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Abstract
Bargaining parties often disagree on what fair is, due to the reason that people are prone to believe that what favors oneself is fair,
i.e., an egocentric bias. In this study, we investigated the neural signatures underlying egocentric bias in fairness decision-making,
conjoining an adapted ultimatum game (UG) with event-related fMRI and functional connectivity. Participants earned monetary
rewards with a partner in a production stage, wherein their contributions to the earnings were manipulated.
Afterwards, the joint earnings were randomly divided, and the distribution was presented simultaneously with
contribution information to participants, who accepted/rejected distributions of earnings as the same manner in
standard UG. We identified an egocentric bias in fairness decisions, such that participants frequently rejected self-
contributed disadvantageous outcomes, but much less so in response to other-contributed advantageous outcomes,
although both involved mismatch between contribution and payoff. This bias was underpinned by regions involved
in representing fairness norms, including the anterior insula and dorsal anterior cingulate cortex (dACC).
Furthermore, the thalamus activity was predictive of the bias, such that the level of egocentric bias decreased as
a function of the activation level of the thalamus. Finally, our functional-connectivity findings indicated that the
thalamus worked together with insula and dACC to modulate behavioral egocentric bias in fairness-related decisions. Our
findings uncover the neural basis underlying the modulation of egocentric bias in normative decision-making, and highlight
the role of neural circuits associated with norm enforcement in this phenomenon.
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Introduction

Fairness constitutes one of the fundamental social norms
across human societies. People perceive fair distributions as
rewards and costly punish unfair behaviors as norm violations
(Henrich et al. 2006; Buckholtz and Marois 2012; Feng et al.
2015). However, it is practically difficult for bargaining
parties to agree on what fair is, since people are prone to
consider fairness in an egocentric manner. That is, people tend
to bias the fairness judgment in favor of one’s own interest
(Kriss et al. 2011). For instance, people often show an ego-
centric bias in interpreting contribution during fairness-related
decision-making (Rodriguez-Lara and Moreno-Garrido 2012;
Feng et al. 2013). Contribution is deemed as a more important
factor during resource distribution when people contribute
more to the earnings compared to the condition when they
contribute less than others (Rutström and Williams 2000;
Bediou and Scherer 2014). Furthermore, the egocentric bias
in interpreting contribution has been identified when people
respond to deviations from a proportional distribution.
Specially, when incurring disadvantageous inequality in the
context of a larger contribution (i.e., contributions outweigh
payoffs), people react harshly and often reject such distribu-
tions. By contrast, people usually ignore the deviations when
receiving advantageous inequality in the context of a smaller
contribution (i.e., payoffs outweigh contributions) (Feng et al.
2013; Bediou and Scherer 2014). The egocentric bias per-
vades bargaining situations with substantial impact on
fairness-relevant judgments and decision-making (e.g.,
Bediou and Scherer 2014; Loewenstein et al. 1993; Otto and
Bolle 2015), however, the neurocognitive mechanisms under-
lying this phenomenon remain understudied.

Previous brain imaging studies have implicated multiple
neural systems in human fairness decision-making (Sanfey
et al. 2003; Feng et al. 2015). On one hand, the anterior insula
(AI) and dorsal anterior cingulate cortex (dACC) may consti-
tute a reflexive system to detect unfairness as norm violations
(Chang and Sanfey 2013; Xiang et al. 2013; Chang and Smith
2015). These regions connect extensively with subcortical
structures (e.g., thalamus) that are involved in generating aver-
sive responses (e.g., punishment) to norm violations (Hu et al.
2015; Corradi-Dell’Acqua et al. 2016). On the other hand, the
deliberate system consisting of the dorsolateral prefrontal cor-
tex (dlPFC), dorsomedial PFC (dmPFC), and ventrolateral
PFC (vlPFC) is thought to be responsible for reappraising
and regulating the reflexive system in favor of either economic
self-interest or enforcement of social norms (Buckholtz and
Marois 2012; Grecucci et al. 2013; Feng et al. 2015). In par-
ticular, the right dlPFC has been implicated in facilitating
punishment to norm violations by over-riding temptations of
self-interest, such that its disruption diminishes rejection re-
sponses to unfair offers (Knoch et al. 2006). In contrast, the
dmPFC and vlFPC are associated with suppressing aversive

reactions to unfair offers due to self-interest motivations, lead-
ing to an increased acceptance of unfair offers (Tabibnia et al.
2008; Civai et al. 2012). In short, previous neuroimaging ev-
idence indicates that fairness consideration incorporates both
automatic and effortful cognitive processes. Notably, both re-
flexive and deliberate systems are sensitive to social context,
supporting flexible fairness decisions in different situations
(Güroğlu et al. 2010; Grecucci et al. 2013). It is thus plausible
that egocentric bias in normative decision-making, manifested
as flexible interpretations of social contexts (e.g., contribu-
tion), engages the modulation of neural responses in brain
regions previously implicated in fairness judgments and
decisions.

We addressed this issue in the current study by combining
functional magnetic resonance imaging (fMRI) and context-
dependent functional connectivity with a variant of ultimatum
game (UG). Prior to the fMRI scanning, participants jointly
earned monetary rewards with another same-sex partner by
completing a cognitive task, during which their contributions
to the earning were manipulated according to the relative per-
formance in the task. Afterwards, participants were scanned
while acting as responders and received equal or unequal dis-
tributions of the earning in the context of different contribu-
tions. On each round they needed to decide whether to accept
(participant and partner got paid accordingly) or reject (neither
got paid) each income distribution. Participants’ self-reports of
unfairness ratings were also collected for assessing the ego-
centric bias in fairness judgments.

We hypothesized that participants would respond different-
ly to contributions in disadvantageous and advantageous con-
ditions. On the one hand, participants would reject disadvan-
tageous inequality much more frequently in the self-
contribution condition than the other-contribution condition,
presumably due to the reason that disadvantageous outcomes
do not match their efforts in the self-contribution condition.
On other hand, participants might not exhibit higher rejection
rates to advantageous outcomes in the other-contribution con-
dition (than the self-contribution condition), although these
outcomes do not match their efforts either. Such differential
considerations of contribution reflect egocentric biases, since
they depend on the status of self-interest. This phenomenon is
common in realistic life, such that people often complain
about their efforts outweighing pay-offs, but rarely complain
about their pay-offs outweighing efforts. At the neural level,
the current work aimed to assess two potential neurocognitive
mechanisms of the egocentric bias: (i) the bias is associated
with attenuated response in brain network recruited by fair-
ness encoding (e.g., AI, dACC) and weaker functional con-
nectivity of this network with subcortical regions (e.g., thala-
mus) implicated in generating aversive responses to norm vi-
olations, reflecting a distorted perception of fairness norms
(Thompson and Loewenstein 1992; Loewenstein et al.
1993), and/or (ii) the egocentric bias is associated with
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stronger neural activity of the dmPFC and vlPFC mediating
self-interested decisions, reflecting the involvement of self-
interest motivations (Blake et al. 2014; Otto and Bolle 2015).

Materials and methods

Subjects

Twenty-three students (12 females) (mean age ± s.d.: 22.78 ±
1.95) participated in the study for monetary compensation.
The sample size was based on previous fMRI studies using
a similar paradigm (Civai et al. 2012; Feng et al. 2016b). All
participants were right-handed (based on self-reports), had
normal or corrected-to-normal vision, and had no history of
neurological or psychiatric disorders. Written informed con-
sents were obtained from all participants. The study was con-
ducted according to the ethical guidelines and principles of the
Declaration of Helsinki and was approved by the Institutional
Review Board at Beijing Normal University (BNU), Beijing,
China.

Experimental procedure and task

Each participant underwent three sessions in this study. First,
they were invited to the lab for a screening session 2~3 days
prior to the fMRI scanning. In this session, participant (player
B) had a chance to jointly earn monetary rewards with another
same-sex partner (player A) by estimating the duration of one
second in a time-estimation task (Miltner et al. 1997). They
were instructed that their performance in each trial of the time-
estimation task would be combined with player A’s perfor-
mance. Per trial participant and player A could earn a joint
reward (i.e., 10 monetary units [MUs]), only when one or both
of them responded correctly. Reponses were considered to be
correct when they were within a certain critical time interval,
which was adapted dynamically according to participant’s
performance in previous trials to maintain an average accura-
cy of about 50% (Boksem et al. 2011). Participants completed
120 trials in total, during which they could only see their own
performance on each trial. Participants were not informed
about how many trials they responded correctly in the task,
but they were told that their performance in each trial would
be combined with that of another player (i.e., player A) to
determine both reward and contribution. Unbeknownst to par-
ticipants, however, there was no player A in the experiment.
Participants were told that they would not meet with player A
and each player would perform the task in an anonymous
setting. In rewarding trials (i.e., either one or both players
responded correctly), contributions to the incomeweremanip-
ulated according to relative performance in the task, including
self-contribution (self-correct, other-incorrect), both-
contribution (self-correct, other-correct), and other-

contribution (self-incorrect, other-correct). Participant was in-
formed that the money jointly earned with the partner would
be distributed in a follow-up fMRI experiment implementing
an adapted version of UG.

Second, participant returned the next 2~3 days for the fMRI
scanning session to complete the UG, in which the joint earn-
ings of each trial (10 MUs) were divided by a random number
generator (RNG) between the participant (player B) and play-
er A (Fig. S1). These income distributions were presented to
the participant together with the contribution information (i.e.,
self-contribution [You: √; Other: ×], both-contribution [You:
√; Other: √], and other-contribution [You: ×; Other: √]). In
response to each income distribution, participant needed to
either accept (both got paid accordingly) or reject (neither
got paid) it as in the classical UG. Notably, player A was not
responsible for the outcome, but his/her payoff depended on
participant’s decisions on the income distributions. The RNG
manipulation allowed us to reasonably present advantageous
income distributions to the participant in different contribution
conditions. Such adaptations of UG have also been previously
verified for similar efficacy as the standard UG (e.g., Civai et
al. 2012; McAuliffe et al. 2013; Yu et al. 2014; Blake et al.
2015). Additionally, in free-win trials indicated by the
BLottery^ in the screen, the RNG generated random amounts
of MUs only to the participant, and the participant could also
either accept or reject these outcomes without any impact on
player A’s payoff. This free-win condition did not involve
social comparison and was employed to control for simple
reception of monetary rewards (Civai et al. 2012, 2014).
Indeed, participants accepted almost all of divisions in the
free-win condition. That’s being said, however, it should be
noted that other potential effects (e.g., endowment effects)
might also differentiate the free-win condition from
contribution-related conditions.

Participant completed two fMRI runs lasting about 11 min
each. Each run consisted of 84 rounds: eight of advantageous
inequality (four for 9:1, two for 8:2, and two for 7:3), eight of
equality (5:5), and eight of disadvantageous inequality (two
for 3:7, two for 2:8, and four for 1:9) for each of the three
contribution conditions (self-contribution, both-contribution,
other-contribution). Additionally, there were twelve free-win
task rounds (two with 9 MUs, one with 8 MUs, one with 7
MUs, four with 5MUs, one with 3MUs, one with 2MUs, and
one with 1 MU).

Participant received instructions about the UG and played
four rounds of the game to get familiar with the task before
entering the scanner. On each round of UG, an income distri-
bution was presented together with context information
(contribution or free-win) constantly for 4 s, during which
participant had to decide to either accept or reject the distribu-
tion of earnings through a response box. Associations between
buttons and decisions were counterbalanced across subjects.
At the end of each round, an optimized temporal jitter (ranged
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from 1 to 7 s, average of 4 s) was presented for statistical
efficiency (http://www.cabiatl.com/CABI/resources/
fmrisim/). Stimulus presentation and behavioral data
collection were implemented by Psychtoolbox-3 (http://
psychtoolbox.org/).

Finally, in the post-scan session, participant reported sub-
jective judgments of unfairness on a 1 to 7 Likert scale for
each type of the income distributions. These subjective ratings
were not collected for the first 4 participants. Accordingly,
data from only 19 (9 females) (mean age ± s.d.: 22.95 ±
2.09) participants were available.

To encourage real decisions from participants, it was em-
phasized that they would be paid according to their choices in
the game, in addition to fixed show-up compensation.
However, participants were not informed about the exchange
rate between the MUs and monetary payoff, and each partic-
ipant was paid the same ( 150, about $25) at the end of exper-
iment (Fehr and Fischbacher 2003; Corradi-Dell'Acqua et al.
2013; Grecucci et al. 2013). Before leaving the laboratory,
participants filled debriefing questionnaires designed to exam-
ine their beliefs about the experimental setup. No participants
expressed doubts about whether payoffs of both their own and
player Awere dependent on their decisions in the game.

Data acquisition

Imaging was performed on a 3 T Siemens Trio scanner
equipped with a 12-channel transmit/receive gradient head
coil at BNU’s Imaging Center for Brain Research. A T2-
weighted gradient-echo echo-planar imaging (EPI) sequence
was used to acquire functional images: TR/TE = 2000 ms/
30 ms, flip angle = 90°, number of axial slices = 33, slices
thickness = 3.5 mm, gap between slices = 0.7 mm, matrix
size = 64 × 64, and FOV = 224 mm× 224 mm (voxel size =
3.5 mm× 3.5 mm× 3.5 mm). There were two EPI scan runs,
with 336 volumes per run. High-resolution anatomical images
covering the entire brain were obtained by a magnetization
prepared rapid acquisition with gradient-echo (MPRAGE) se-
quence: TR/TE = 2530 ms/3.39 ms, flip angle = 7°, number of
sagittal slices = 144, slices thickness = 1.33mm, matrix size =
256 × 256, FOV = 256 mm× 256 mm (voxel size = 1 mm×
1 mm× 1.33 mm).

Statistical analysis

Behavioral data

Decisions and unfairness ratingsAll participants responded to
at least 94.0% of rounds during the game. Trials with no re-
sponse were excluded from both behavioral and neuroimaging
analyses. Participants’ decisions (accept/reject) were analyzed
with a generalized linear mixed model (GLMM), implement-
ed in R statistical package (version 3.2.3), using the ‘lme4’

package (Bates et al. 2014). We tested our hypothesis that the
modulating effects of contribution would be smaller for ad-
vantageous inequality than disadvantageous inequality (i.e.,
egocentric bias). This was implemented with the contrast of
([self-contribution versus other-contribution]disadvantageous ver-
sus [other-contribution versus self-contribution]advantageous),
with the contribution (coded as Bmismatch^ and Bmatch^ to
implement the contrast with Bmatch^ as the reference level)
and outcomes (Bdisadvantageous^ and Badvantageous^ with
Badvantageous^ as the reference level) as within-subjects fac-
tors and participants as a random factor. Please note that a
contrast of [self-contribution versus other-contribution] was
used for disadvantageous inequality, whereas a contrast of
[other-contribution versus self-contribution] was used for ad-
vantageous inequality. This was due to the reason that both
disadvantageous inequality in self-contribution and advanta-
geous inequality in other-contribution are mismatched be-
tween efforts and pay-offs; in contrast, both disadvantageous
inequality in other-contribution and advantageous inequality
in self-contribution are matched between efforts and pay-offs.
In other words, the contrast of interest equals a 2 (outcome:
disadvantageous, advantageous) × 2 (contribution: mis-
matched, matched) interaction. Therefore, the contrast was
coded in the GLMM as [mismatch - match]disadvantageous ver-
sus [mismatch - match]advantageous. A similar analysis ap-
proach was implemented for unfairness ratings, except that
a paired t-test was employed using SPSS 16.0 (IBM, Somers,
USA).

In addition, to test the distribution characteristics of the
contribution effects in disadvantageous and advantageous in-
equality, we adopted a bootstrapping procedure.We combined
effects of contributions on rejection rates and unfairness rat-
ings of each participant in each inequality condition as a single
data point (contribution effects: rejection rates, unfairness rat-
ings). A bootstrapped dataset was created by resampling the
data with replacement, keeping the sample size of data as the
number of participants; this procedure was repeated for 2000
times to estimate the mean of the population in both disadvan-
tageous and advantageous contexts.

fMRI data: Activation analysis

Neuroimaging data analyses were performed with SPM12
(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/)
implemented in Matlab (version R2014a). Preprocessing of
functional data included realignment through rigid-body reg-
istration to correct for head motion, slice-timing correction,
normalization to MNI space, interpolation of voxel sizes into
2 × 2 × 2 mm3, spatial smoothing (8-mm full-width/half-max-
imum kernel), and high-pass filtering (f > 0.01 Hz).

A two-level general linear model (GLM) was used to ana-
lyze the fMRI data. In the first level analysis, 12 boxcar (4 s)
stimulus functions were defined according to different
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permutations of the 3 types of income distribution (advanta-
geous inequality, equality, and disadvantageous inequality)
and 4 types of contextual information (self-contribution,
both-contribution, other-contribution, and free-win). To ac-
count for different response times across trials, response time
was included as an parametric modulator for each regressor as
suggested by previous works (Poldrack et al. 2011; Mumford
and Poldrack 2014). Furthermore, trials that did not register
participant’s responses were excluded from data analysis as an
extra nuisance regressor. These regressors, being convolutions
between respective boxcar stimulus function with the canon-
ical hemodynamic impulse-response function (HRF) (Büchel
et al. 1998), were included in the design matrix together with
six head movement parameters. The GLM also modeled first-
order temporal autocorrelations in the residual to account for
temporal autocorrelations in BOLD fMRI signal (Woolrich et
al. 2001). In the second (group) level analysis, the influence of
egocentric bias was examined by comparing the modulating
effects of contribution on neural responses to advantageous
inequality and disadvantageous inequality. Similar to behav-
ioral data analyses, this was achieved by the contrast of (self-
contribution versus other-contribution)disadvantageous versus
(other-contribution versus self-contribution)advantageous, i.e., a
2 (outcome: disadvantageous, advantageous) × 2 (contribu-
tion: mismatched, matched) interaction. For false positive
control, we used whole-brain cluster correction (implemented
in SPM12) with a cluster-defining threshold of P < 0.001 and
a Family Wise Error (FWE) corrected threshold of P < 0.05
(Woo et al. 2014; Eklund et al. 2016).

fMRI data: Correlation analysis

To identify brain regions associated with the egocentric bias of
fairness decision-making, voxel-wise contrast of interest (i.e.,
[self-contribution versus other-contribution)disadvantageous ver-
sus (other-contribution versus self-contribution)advantageous])
was correlated with the egocentric bias in individual behav-
ioral measures of rejection rates. Multiple comparisons were
corrected with the same approach and thresholds used in the
activation analysis.

fMRI data: Connectivity analysis

The correlation analysis identified the thalamus, in which
changes in neural responses were correlated with the egocentric
bias of fairness decision-making (see also Results section).
Therefore, we examined whether the thalamus worked together
with other brain regions to underlie the egocentric bias with an
analysis of Psychophysiological interaction (PPI) (Friston et al.
1997) using the thalamus as a region of interest (ROI).
Specifically, we used the generalized PPI toolbox (http://
www.nitrc.org/projects/gppi, version 13.1) (McLaren et al.
2012) with fMRI signal time courses individually extracted

from the thalamus as the seeding signals. These seeding signals
were then deconvolved with the canonical HRF, resulting in
estimates of the underlying neuronal activity (Gitelman et al.
2003). Subsequently, the interactions of these estimated neuro-
nal time-series and vectors representing each of the onsets for
each type of income distribution were computed. Lastly, these
interaction terms were re-convolved with the HRF and entered
into a new GLM along with the vectors for the onsets of each
event (i.e., the psychological terms), the original average time-
series and nuisance regressors (i.e., 6 movement parameters
derived from realignment corrections). Group level analysis
of the PPI data were almost identical to that of activation data
except the beta values used were derived from the PPI regres-
sors. In the present study, we focused on connections that ex-
hibited a differential contribution effect between advantageous
inequality and disadvantageous inequality (i.e., the egocentric
bias). Multiple comparisons were corrected with the same ap-
proach and thresholds used in the activation analysis.

Meta-analysis on brain imaging studies of fairness-related
decision-making

To examine whether the egocentric bias reflects the modula-
tions of neural activity in brain regions consistently involved
in fairness-related decision-making, we performed a meta-
analysis on brain imaging studies of fairness-related deci-
sion-making. Afterwards, we assessed the overlap between
regions involved in the egocentric bias and those consistently
engaged by fairness-related decision-making. Details on the
meta-analysis approach could be obtained in one of our recent
publications (Feng et al. 2015). In brief, we built on our pre-
vious meta-analysis on the topic by including additional 10
studies through systematic search and selection, resulting in
27 studies (including a total of 309 peak foci) that reported the
contrast of Bunfair > fairness^ (Table 1). A coordinate-based
meta-analysis of those studies was conducted by employing
the revised ALE algorithm (Eickhoff et al. 2009) with in-
house MATLAB scripts. ALE determines the convergence
of foci reported from different functional neuroimaging stud-
ies with published foci in Talairach or MNI space (Turkeltaub
et al. 2002; Laird et al. 2005). The updated meta-analysis
identified the consistent involvement of the AI, dACC and
dlPFC in fairness perception, which largely replicated our
previous findings (Feng et al. 2015).

Results

Behavioral results

The GLMM on participants’ decision-making indicated that
the modulating effects of contribution were smaller in re-
sponse to advantageous distributions than to disadvantageous
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distributions (parameter estimate = 2.62, s.e. = 1.22, odds ra-
tio = 13.78, z = 2.14, P < 0.05) (Fig. 1a). Similarly, the analy-
sis on unfairness ratings revealed that the influence of contri-
bution was smaller on advantageous distributions than disad-
vantageous distributions (t18 = 2.24, P < 0.05, Cohen’s d =
0.46) (Fig. 1b). These findings indicated that participants con-
sidered less about earning contribution when assessing advan-
tageous distributions than disadvantageous distributions.
Notably, the egocentric bias (i.e., the differential effects of
contribution) in unfairness ratings showed positive correla-
tions with the egocentric bias in rejection rates (Spearman
ρ = 0.55, P < 0.05) (Fig. 1c).

Behavioral patterns in individual participants were illustrat-
ed in Fig. 2 for both rejection rates (Fig. 2a) and unfairness
ratings (Fig. 2b). In addition, the bootstrapped data showed a
boundary between disadvantageous and advantageous in-
equality, supporting that the modulating effects of contribu-
tion on both rejection rates and unfairness ratings were smaller
for advantageous inequality than disadvantageous inequality
(Fig. 2c).

fMRI activation results

The contras t of (se l f -contr ibut ion versus other-
contribution)disadvantageous versus (other-contribution versus
self-contribution)advantageous revealed the activations in the fol-
lowing brain regions (Fig. 3a and Table 2): bilateral AI (Fig. 3b,
c), dACC (Fig. 3d), and right dlPFC (Fig. 3e) among others
(P < 0.05, FWE corrected at the cluster level; Table 2). In
accord with behavioral findings, the modulating effects of con-
tribution on the neural responses of these brain regions were
smaller for advantageous distributions than disadvantageous
distributions. Notably, brain regions identified for the egocen-
tric bias showed substantial overlap with those consistently
involved in the fairness-related decision-making (Fig. 4).

fMRI correlation results

Egocentric bias in rejection rates showed a significant
and positive correlation with the neural responses to the
contrast of interest (i.e., [self-contribution versus other-

Table 1 Summary of studies included for the meta-analysis on unfairness in the Ultimate Game

Study N Task and contrast No. of foci

Baumgartner et al. (2011) 32 Responders in UG, unfair>fair 17

Civai et al. (2012) 19 Responders in a modified UG/DG, unequal>equal 12

Corradi-Dell’Acqua et al. (2016) 19 Responders in UG, unfair > fair 21

Farmer et al. (2016) 18 Responders in UG, unfair > fair 6

Fatfouta et al. (2016) 23 Responders in UG, unfair > fair 18

Feng et al. (2016a) 40 Responders in UG, unfair > fair 10

Haruno et al. (2014) 62 Responders in UG, parametric analysis, positive correlation with inequity. 4

Gospic et al. (2011) 17 Responders in UG, unfair>fair 4

Gradin et al. (2015) 25 Responders in UG, unfair>fair 10

Guo et al. (2014) 18 Responders in UG, unfair>fair 10

Guo et al. (2013) 21 Responders in UG, unfair>fair 13

Güroğlu et al. (2011) 68 Responders in UG, unfair>fair 9

Halko et al. (2009) 23 Responders in UG, unfair>fair 22

Harlé and Sanfey (2012) 38 Responders in UG, unfair>fair 12

Hu et al. (2015) 23 Responders in UG, unfair>fair 4

Kirk et al. (2011) 40 Responders in UG, unfair>fair 11

Kirk et al. (2016) 50 Responders in UG, unfair > fair 11

Roalf (2010) 27 Responders in UG, unfair>fair 8

Sanfey et al. (2003) 19 Responders in UG, unfair>fair 17

Servaas et al. (2015) 114 Responders in UG, unfair>fair 32

Verdejo-García et al. (2015a) 19 Responders in UG, unfair>fair 4

Verdejo-García et al. (2015b) 44 Responders in UG, unfair>fair 13

White et al. (2013) 20 Responders in UG, parametric analysis, positive correlation with unfairness level 8

White et al. (2014) 21 Responders in UG, parametric analysis, positive correlation with unfairness level 7

Wu et al. (2014) 18 Responders in UG, parametric analysis, negative correlation with subjective utility 7

Zheng et al. (2014) 25 Responders in UG, unfair>fair 15

Zhou et al. (2014) 28 Responders in UG, unfair>fair 4

N, number of subjects
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contribution)disadvantageous versus (other-contribution versus
self-contribution)advantageous]) in the thalamus (x/y/z = 22/2/
−2 mm, cluster size = 700; Fig. 5a). That is, the two measure-
ments of egocentric bias, one derived from neuronal level of
thalamus activation and the other derived from behavioral
level of rejection rate, were positively correlated with each
other (Fig. 5b).

PPI results

PPI analysis was performed to assess the effects of egocentric
bias on the functional connectivity between the thalamus and
other brain regions. The contrast of (self-contribution versus
other-contribution)disadvantageous versus (other-contribution ver-
sus self-contribution)advantageous revealed context-dependent

Fig. 1 Behavioral performance. The modulating effects of contribution
were smaller in the advantageous than disadvantageous distributions for
both rejection rates [Advantageous: −0.06~0.94; Disadvantageous:
−0.50~1.00] (a) and unfairness ratings [Advantageous: −0.67~4.67;
Disadvantageous: 0.00~6.00] (b). The egocentric bias in rejection rates
and unfairness ratings were positively correlated with each other (c). *P
< 0.05. Error bars indicate standard errors. Adv., advantageous inequality;

Disadv., disadvantageous inequality. The modulating effects of
contribution were defined as differences in behaviors between
mismatched and matched contribution conditions, respectively for
advantageous (other-contribution minus self-contribution) and
advantageous (self-contribution minus other-contribution) outcomes.
Larger values of the effect indicate more pronounced unfair feelings to
mismatched contribution and outcomes

Fig. 2 Behavioral patterns for individual participants. The egocentric
bias in rejection rates (a) and unfairness ratings (b) in each participant is
illustrated. Bootstrap results of the modulating effects of contribution are
illustrated as a function of behavioral measures (rejection rates, unfairness
ratings) and inequality (advantageous, disadvantageous) (c). The
Bootstrap results indicate that the modulating effects of contribution in

both rejection rates and unfairness ratings were smaller for advantageous
inequality than for disadvantageous inequality. Adv., advantageous
inequality; Disadv., disadvantageous inequality. Please note that (i) par-
ticipants were ordered according to egocentric bias in rejection rates and
unfairness ratings respectively in (a) and (b); and (ii) unfairness ratings
have missing values from 4 subjects, as shown in (b)
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functional connectivity of the thalamus with the following brain
regions (Fig. 6a and Table 3): bilateral insula (Fig. 6b, c) and
dACC (Fig. 6d) among other brain regions. Notably, the effects
of the egocentric bias on the thalamus-left insula connectivity
strength (Spearman ρ = 0.42, P < 0.05) and the thalamus-right
insula connectivity strength (Spearman ρ = 0.45, P < 0.05)
showed positive correlations with the egocentric bias in rejec-
tion rates.

Discussion

By bridging event-related fMRI, meta-analysis, and context-
dependent functional connectivity, the current study examined
neural signatures underlying the effects of egocentric bias on
fairness decision-making and judgments. We demonstrated an
egocentric bias in interpreting contribution during fairness de-
cision-making, such that participants frequently rejected self-
contributed (compared to other-contributed) disadvantageous
outcomes, but much less so in response to other-contributed
(compared to self-contributed) advantageous outcomes,

although both involved mismatch between contribution and
payoff. This behavioral bias was paralleled with decreased
involvement of the AI, dACC, and dlPFC in response to ad-
vantageous distributions relative to disadvantageous distribu-
tions. Furthermore, the egocentric bias in fairness decision-
making was predicted by changes in neural responses of the
thalamus, which worked together with fairness-related regions
(insula, dACC) to modulate the bias. We interpret these
findings as that the egocentric bias of fairness decision-
making results from distorted perception of fairness in favor
of oneself.

We first demonstrated that participants considered contri-
bution in an egocentric manner, such that participants fre-
quently rejected undeserved disadvantageous outcomes, but
they frequently accepted undeserved advantageous outcomes.
These findings complement previous observations on the ego-
centric bias in normative decision-making (Loewenstein et al.
1993; Hoffman et al. 1994; Babcock and Loewenstein 1997;
Rodriguez-Lara and Moreno-Garrido 2012) by identifying
flexible interpretations of contribution in favor of oneself.
The bias could reflect distortions in the perception of fairness,

Fig. 3 Brain regions exhibiting weaker modulating effects of
contribution in response to advantageous inequality (other-
contribution versus self-contribution) than disadvantageous inequality
(self-contribution versus other-contribution). The analysis revealed
bilateral AI, dACC, and right dlPFC among other brain regions (a). Bar
plots illustrated parameter estimates of AI (b & c), dACC (d), and dlPFC

(e) revealed by the contrast. Images are thresholded at P< 0.05 corrected
for multiple comparisons at the cluster level in conjunction with voxel-
wise P < 0.001 (uncorrected; critical cluster size = 200 voxels). L, left; R,
right; AI, anterior insula; dACC, dorsal anterior cingulate cortex; dlPFC,
dorsolateral prefrontal cortex; Adv., advantageous inequality; Disadv.,
disadvantageous inequality
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such that people’s intrinsic fairness judgments are biased in
favor of oneself (Thompson and Loewenstein 1992;
Loewenstein et al. 1993). Additionally, the egocentric bias
might be attributed to the self-interest motivation, which
drives people to gain immediate rewards and maintain advan-
tage relative to others (Blake et al. 2014; Otto and Bolle 2015).
Our brain functional neuroimaging results provide additional
line of evidence to dissociate these potential cognitive pro-
cesses and/or motivations underlying the egocentric bias.

Our neuroimaging findings dovetail with behavioral obser-
vations by showing that brain regions important in the detec-
tion and resolution of norm violations—the AI, dACC, and
dlPFC—exhibited attenuated responses to norm violations for
advantageous distributions compared with disadvantageous
distributions. Among these regions, the AI and dACC are
associated with negative feelings due to fairness-related norm
violations (Sanfey et al. 2003; Feng et al. 2016a), whereas the
dlPFC is associated with inhibiting self-interested motivation
to reject unfair outcomes (Knoch et al. 2006). These regions
may work together to facilitate norm enforcement (i.e., rejec-
tion) in response to unfairness.

Therefore, the biased neural responses observed in these
regions echo the distorted-fairness account, suggesting that
the egocentric bias in fairness decision-making reflects the
distorted representations of fairness norms (Thompson and
Loewenstein 1992; Loewenstein et al. 1993). In line with this
idea, our results identified extensive overlap in the AI and
dACC between neural responses associated with the egocen-
tric bias and those consistently implicated in fairness percep-
tion revealed by meta-analysis.

The distorted-fairness account is further reinforced by our
findings that the egocentric bias was predicted by brain

activations in the thalamus, a region implicated in encoding
aversive feelings during social interactions (White et al. 2013,
2014; Hu et al. 2015). In particular, the thalamus constitutes a
pivotal part of the limbic system that is consistently engaged
by the processing of negative emotions (Phan et al. 2002).
Similarly, this region is involved in the encoding of unfair
treatments in UG (Kirk et al. 2011; Hu et al. 2015) and may
represent reactive aggressive responses to provocations
(White et al. 2014). Therefore, the predicative role of the thal-
amus for the egocentric bias suggests that the bias in fairness
decision-making could result from decreased negative feel-
ings to norm violations in response to advantageous inequality
compared with disadvantageous inequality.

Table 2 Brain regions exhibiting
differential effects of contribution
on neural responses to
advantageous inequality
compared to disadvantageous
inequality

Brain regions Side MNI coordination of
local maxima (mm)

Local maxima Cluster size
(voxel)

x y z T

Contribution effects: adv. > disadv.

Posterior cingulate cortex B −10 −58 22 5.14 389

Contribution effects: adv. < disadv.

Anterior insula R 36 20 −4 5.51 285

Anterior insula L −28 22 0 5.68 245

Dorsal anterior cingulate gyrus B −12 16 42 5.07 211

Middle frontal gyrus R 50 16 28 5.10 279

Precentral gyrus R 36 0 40 4.91 214

Precentral gyrus L −22 0 46 5.51 609

Inferior parietal lobule R 24 −54 44 4.57 749

Inferior parietal lobule L −28 −56 54 4.65 396

Fusiform L −28 −58 −6 5.19 317

Voxel-wise P < 0.001 (uncorrected) in conjunction with P< 0.05 corrected for multiple comparisons at the cluster
level (critical cluster size = 200 voxels), voxel size = 2 × 2 × 2 mm3 . B, bilateral; R, right; L, left; dis., disadvan-
tageous inequality; adv., advantageous inequality

Fig. 4 Overlap in brain regions that were associated with egocentric
bias and fairness perception. The overlap was identified in bilateral AI
and dACC. L, left; R, right
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Finally, our functional connectivity findings lend further
support to the distorted-fairness account by revealing bias-
modulated connectivity between the thalamus and fairness-
related regions, including the insula and dACC. Similar to
the thalamus, both the insula and dACC have been previously
implicated in detecting the presence of norm violation and
generating aversive feelings to induce costly punishment of
unfairness (Harlé et al. 2012; Corradi-Dell’Acqua et al.
2016). Specifically, a recent neuroimaging study employing

multivoxel pattern analysis has identified a domain-general
affective processing in the AI and dACC, pointing to a com-
mon coding of affective unpleasantness, arousal, and the sa-
lience of the experience (Corradi-Dell’Acqua et al. 2016).
Taken together, the current findings indicate that the egocentric
bias in fairness decision-making is associated with diminished
encoding of norm violations, resulting in less aversive re-
sponses (i.e., punishment) to norm violations in the advanta-
geous context.

Fig. 5 Brain regions exhibiting positive correlations with rejection
rates for the contrast of interest ([other-contribution versus self-
contribution)adv. < (self-contribution versus other-contribution)disadv.])
in the whole-brain analysis. The analysis revealed right thalamus (a).
Images are thresholded at P< 0.05 corrected for multiple comparisons at

the cluster level in conjunction with voxel-wise P < 0.001 (uncorrected;
critical cluster size = 200 voxels). Dot plots illustrated the brain-behavior
correlation identified by the analysis (b). Please note that the region was
identified by whole-brain analysis,and the dot plots was only for illustration
purpose. L, left; R, right

Fig. 6 Brain regions exhibiting functional connectivity with the
thalamus as the seed region for the contrast of ([other-contribution
versus self-contribution)adv. < (self-contribution versus other-
contribution)disadv.]). The analysis revealed bilateral insula and dACC
among other brain regions (a). Bar plots illustrated parameter estimates of
insula (b & c) and dACC (d) revealed by the analysis. Images are

thresholded at P < 0.05 corrected for multiple comparisons at the
cluster level in conjunction with voxel-wise P < 0.001 (uncorrected; crit-
ical cluster size = 168 voxels). L, left; R, right; AI, anterior insula; dACC,
dorsal anterior cingulate cortex; Adv., advantageous inequality; Disadv.,
disadvantageous inequality
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Notably, our findings extend previous observations on the
context-dependent fairness-related behaviors and neural re-
sponses by revealing that people interpret social contexts in a
manner that favors oneself (i.e., egocentric bias). Prior work has
investigated fairness decision-making and its associated brain
functions in a variety of social contexts, such as the presence of
others (Feng et al. 2016b), membership (Baumgartner et al.
2012; Feng et al. 2016a), social status (Hu et al. 2015), and
contributions to the income (Feng et al. 2013; Cappelen et al.
2014; Guo et al. 2014) among others. For instance, the less
people contribute to the income, the lower level of brain activity
of fairness-related network responds (e.g., the AI, dACC and
dlPFC) to disadvantageous divisions (Guo et al. 2014) and the
more likely people accept these divisions (Feng et al. 2013; Guo
et al. 2014). Although these findings provide important insights
on the flexible fairness decision-making and brain functions,
however, the current study provides the first and converging
evidence to show that social contexts (e.g., contribution) are
interpreted in an egocentric manner and that the egocentric bias
results from distortions in intrinsic fairness perceptions.

Several limitations of the current study should be noted.
First, participants exhibited heterogeneity in egocentric bias
(see also Fig. 2a, b), which is in line with previous findings
(Bediou and Scherer 2014). For instance, egocentric bias in
allocating resources was only found among individualists but
not among prosocials (Bediou and Scherer 2014), and it
would be both intriguing and important to examine neural
correlates mediating those individual differences in egocentric
bias. Relatedly, future studies are also needed to examine the
egocentric bias among clinical populations as a potential psy-
chological marker. Potential candidates include those patients
with social functioning deficit, such as people with narcissistic
personality disorder, machiavellianism, and autism spectrum

disorder (Silani et al. 2017). Second, the joint earnings were
divided by a random device, which is a common approach
when advantageous offers are involved (e.g., Civai et al.
2012; McAuliffe et al. 2013; Yu et al. 2014; Blake et al.
2015). This approach is different from the traditional UG with
respect to the intentionality of the proposers, which is also an
important factor in fairness decision-making (Falk and
Fischbacher 2006). Notably, however, previous studies have
identified similar behavioral patterns with the current findings
even if participants were told that divisions were proposed by
another person (Feng et al. 2013; Bediou and Scherer 2014).

Despite these limitations, our findings identified the neural
basis underlying the modulation of the egocentric bias in nor-
mative decision-making and highlighted the role of the neural
network consisting of the AI, dACC and dlPFC that are asso-
ciated with the representations of fairness norms in this phe-
nomenon. Our findings might have significant implications for
understanding real-life bargaining in which fairness is judged in
complex contexts and the egocentric bias is common.
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Table 3 Brain regions exhibiting
stronger effects of contribution on
the functional connectivity with
thalamus in response to
advantageous inequality
compared to disadvantageous
inequality

Brain regions Side MNI coordination of local
maxima (mm)

Local maxima Cluster size
(voxel)

x y z T

Contribution effects: adv. > disadv.

Middle temporal gyrus R 50 −34 −10 5.94 238

Extra-nuclear/caudate R 28 −18 22 5.08 438

Contribution effects: adv. < disadv.

Insula R 42 −12 4 5.39 587

Insula L −44 −8 −4 5.67 925

Dorsal anterior cingulate gyrus B 6 −4 46 5.58 231

Precentral gyrus L −44 −14 60 6.11 337

Precuneus L −24 −84 36 5.14 266

Calcarine L R −64 18 6.51 187

Inferior temporal gyrus R 62 −60 −2 7.05 259

Voxel-wise P < 0.001 (uncorrected) in conjunction with P< 0.05 corrected for multiple comparisons at the cluster
level (critical cluster size = 168 voxels), voxel size = 2 × 2 × 2 mm3 . B, bilateral; R, right; L, left; dis., disadvan-
tageous inequality; adv., advantageous inequality
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