTS symptoms had smaller
bilateral hippocampal, amygdala, rostral MFG, and medial
OFC volumes, as well as lower HOC in late midlife. These
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Table 2 Time 1 and change in

posttraumatic stress symptoms Time 1 PTS symptoms PTS Change

predicting bilateral cortical,

anterior cingulate, and subcortical Brain ROI (Time 2) 3 (SE) P-value B (SE) p-value

brain volumetrics in late midlife:

Model 1/predictive model Subcortical Structures
Hippocampal Volume —0.21 (0.08) 0.01 0.15 (0.08) 0.04
Hippocampal Occupancy —-0.15 (0.11) 0.04 0.09 (0.07) 0.21
Amygdala —0.19 (0.08) 0.01 0.11 (0.07) 0.13
Anterior Cingulate (ACC) Volumes
Rostral ACC 0.03 (0.08) 0.74 0.05 (0.07) 0.53
Caudal ACC 0.10 (0.07) 0.20 0.00 (0.07) 0.98
Prefrontal Cortex (PFC) Volumes (Exploratory)
Caudal Middle Frontal Gyrus —0.13 (0.07) 0.09 0.09 (0.07) 0.21
Rostral Middle Frontal Gyrus —0.24 (0.07) 0.001 0.17 (0.06) 0.01
Superior Frontal Gyrus —0.14 (0.07) 0.04 0.07 (0.09) 0.26
Pars Orbitalis —0.07 (0.08) 0.36 0.09 (0.07) 0.23
Pars Opercularis —0.06 (0.08) 0.42 0.00 (0.07) 0.98
Pars Triangularis —0.13 (0.08) 0.11 0.04 (0.07) 0.60
Medial Orbitofrontal Cortex —0.18 (0.07) 0.01 0.15 (0.06) 0.02
Lateral Orbitofrontal Cortex —0.06 (0.08) 0.42 0.05 (0.07) 0.47
Frontal Pole —0.15 (0.08) 0.06 0.16 (0.08) 0.04

ROI =Region of interest. (N~247; df 58—60) Numbers in the table are parameter estimates (3 coefficients),
standard errors (SE), and p values from mixed models that account for non-independence of observations within
twin pairs. Model includes time 1 PTS symptoms (intercept) and change (time 1 PTSD — time 2 PTS symptoms),
age, ethnicity (non-Hispanic white vs other), early adult cognitive ability, apolipoprotein epsilon 4 (APOE) status
(presence of any ¢4 allele [¢4+] versus none [e4-]), head injury (yes, no), combat exposure, childhood trauma and
life events. ROI measures are residuals of brain structure volume adjusted for scanner/site and intracranial volume.
PTSD symptom measures were standardized with a mean of 0 and standard deviation of 1. Bolded exploratory
PFC values are those significant following correction for multiple comparisons (Li and Ji 2005)

associations were significant for both time 1 PTS symptoms
(average age 38) and for the average of symptoms at time 1
and time 2 (average age 62). Increase in symptoms was asso-
ciated with smaller hippocampal volume. Thus having higher
symptoms in earlier adulthood and/or sustaining higher levels
of symptoms across approximately 24 years was associated
with smaller volumes in brain regions known to be involved
with key functions such as hypothalamic-pituitary-adrenal ax-
is regulation, stress responsivity, memory, cognition, and top
down control of emotion processing (Shin and Liberzon 2010;
McEwen et al. 2016; Euston et al. 2012). When participants
with putative PTSD were omitted from analyses, associations
between symptoms and hippocampal volume, rostral MFG,
and medial OFC remained significant. Associations were
somewhat attenuated in the full model that also adjusted for
current health and stress, though associations with hippocam-
pal volume and rostral MFG remained significant. This study
highlights the long-term connection between PTS symptoms
and brain structure even at levels below diagnostic thresholds,
the importance of evaluating symptom persistence and brain
regions beyond the hippocampus, as well as the importance of
a life course perspective on relationships between mental
health and its neurobiological concomitants (Spiro III et al.
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2018). In addition, these results are consistent with growing
evidence of associations between persistent PTS symptoms
and risk for neurodegeneration (Lohr et al. 2015; Lyons
et al. 2013; Yaffe et al. 2010; Justice et al. 2015; Wolf and
Schnurr 2016).

Research on the molecular biology underlying stress shows
that stress mediators such as corticotropin releasing factor
(CRF) are implicated in anxiety and stress disorders and that
stress appears to weaken prefrontal networks (Futch et al.
2017; McEwen et al. 2016; Hauger et al. 2009; Arnsten
2015); CRF is widely expressed throughout the brain, in
particular in PFC and hippocampal/amygdala regions.
Animal experiments on acquisition, extinction and reacti-
vation of fear behavior may also provide insights that can
be translated to humans and PTSD (Bennett et al. 2016).
In addition, relationships between trauma, beta amyloid
production, and PTSD-like phenotypes have been identi-
fied in animal models (Arnsten 2015; Justice et al. 2015)
which may provide insight into mechanisms underlying
the association between PTS symptoms, stress-related
weakening of prefrontal networks, and risk for
Alzheimer’s disease and related dementias (Futch et al.
2017; Lohr et al. 2015; Yaffe et al. 2010).
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Table 3  Posttraumatic stress symptoms averaged across 24 years and
bilateral cortical, anterior cingulate, and subcortical brain volumetrics in
late midlife

Model 1 (predictive) ~ Model 2 (Full)

Brain ROI (Time 2) B (SE) P-value {3 (SE) p-value

Subcortical Structures

Hippocampal Volume —0.17 (.07) 0.01 —0.21 (.09) 0.02

Hippocampal Occupancy —0.13 (.06) 0.05 —0.15 (.09) 0.08
Amygdala —0.17 (.06) 0.01 -0.12(09) 0.17
Anterior Cingulate (ACC) Volumes

Rostral ACC 0.02(.07) 0.72  0.01(.09) 0.87
Caudal ACC 0.08 (.06) 0.19 0.10(.08) 0.24

Prefrontal Cortex (PFC) Volumes (Exploratory)

Caudal Middle Frontal Gyrus —0.11 (.06) 0.09  —0.12 (.08) 0.13
Rostral Middle Frontal Gyrus —0.20 (.06) <0.001 —0.23 (.08) 0.01
—0.12 (.06) 0.05 —0.16 (.08) 0.05
—-0.06 (.07) 0.37  —0.05(.09) 0.55
—0.05 (.07) 041 —0.08 (.09) 0.35
Pars Triangularis —0.11 (.07) 0.11 —0.23 (.09) 0.01
Medial Orbitofrontal Cortex —0.15 (.06) 0.01 —0.16 (.08) 0.05
Lateral Orbitofrontal Cortex —0.05 (.07) 0.42 —0.02 (.09) 0.84
-0.13 (.07) 0.07  —0.15(.09) 0.10

Superior Frontal Gyrus
Pars Orbitalis
Pars Opercularis

Frontal Pole

ROI = Region of interest. Numbers in the table are parameter estimates,
standard errors (SE), and p-values from mixed models that account for
non-independence of observations within twin pairs. Model 1 (predictive;
N =247 df = 60) uses the average of time 1 and time 2 PTS symptoms as
the independent variable as well as ethnicity (non-Hispanic white vs
other), early adult cognitive ability, apolipoprotein epsilon 4 (APOE)
status (presence of any &4 allele [e4+] versus none [e4-]), head injury
(yes, no), number of combat exposures, number of severe childhood
traumas and age as covariates; Model 2 (Full) additionally includes time
2 covariates for smoking (yes, no), alcohol consumption, chronic health
conditions, Centers for Disease Control Depression Scale (CES-D), and
life events. ROI measures are residuals of brain structure volume adjusted
for scanner/site and intracranial volume. Bolded exploratory PFC values
are those significant following correction for multiple comparisons

As in previous studies of shorter duration and with younger
participants (O'Doherty et al. 2015; Logue et al. 2018), higher
levels of posttraumatic stress were associated with smaller
hippocampal volume. The hippocampus also has been shown
to play a key role in dementia risk (Tanpitukpongse et al.
2017) and mild cognitive impairment (Bangen et al. 2018;
Jak et al. 2015). Having a small hippocampus, whether due
to inheritance or life experience, may be linked to physiolog-
ical, cognitive and contextual deficits that contribute to a cas-
cade of maladaptive stress responses (Brewin et al. 2010;
Fraser et al. 2015; Rutter 2012) with some researchers sug-
gesting that having a smaller hippocampus may be a vulnera-
bility factor for poor recovery (Apfel et al. 2011). Although
the HOC index has been examined in studies of mild cognitive
impairment and Alzheimer’s disease (Heister et al. 2011; Jak

et al. 2015; Tanpitukpongse et al. 2017), to our knowledge no
studies have reported on the relationship between PTS
symptoms and hippocampal occupancy. Longitudinal
research is needed to substantiate whether atrophy is
occurring or if the hippocampal/inferior lateral ventricle ratio
is a congenital state. Similar to dementia findings reported by
Tanpitukpongse et al. (2017) HOC did not out-perform hip-
pocampal volume. However, HOC may still be useful as a
proxy indicator of hippocampal tissue loss or may contribute
additional information about changes in surrounding tissue.
The fact that associations with PTS symptoms were more
consistent for hippocampal volume than for hippocampal oc-
cupancy might suggest that the observed findings are mainly a
function of smaller baseline hippocampal volume. Discordant
twin studies have found that some features commonly associ-
ated with PTSD comprise pre-existing familial/genetic risk
factors (i.e., having a small hippocampus) while other features
(e.g., fear extinction/conditioning, emotion regulation, pain)
were sequelae (Gilbertson et al. 2002; Kremen et al. 2012).
Discordant MZ twin designs allow for stronger inferences
about risk factors versus sequelae. In this sample there were
no differences in brain structure volumes in the discordant
twin pairs. Thus, our results are consistent with previous dis-
cordant twin findings for hippocampal volume which sug-
gested that smaller volumes were pre-existing, and are there-
fore most likely to represent risk factors for, rather than con-
sequences of, PTS symptoms. Given the small number of
discordant pairs, however, more research is needed to confirm
these results in a larger sample. The association between hip-
pocampal volume and PTS symptom change further suggests
that smaller hippocampal volume may be a risk factor for
greater persistence of PTS symptoms.

Fewer studies have examined amygdala volume in PTSD
compared with studies of the hippocampus (O'Doherty et al.
2015). Here, amygdala volume was associated with both time
1 PTS symptoms and averaged PTS symptoms in the predic-
tive models but these relationships were attenuated in the full
models with the concurrent covariates (current smoking, alco-
hol consumption, health conditions, depressive symptoms,
life events in the past two years). It seems unlikely that current
factors or even two-year old events would significantly affect
regional brain volumes. Therefore, these probably mostly re-
flect longstanding characteristics. Thus, the implication is that
there is no association of PTS symptoms with amygdala vol-
ume over and above these other factors. Multiple studies find
inconsistent results for the amygdala—with some studies find-
ing increased amygdala volume and others smaller amygdala,
suggesting a potential greater sensitivity to other influences or
greater plasticity of the amygdala over time (Kim et al. 2011;
Koenigs and Grafman 2009; McEwen et al. 2016; Shin and
Liberzon 2010; Lewis et al. 2014; Morey et al. 2016).

The fMRI literature suggests diminished activation of re-
gions of the PFC in PTSD, but structural MRI findings are
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Table 4 Results for significant
brain regions after omitting
participants with presumptive
PTSD

Time 2 brain regions

Averaged
PTS symptoms
3 (SE); p-value

Change over time

PTS symptoms
intercept (Time 1)

3 (SE); p-value

Change in PTS symptoms

Time 1 to Time 2
{3 (SE); p-value

Hippocampal Volume

Hippocampal Occupancy

Amygdala
Rostral MFG
Medial OFC

Pars Triangularis

~0.18 (.08); p =0.03
—0.09 (.08); p=0.24
~0.13 (.08); p=0.10
~0.18 (.07); p=0.02
—0.17 (.07); p=0.03
—0.15 (.08); p=0.09

~0.20 (.10); p =0.04
~0.10 (.09); p=0.26
~0.15 (.09); p=0.11
~0.21 (.09); p=0.02
—0.19 (.09); p=0.03
—0.18 (.10); p = 0.(08)

0.21 (.08); p =0.01
0.12 (.07); p=0.11
0.12 (.08); p=0.13
0.09 (.07); p=0.20
0.14 (.07); p=0.05
0.07 (.08); p=0.40

N=220; df =46; Analyses omitted participants with presumptive PTSD. Shown are full models with all covariates.
Brain regions are adjusted for scanner and intracranial volume. MFG = middle frontal gyrus; OFC = orbitofrontal cortex

mixed, as they were in our exploratory analyses (Etkin et al.
2011; Koenigs and Grafman 2009; Kiihn and Gallinat 2013;
Yang and Liang 2014). PFC exerts top down control of stress
reactivity, potentially modulating central responses to stress in
the organism (McEwen et al. 2016) and an extensive literature
shows the PFC is vulnerable to stress in animals (Arnsten
2015; McEwen and Morrison 2013) and humans (Y. Li et al.
2017; McEwen et al. 2016; Morey et al. 2016). It was surpris-
ing then that so few of the a priori identified PFC regions were
associated with PTS symptoms despite the fact that previous
research found relationships between cortisol and these re-
gions (Kremen et al. 2010). In these analyses, the strongest
PFC results were between the measures of averaged PTS or
time 1 PTS symptoms with rostral MFG and medial OFC
volume. Decreases in rostral MFG efficiency have been found
in a study of the effects of re-experiencing related symptoms
on brain networks in traumatized veterans (Spielberg et al.
2015). Sharp and Telzer (2017) proposed that poor connectiv-
ity between the left rostral MFG and caudate might be a bio-
marker for high trait anxiety, potentially a risk factor for
PTSD. As a subregion of the medial prefrontal cortex, the
OFC has been found to play a role in regulating and facilitat-
ing emotional learning, including monitoring reward values
(Chang and Grace 2018), and is implicated in multiple anxiety
disorders. Studies report functional and structural abnormali-
ties in the OFC in patients with obsessive-compulsive disorder
and somewhat lower prevalence in panic disorder; findings
are mixed in PTSD studies (Shin and Liberzon 2010).
Aberrant frontal-amygdala- and frontal-striatal connectivity
occurs in multiple anxiety disorders (MacNamara et al.
2016) and a recent animal study found that activation of the
OFC appeared to modulate the mPFC-amygdala pathway
(Chang and Grace 2018). Pars triangularis became significant
in the models that included the concurrent time 2 covariates
but more research is needed to understand the relationship
between PTS symptoms and pars triangularis. In this instance
the pars triangularis became significant in the model with
more concurrent covariates suggesting a potential suppression
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effect by other variables. The pars triangularis does appear to
play a role in emotional regulation (Kircher et al. 2013; Kohn
et al. 2014) and is associated with stress hormone elevation
(Kremen et al. 2010).

Strengths and limitations

The sample comprised predominantly Caucasian men, so we
cannot generalize to women or other racial/ethnic groups. Sex
differences have been found in type of trauma and prevalence
of PTSD, but it is unknown whether these reflect differences
in underlying neurobiology (McEwen and Morrison 2013;
O'Doherty et al. 2015). Different PTS symptom measures
were used at the two timepoints; when administered concur-
rently, however, the measures correlated r=0.90 (Magruder
et al. 2014). Although the validity of the VETR-PTSD mea-
sure has been established, we chose to test participants with
the PCL at time 2 since it is the current gold-standard for self-
report PTSD measures (Freedy et al. 2010; Magruder et al.
2014). Because we do not have baseline MRI measures and
the MZ discordant twin analysis was underpowered, direction
of causality is suggestive but it cannot be confirmed in the
present study. Other limitations may be our use of bilateral
measures of brain structures since there is some evidence for
brain laterality in PTSD (Kiihn and Gallinat 2013; Morey et al.
2012; Morey et al. 2016). We also know little about mental
health treatments these men might have sought or received
that may have mitigated PTS or other symptoms across this
time period. Some of the strengths of this study are that it is
one of a very few to examine long-term associations between
PTS symptoms and brain—including a 24-year follow-up of
PTS symptoms, trauma exposures were heterogeneous, and
we had good coverage of important covariates. The fact that
PTS symptoms below the threshold for diagnosis were still
associated with brain structure in late middle age is also an
important finding.

Often overlooked in studies of aging, veterans comprise
significant subsections of the population in the United States
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(Spiro IIT et al. 2018). The first wave of the 7.5 million
Vietnam era veterans has just reached retirement age, and
the projected veteran population as of September 2012 is
22.3 million adults (Department of Veterans Affairs Office
of the Actuary 2013). Although only 6.1% met criteria for
PTSD in the present study, veterans overall appear to be at
higher risk for PTSD than the general population; previous
research reported prevalence rates for Vietnam veterans as
high as 31% lifetime and 15% in the past year (Kulka et al.
1990). One of the chief roles of military service vis-a-vis PTS
may be to increase the likelihood of exposure to trauma com-
pared to civilian life (Kulka et al. 1990; Lyons et al. 2011);
however, at least half of the present sample reported a non-
combat experience as their most serious traumatic event. PTS
symptoms are known to persist and are costly in terms of high
levels of co-morbidity, mortality and protracted suffering
(Elder et al. 2009; Spiro III et al. 2018).

In sum, our findings demonstrate that PTS symptoms, even
in the absence of a PTSD diagnosis, are present even decades
after trauma exposure and associated with brain regions that
are implicated in increased risk for neurodegeneration. The
fact that even subclinical symptoms are associated with smaller
regional brain volumes suggests that persistent PTS symptoms
warrant clinical attention even if threshold for diagnosis has
not been fully met (Arnsten et al. 2015; Freedy and Brock
2010; Freedy et al. 2010). Discordant MZ twin analyses added
a unique component, consistent with a larger literature, show-
ing that smaller volumes in relevant brain regions may be a
pre-existing risk factor for PTS symptoms and their persistence
over time. However, the number of MZ discordant pairs was
too small to allow for firm conclusions. Taken together, the
study results help to identify possible mechanisms underlying
the persistence of PTS symptoms as well as their potential
contribution to the aging process (Lohr et al. 2015; Wolf and
Morrison 2017; Wolf and Schnurr 2016; Yaffe et al. 2010).
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