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Abstract
There are concerns about the effects of subconcussive head impacts in sport, but the effects of subconcussion on brain 
connectivity are not well understood. We hypothesized that college football players experience changes in brain functional 
connectivity not found in athletes competing in lower impact sports or healthy controls. These changes may be spatially 
heterogeneous across participants, requiring analysis methods that go beyond mass-univariate approaches commonly used 
in functional MRI (fMRI). To test this hypothesis, we analyzed resting-state fMRI data from college football (n = 15), soc-
cer (n = 12), and lacrosse players (n = 16), and controls (n = 29) collected at preseason and postseason time points. Regional 
homogeneity (ReHo) and degree centrality (DC) were calculated as measures of local and long-range functional connectivity, 
respectively. Standard voxel-wise analysis and paired support vector machine (SVM) classification studied subconcussion’s 
effects on local and global functional connectivity. Voxel-wise analyses yielded minimal findings, but SVM classification had 
high accuracy for college football’s ReHo (87%, p = 0.009) and no other group. The findings suggest subconcussion results 
in spatially heterogeneous changes in local functional connectivity that may only be detectible with multivariate analyses. 
To determine if voxel-wise and SVM analyses had similar spatial patterns, region-average t-statistic and SVM weight values 
were compared using a measure of ranking distance. T-statistic and SVM weight rankings exhibited significantly low ranking 
distance values for all groups and metrics, demonstrating that the analyses converged on a similar underlying effect. Overall, 
this research suggests that subconcussion in football may produce local functional connectivity changes similar to concussion.
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Introduction

Multiple concussions over the course of a long career in 
American football can affect a player’s brain long after par-
ticipation in the sport has ended, possibly increasing the 
player’s susceptibility for multiple neurodegenerative dis-
orders, including chronic traumatic encephalopathy (Iver-
son et al. 2015; Lehman et al. 2012; McKee et al. 2013; 
Omalu et al. 2006; Stein et al. 2014). However, the majority 
of sports-related head impacts do not cause concussion, but 
there is mounting evidence that even subconcussive head 
impacts can affect brain structure (Davenport et al. 2014; 
Koerte et al. 2012; Zhang et al. 2013), function (Abbas et al. 
2015; Breedlove et al. 2012, 2014; Johnson 2014; Militana 
et al. 2015; Robinson et al. 2015; Shenk et al. 2015; Svaldi 
et al. 2016; Talavage et al. 2010), and performance (Hwang 
et al. 2016; Kawata et al. 2016; Tsushima et al. 2016). While 
there is no official definition of subconcussion, Bailes et al. 
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(2013) defined it as “a cranial impact that does not result 
in a known or diagnosed concussion on clinical grounds.” 
Aggregately, these studies suggest that subconcussive head 
impacts might produce spatially heterogeneous effects on 
the brain, that are similar to, but less severe than, the effects 
from concussion (Bailes et al. 2013).

Functional magnetic resonance imaging (fMRI) is a 
noninvasive method for measuring functional activity in 
the brain that has proven capable of detecting functional 
changes in the brain related to subconcussion. The first 
studies to indicate that subconcussive head impacts cause 
functional changes in the brain used fMRI with a working 
memory task (Breedlove et al. 2012, 2014; Robinson et al. 
2015; Shenk et al. 2015; Talavage et al. 2010). These stud-
ies identified a group of athletes who were not diagnosed 
with a concussion but exhibited functional impairment in 
multiple regions and experienced a higher subconcussive 
head impact load compared to athletes without functional 
impairment. Using task-independent resting state fMRI 
(rs-fMRI), Johnson et al. (2014) found changes in func-
tional connections between multiple regions in the default 
mode network (DMN) (Johnson 2014), and Abbas et al. 
(2015) found changes in the number of regions connected 
to the DMN (Abbas et al. 2015) after exposure to repeti-
tive subconcussive head impacts. Task-based fMRI has 
found changes in working memory and rs-fMRI has found 
changes in the functional connectivity of the DMN, but there 
is no reason to assume that these tasks and networks are the 
only, or even the primary, areas affected by subconcussion 
(Breedlove et al. 2012, 2014; Robinson et al. 2015; Shenk 
et al. 2015; Talavage et al. 2010). If the physiological effects 
of subconcussion have heterogeneity similar to concussion, 
then it may be more appropriate to use whole-brain fMRI 
analyses that are independent of specific brain functions and 
networks.

Resting-state fMRI data can be used to calculate many 
aspects of functional connectivity for each grey matter voxel 
(Telesford et al. 2011), including metrics reflecting local 
and global functional connectivity of a voxel. Regional 
homogeneity (ReHo) is a commonly used measure of local 
connectivity that calculates connectivity between a grey 
matter voxel and its immediate spatially contiguous neigh-
boring voxels. Degree centrality (DC) is a commonly used 
measure of global connectivity that calculates connectivity 
between one grey matter voxel and all other grey matter 
voxels in the brain. Meier et al. (2016) recently investi-
gated whether ReHo and DC changed after athletes sustain 
a concussion and made several compelling findings. Their 
analyses revealed several brain regions that contained areas 
with statistically significant changes in ReHo one-month 
after a concussion, including the left paracentral lobule and 
postcentral gyrus, and the right postcentral gyrus, lingual 
gyrus, fusiform gyrus, middle temporal gyrus and superior 

temporal gyrus, among others (Meier et al. 2016). However 
in the same study, no areas experienced a significant change 
in DC (Meier et al. 2016). If repetitive subconcussive head 
impacts affect changes similar to concussion, then ReHo and 
DC may be useful metrics to detect those changes.

In fMRI data analysis, mass-univariate application of the 
general linear model (GLM) accounts for the vast majority 
of publications over the last 20 years, including the majority 
of fMRI studies of mTBI to date. Mass-univariate analysis 
of fMRI data is most useful for identifying situations where 
the same region shows the same type of change across a 
majority of the population under investigation. However, if 
the underlying change of interest exhibits spatial heteroge-
neity across participants, mass-univariate application of the 
GLM becomes poorly matched to the problem under inves-
tigation. Studies of mTBI from different domains – clini-
cal, biomechanical, and fMRI – support the idea that spa-
tial heterogeneity of injury is likely a dominant feature of 
mTBI. It is well-described that concussion presents with a 
variable set of signs and symptoms (Belanger and Vander-
ploeg 2005), to the point that physicians who see concus-
sion patients are fond of the statement, “If you have seen 
one concussion, you have seen one concussion”. Data from 
both biomechanical simulations and live action sports com-
petition suggest the clinical variability may exist because 
each unique head impact likely imparts different forces on 
different brain regions (Beckwith et al. 2013; Broglio et al. 
2010; Crisco et al. 2010; Rowson et al. 2012; Wilcox et al. 
2015). The existing fMRI studies of concussion support 
this idea, with many reporting different areas of change 
in brain activity (Yuh et al. 2014), suggesting spatial dif-
ferences between populations with similar mechanisms of 
injury. If we hypothesize that subconcussion affects similar 
brain regions as concussion but in a less severe manner, then 
mass-univariate application of the GLM may be insufficient 
to detect changes related to subconcussion.

To address some of the weaknesses of mass-univariate 
analysis, some fMRI researchers have started using multivar-
iate analyses as a complement to standard mass-univariate 
analyses (Mahmoudi et al. 2012; Vergara et al. 2016). For 
example, multivoxel pattern analyses (MVPA) can probe the 
information in distributed neural patterns without assuming 
a specific spatial model. MVPA is often performed within 
the framework of supervised learning classification, using 
a training set of data to create classification algorithms that 
discriminate between two known groups, before testing clas-
sifier performance on novel data (Mahmoudi et al. 2012). 
The resulting algorithms differentially weight voxels across 
the brain that might collectively discriminate between two 
(or more) groups of interest. This general approach has the 
benefit of being more robust in detecting changes that are 
spatially heterogeneous or spatially distributed across a 
group. Linear support vector machine (SVM) classification 
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is an increasingly common technique in fMRI that tries to 
create a hyperplane decision boundary that separates the 
two groups’ feature sets with the maximum possible margin 
(Cortes and Vapnik 1995; Vapnik 2000). For fMRI data, 
the strength of linear SVM lies in its ability to deal with 
high dimensionality data and resistance to overtraining 
(Formisano et al. 2008; Meier et al. 2012); but a significant 
weakness is the open question of whether resulting classifier 
weight maps contain useful information about spatial distri-
bution of effects in the brain (Haufe et al. 2014).

We hypothesized that the hundreds of subconcussive 
head impacts sustained in college football produce spatially 
heterogeneous changes in brain functional connectivity that 
should be measurable with rs-fMRI. To test this hypothesis, 
the present study collected preseason and postseason rs-
fMRI data from college football, soccer, and lacrosse players 
and a matched control group. At each time point, ReHo and 
DC were respectively used as voxel-based measures of local 
and global functional connectivity throughout the brain. 
Changes in ReHo and DC between the two time points were 
tested with both: (1) mass-univariate application of the GLM 
and (2) paired implementation a linear SVM classification. 
In addition, a ranking distance measure was used to test if 
the spatial information resulting from the mass-univariate 
analysis shared any information with the weight maps result-
ing from the SVM classification, despite the disparate ways 
these maps are generated.

Methods

Participants

From 2013 to 2015, preseason and postseason resting-state 
fMRI data was collected from 31 college football players 
(CF), 18 college men’s lacrosse players (CL), 14 college 
men’s soccer players (CS), and 30 male controls (MC) (mean 
(SD) age: 20.3 (1.5) years, 20.2 (1.2) years, 20.4 (1.2) years, 
21.7 (3.3) years, respectively). For all college athletes, pre-
season data was collected no later than one week after the 
first practice of the sports season, and before any competi-
tive games; postseason data was collected no later than two 
weeks after the final game or practice of the season or post-
season (mean (SD) days between scans: CF = 133.5(9.2), 
CL = 63.6(13.2), CS = 86.6(4.5)). Football player data was 
collected during their fall competitive season, while lacrosse 
and soccer player data was collected during their respec-
tive fall and spring practice seasons. For male controls, the 
two scanning sessions were separated by 3–4 months to 
approximate the length of an athletic season (mean (SD) 
days between scans: 108.7 (6.4)). College athletes were 
volunteers from NCAA Division I teams without a history 
of developmental or neurological disorder, or moderate to 

severe traumatic brain injury. Nineteen CF, seven CL, and 
six CS players had a self-reported history of diagnosed con-
cussion prior to the start of the season, but were not excluded 
from the study. Male controls were drawn from a mixed-
gender university population screened for history of neuro-
logic disease, including concussion. Four football players 
sustained an injury or illness that resulted in substantial lost 
playing time, and three additional players were diagnosed 
with a concussion during the season; these athletes were 
excluded from further analyses. For the rs-fMRI analyses, 
the participants were divided into three groups: college foot-
ball players (CF), other sports (OS) including both college 
lacrosse and soccer players, and male controls (MC). The 
three groups represented high, medium, and low subconcus-
sive exposure, respectively (Reynolds et al. 2017). Six foot-
ball players had a position and playing status that resulted 
in no game time and little to no expected head impact expo-
sure during practice (ex. redshirt quarterback or back-up 
kicker), and were therefore excluded from further analysis. 
The OS athletes also serve as a college athlete control group 
to account for possible aerobic training confounds, or other 
factors that may differentiate college athletes from their non-
athlete peers.

Data acquisition

Data for this study was collected at the University of Vir-
ginia Health System on a Siemens MAGNETOM Trio 
MRI. A whole brain multiband BOLD sequence (Univer-
sity of Minnesota, CMMR sequence, https://github.com/
CMRR-C2P/MB) (Feinberg et  al. 2010; Moeller et  al. 
2010; Xu et al. 2013) (TR/TE = 1000 ms/32 ms, slice thick-
ness = 3 mm, slice spacing 0.75 mm, in-plane dimensions 
3 × 3 mm, flip angle = 90°, matrix = 64 × 64, multiband fac-
tor = 4, volumes = 480) was acquired during an eyes-open 
resting state: the participants were instructed to lie still 
and remain awake. A three-dimensional high resolution T1 
magnetization-prepared rapid gradient-echo (MPRAGE) 
sequence (TR/TE = 1200/2.27, slice thickness = 1  mm, 
in-plane dimensions = 0.977 × 0.977 mm, flip angle = 9°, 
matrix = 256 × 256) was acquired as an anatomical reference.

Data preprocessing

Each participant’s anatomical image was brain extracted 
using Advanced Normalization Tools (ANTs) (Avants et al. 
2011) antsBrainExtraction.sh script. A college athlete and 
control (CAC) template was created from a random selection 
of 30 participants’ anatomical scans using antsMultivariate-
TemplateConstruction2.sh. The Desikan-Killiany-Tourville 
(DKT) atlas (Klein and Tourville 2012) was applied to the 
CAC template using antsJointLabelFusion.sh and 20 hand-
labeled brains from the OASIS-TRT dataset (2012). The 
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following preprocessing steps were performed in ANTs with 
R (ANTsR) (Avants et al. 2015) unless otherwise specified. 
The first 10 time points of the rs-fMRI were removed to allow 
the MRI to reach signal equilibrium. White matter signal, 
CSF signal, component based grey matter noise (CompCor) 
(Behzadi et al. 2007), six-degrees of motion parameters and 
their squares, and derivatives of original and squared motion 
parameters were regressed from the rs-fMRI images. Time 
points that exceeded a framewise displacement of 0.5 mm were 
removed from subsequent analyses, along with the following 
time point, and were replaced with ß-spline interpolation. If 
either a participant’s preseason or postseason scan had a mean 
translation across all time points greater than 0.25 mm com-
pared to the participant’s average BOLD image, that partici-
pant was removed from further analyses; this excluded three 
football players, two lacrosse players, two soccer players, and 
one control. The remaining subjects’ mean head translation 
and mean head rotation during the fMRI scan were compared 
to identify any head movement differences across groups and 
time points, with unpaired and paired t-tests respectively. 
Rs-fMRI images were then diffeomorphically and affine 
transformed to the CAC template using antsRegistration and 
antsApplyTransforms commands. Supplemental Table S1 
summarizes the participants’ demographics, including their 
sport, the position played in that sport, if they were included 
in the subsequent analyses, and if not, why they were excluded.

Calculating measures of functional connectivity 
(Fig. 1)

Preprocessed BOLD images were used to calculate measures 
of functional connectivity using the Data Processing Assis-
tant for Resting State fMRI (DPARSF) version 4.0 (Yan and 
Zang 2010). A cortical grey matter mask, segmented from 
the CAC template, was used to mask the data before met-
ric calculation. BOLD images were then bandpass filtered 
(0.01–0.10 Hz) before calculation of the two metrics (Biswal 
et al. 1995). Regional homogeneity (ReHo) and degree cen-
trality (DC) were calculated for each set of BOLD images. 

ReHo is the Kendall’s coefficient of concordance (KCC) for 
a 27 voxel cube surrounding the reference voxel, and is a 
measure of local functional connectivity within that small 
neighborhood (Zang et al. 2004). Weighted degree centrality 
(DC) is the sum of Pearson correlations between a voxel’s 
time series and that of all other grey matter voxels, and is a 
measure of global functional connectivity. To improve nor-
mality, the resulting correlation coefficient brain maps were 
then Z transformed by subtracting the mean metric value for 
grey matter from each voxel and dividing by the correspond-
ing standard deviation, using DPARSF (Yan et al. 2013). 
Metric difference maps (∆ReHo and ∆DC) were created, by 
subtracting a participant’s preseason metric map from their 
postseason metric map (ex. postReHo − preReHo = �ReHo).

Mass‑univariate analyses

Individual metric post-pre difference maps for subjects 
within a group were merged into 4D images using the 
Oxford Centre for Functional MRI of the Brain (FMRIB) 
Software Library’s (FSL) fslmerge command (Jenkinson 
et al. 2012). In order to identify voxel clusters of statisti-
cally significant metric change over the course of the sea-
son, a permutation-based one-sample two-tailed t-test was 
performed with FSL’s randomise (v5.0, 5000 permutations) 
(Winkler et al. 2014) using threshold-free cluster enhance-
ment (TFCE) (Smith et al. 2009).

Multivariate analyses

Linear support vector machine (SVM) classification was 
chosen as the multivariate analysis method (Mourão-
Miranda et al. 2005; Orrù et al. 2012). Classifier training 
and testing was implemented using Pattern Recognition 
for Neuroimaging Toolbox (PRoNTo v2.0) (Schrouff et al. 
2013b). A linear kernel was used to avoid overtraining due 
to the high dimensionality of the data set (thousands of vox-
els) with relatively few examples (participants) (Braun et al. 
2008; Müller et al. 2001; Vapnik 2000). A paired version 

Fig. 1  Analysis framework. At each time point (Preseason and Post-
season), regional homogeneity (ReHo) and degree centrality (DC) 
metrics are calculated for each participant’s preprocessed rs-fMRI 
data, resulting in ReHo and DC values for each grey matter voxel. To 
control for variability between subjects, metric difference maps (Δ 

Metric) are created by subtracting the participants’ preseason metric 
map from their postseason metric map. Then the metric difference 
maps are analyzed using mass-univariate (general linear model) and 
multivariate (support vector machine) analyses, resulting in group 
t-statistic and SVM weight maps
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of the SVM was implemented for each group and metric 
to distinguish between the participants’ metric difference 
maps and its opposite (Sripada et al. 2013). This involved 
training a classifier to differentiate between a group’s metric 
difference map (ex. CF postseason ReHo minus CF presea-
son ReHo = CF ∆ReHo) and its opposite (ex. CF preseason 
ReHo minus CF postseason ReHo = CF –∆ReHo), for a total 
of six separate classifiers (CF ReHo, CF DC, OS ReHo, OS 
DC, MC ReHo, and MC DC). A paired SVM is analogous 
to a paired t-test, in which the mean of a subject’s two obser-
vations is subtracted from their values, except in this case 
the postseason minus preseason (and vice versa) difference 
maps account for the longitudinal nature of the data rather 
than subtracting the mean of the two time points. The paired 
nature of the SVM ensures that each subject’s two metric 
maps (ex. ∆ReHo and -∆ReHo) end up on opposite sides 
of the classification decision line. This feature of the paired 
SVM results in equivalent class accuracy and total accuracy 
for each particular group and metric. Sripada et al. (2013) 
demonstrates application of paired SVM to BOLD fMRI 
data with detailed description of the underlying method and 
theory. As a supplemental analysis, an unpaired SVM was 
implemented to compare the preseason and postseason met-
ric maps between each group. The SVM classifier is trained 
through leave-one-out cross-validation (LOOCV) on all but 
one subject’s difference maps and then the classifier is tested 
on the left-out subject. LOOCV is a method to train with 
the maximum number of examples without testing the clas-
sifier on a subject on which the classifier was trained. Each 
LOOCV iteration results in a weight map, this weight map 
is multiplied by the difference map being classified and then 
summed to get a single classifier value that indicates the 
predicted class. Further weight map analyses used the aver-
age weight map among all LOOCV iterations. For permu-
tation testing, the classification labels were permuted 5000 
times to determine the statistical strength of the classifier’s 
accuracy, with a significance level of p < 0.05 (Golland and 
Fischl 2003; Pereira et al. 2009; Schrouff et al. 2013b).

Ranking distance comparison of brain regions

Ranking distance is a measure of correspondence between 
any two rankings that consist of the same items (Lempel 
and Moran 2005), in this case brain regions. Schrouff et al. 
(2013a) used a very similar measure to compare the cor-
respondence between SVM weight maps (Schrouff et al. 
2013a). Unthresholded t-statistic and SVM weight maps 
were divided into 66 regions using the DKT atlas. The 
regions were ranked according to each region’s average 
t-statistic or SVM weight values, resulting in a t-statistic 
region  (TROI) ranking and SVM weight region  (WROI) 
ranking for each group and metric. The correspondence 
between the TROI and WROI rankings for a particular group 

and functional connectivity metric was calculated using a 
measure of distance: 

where 

with RD(TROI,  WROI) as the distance between the  TROI and 
 WROI rankings, and n as the number of ROI (66). The rank-
ing distance values range from 0 (identical rankings) to 1 
(exactly opposite rankings) (Schrouff et al. 2013a). If the 
rankings have low ranking distance values, it indicates the 
mass-univariate and multivariate analyses are converging on 
similar underlying trends in the data. Statistical significance 
of the ranking was determined by randomly shuffling the 
rankings for 5000 permutations and identifying how many 
random permutations had a lower ranking distance than the 
actual rankings. The ranking distance was also calculated for 
 WROI rankings from ReHo and DC analyses in the college 
football cohort, to determine if the two functional connectiv-
ity metrics are experiencing similar spatial trends.

College football metric difference maps

To visualize and compare college football’s longitudinal 
trends related to subconcussion with Meier, Bellgowan, and 
Mayer’s (2016) findings in concussion, we created a region 
average brain map where group mean ∆ReHo and ∆DC val-
ues were averaged over each region in the DKT atlas.

Results

Head movement analyses

MC had more movement at postseason compared to presea-
son for both translation (p = 0.002) and rotation (p = 0.018). 
MC also had lower translation (p = 0.003) and rotation 
(p = 0.011) than OS at preseason, and MC had lower trans-
lation (p = 0.027) but not rotation (p = 0.569) than CF at 
preseason. There were no significant differences for CF or 
OS between time points for either translation or rotation 
(p > 0.05). There were no differences in either translation 
or rotation between CF and OS at preseason, or between 
any groups at postseason (p > 0.05). Means and standard 

RD
(

TROI ,WROI

)

=
2

n ∗ (n − 1)

n
∑

i=1

n
∑

j=1

I(TROI ,WROI)(i, j)

if TROI(i) < TROI(j) and WROI(i) > WROI(j), then

I(TROI ,WROI)(i, j) = 1

else

I(TROI ,WROI)(i, j) = 0
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deviations for each group and time point are presented in 
Supplemental Table S2.

Mass‑univariate analyses

For the TFCE voxel-wise analyses testing for spatially 
homogeneous preseason to postseason differences in ReHo 
and DC, a nine-voxel cluster of increased ReHo was found 
in the posterior superior temporal sulcus for college foot-
ball players (TFCE corrected p = 0.033) (Supplemental Fig-
ure S1). Additionally, a two-voxel cluster of increased ReHo 
was found in the left superior parietal lobule for the male 
control group (TFCE corrected p = 0.040). No other group 
or metric had significant findings.

Multivariate analyses

For the paired SVM classifier trained with a linear kernel 
using LOOCV, only one metric and group produced a statis-
tically significant accuracy. CF had a significant class accu-
racy for ReHo (87%, p = 0.009) (Fig. 2a, c), but OS and MC 

did not (50%, p = 0.617, 62%, p = 0.102). CF did not have 
significant class accuracy for DC (73%, p = 0.084) (Fig. 2b, 
d), OS and MC were also not significantly accurate (OS: 
57%, p = 0.317; MC: 55%, p = 0.311) (Table 1). Due to the 
paired t-test design, class accuracy and total accuracy are 
equivalent for each comparison. Results from multivariate 
analyses directly comparing metric maps between groups at 

Fig. 2  SVM classification 
for college football. College 
football’s SVM classification 
confusion matrix for ReHo (a) 
and DC (b) depict the num-
ber of correct and incorrect 
predictions for each class (ex. 
ΔReHo vs -ΔReHo). The SVM 
prediction plot for ReHo (c) 
and DC (d) shows result of the 
SVM decision function for each 
participant. Dotted line at zero 
represents the decision thresh-
old which is zero-centered by 
the paired nature of the SVM. 
Closed black squares repre-
sent metric difference maps 
(ex. ΔReHo) and open circles 
represent their opposite (ex. 
-ΔReHo). ReHo regional homo-
geneity, DC degree centrality

Table 1  Support vector machine classification accuracy for ReHo 
and DC difference maps

CF college football, OS other sports (soccer and lacrosse), MC male 
controls, ReHo regional homogeneity, DC degree centrality

Metric Group Class accuracy Total accuracy P-value

ReHo CF 86.67% 86.67% 0.009
OS 50.00% 50.00% 0.617
MC 62.07% 62.07% 0.102

DC CF 73.33% 73.33% 0.084
OS 57.14% 57.14% 0.317
MC 55.17% 55.17% 0.311
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preseason and postseason time points are presented in Sup-
plemental Tables S3 and S4, for ReHo and DC respectively. 
All reported p-values in this section are the result of 5000 
permutation tests for that comparison.

Ranking distance between weight maps 
and t‑statistic maps

While SVM weight maps are not considered to be spatially 
interpretable, spatial information is a key component of 
t-statistic maps output from mass-univariate analyses. Rank-
ing distance is a way to test if the spatial information of an 

SVM weight map is similar to the spatial information of 
the corresponding t-statistic map, and low ranking distances 
would indicate that these mass-univariate and multivariate 
approaches are converging upon similar underlying effects in 
the data. In comparing the region rankings for SVM weight 
map and t-statistic values for ReHo, all groups had statis-
tically significant low ranking distances (CF: RD = 0.120, 
p < 0.001; OS: RD = 0.145, p < 0.001; MC: RD = 0.122, 
p < 0.001). All groups also had statistically significant 
low ranking distances for DC (CF: RD = 0.073, p < 0.001; 
OS: RD = 0.142, p < 0.001; MC: RD = 0.089, p < 0.001) 
(Table 2). These ranking distance values were substantially 
lower than all values calculated during permutation test-
ing, indicating a very high level of correspondence between 
the t-statistic and SVM weight maps (Fig. 3). All reported 
p-values in this section are the result of 5000 permutation 
tests for that comparison.

Ranking distance between ReHo and DC weight 
maps

While the SVM did not produce a significantly high classi-
fication accuracy for DC in college football, there appeared 
to be a trend towards significance. To determine if this trend 
in DC exhibited a similar spatial pattern as CF’s effects in 
ReHo, SVM weight maps were compared using ranking dis-
tance with 5000 iterations of permutation testing to deter-
mine significance. Ranking distance comparison between 

Table 2  Ranking distance for each group’s comparison of TROI 
and WROI rankings 

Ranking distance of 0 indicates identical rankings and 1 indicates 
opposite rankings
GLM general linear model, SVM support vector machine, CF, college 
football, OS other sports (soccer and lacrosse), MC male controls, 
ReHo regional homogeneity, DC degree centrality

Metric Group Ranking distance P-value

ReHo CF 0.120 < 0.001
OS 0.145 < 0.001
MC 0.122 < 0.001

DC CF 0.073 < 0.001
OS 0.142 < 0.001
MC 0.089 < 0.001

Fig. 3  Ranking distance results and permutation testing. Six tests 
are shown for two metrics (ReHo and DC) in three groups (CF, OS, 
and MC). Vertical lines on the left of the figure depict the calculated 
ranking distance for each of six comparisons of  TROI and  WROI rank-
ings. Curves on the right depict the distributions for each of the six 

permutation tests (5000 iterations) of ranking distance. Thick black 
vertical line (actually six superimposed vertical lines) represents the 
p < 0.05 decision lines for the six permutation tests. CF college foot-
ball, OS other sports(soccer and lacrosse), MC male controls, ReHo 
regional homogeneity, DC degree centrality
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college football’s ReHo and DC  WROI rankings resulted in 
a significantly low ranking distance of 0.398 (p = 0.007).

College football metric difference maps

In college football among the 66 regions in the DKT atlas, the 
five most increased regions for ReHo are (in order) the left 
pericalcarine cortex, right lingual gyrus, left lingual gyrus, 
right pericalcarine cortex, and left postcentral gyrus. The five 
most decreased regions for ReHo are the right rostral anterior 
cingulate, left caudal anterior cingulate, right pars triangula-
ris, left rostral anterior cingulate, and left pars orbitalis (Sup-
plemental Table S5). The five most increased regions for DC 
are the right parahippocampal gyrus, right entorhinal cortex, 
left temporal pole, right fusiform gyrus, and left parahip-
pocampal gyrus. The five most decreased regions for DC are 
the right pars triangularis, right rostral middle frontal gyrus, 
right supramarginal gyrus, right inferior parietal gyrus, and 
left caudal anterior cingulate (Supplemental Table S6).

Discussion

This study used a combination of mass-univariate and multi-
variate analyses applied to rs-fMRI data to investigate effects 
of subconcussion on metrics thought to represent local (ReHo) 
and global (DC) functional connectivity. Mass-univariate 
analyses found minimal changes (9 voxels of increased ReHo 
for CF and 2 voxels of increased ReHo for MC), and the paired 
SVM found significantly high class accuracy for preseason-
to-postseason ReHo changes in only the college football 
players (87%, p = 0.009). At a superficial level, this finding 
agrees with prior studies of ReHo in concussion (Meier et al. 
2016; Zhan et al. 2015), although direct comparison to these 
prior results is limited by the nature of the spatial information 
resulting from SVM analyses. However, our ranking distance 
finding of significant correspondence between the t-statistic 
maps and SVM weight maps for all six statistical tests sup-
ports the ideas that: (1) these disparate mass-univariate and 
multivariate analyses are converging upon similar underlying 
effects and (2) meaningful spatial information may exist in 
the SVM weight maps. An exploratory comparison of the raw 
∆ReHo maps against published ReHo results in concussion 
further supports the idea that changes in functional brain con-
nectivity related to subconcussion may reflect a milder version 
of what occurs after a clinical concussion.

Comparing mass‑univariate and multivariate 
analyses

While mass-univariate analyses were only able to detect 
small changes in ReHo for CF and MC, paired SVM 

classification demonstrated highly significant classification 
accuracy for CF’s ReHo difference maps (p = 0.009). High 
accuracy of the SVM indicates that college football play-
ers’ local functional connectivity changed over the course 
of a single season. The fact that the multivariate analysis, 
which can use information from across the brain, was able to 
detect a change that was only minimally detectable for mass-
univariate analyses agrees with the hypothesis that changes 
affected by subconcussion are spatially heterogeneous across 
subjects and/or spatially distributed within subjects. Mass-
univariate analyses in this study only identified a very small 
region of effect, whereas SVM detected changes were more 
robust in response to concussion, suggesting that subconcus-
sion may produce similarly distributed but subtler effects 
than concussion.

Comparing SVM weight maps and mass‑univariate 
t‑statistic maps

Results from a paired SVM alone cannot identify the direc-
tionality of changes (i.e. increased or decreased ReHo), nor 
can they identify which regions are responsible for driving 
any changes (Sripada et al. 2013). However, results from the 
ranking distance analyses showed that the mass-univariate 
analyses and paired SVM classification have a remarkable 
level of spatial correspondence. Every comparison between 
t-statistic and SVM weight region rankings resulted in a 
ranking distance that was substantially lower than the low-
est value calculated in permutation testing (Fig. 3). It is sur-
prising that these maps have such a high level of agreement, 
as they use mathematically dissimilar processes to produce 
their results. While voxel-wise analyses ostensibly treat the 
effects in each voxel independently, the SVM classifier is 
trained to weight a number of spatially distributed voxels to 
discriminate between the two groups. The resulting SVM 
weight maps are not generally considered to be spatially 
interpretable (Haufe et al. 2014), but the high spatial corre-
spondence with the t-statistic maps suggests that meaningful 
spatial information may be contained in the weight maps.

Similarity to findings in concussion

Zhan et al. (2015) measured ReHo in patients diagnosed 
with a mild traumatic brain injury (mTBI) a few days after 
injury and compared them to matched controls. Patients 
with mTBI, compared to the control group, had lower ReHo 
values in the left insula, left precentral (PrG) and postcen-
tral gyri (PoG), and the supramarginal gyrus (SMG) (Zhan 
et al. 2015). Meier et al. (2016) measured DC and ReHo at 
multiple time points after athletes had sustained a sports-
related concussion (SRC) (mean days after injury: T1 = 1.7, 
T2 = 8.4, T3 = 32.4) and compared those measures to those 
found in a healthy athlete (HA) control group. Similar to our 

Brain Imaging and Behavior (2018) 12:1332 1345– 1339 



data, they found no changes in DC at any time point relative 
to the athlete control group. At one-month post injury (T3) 
concussed athletes, compared to the HA control group, had 
increased ReHo at the bilateral postcentral gyri (PoG), left 
paracentral lobule (PCL), right lingual gyrus (LgG), right 
fusiform gyrus (FuG), right superior temporal gyrus (STG), 
right middle temporal gyrus (MTG), and the right supple-
mentary motor area (SMA), and decreased ReHo in the right 
middle frontal gyrus (MFG), right superior frontal gyrus 
(SFG), and superior medial frontal gyrus (SMFG) (Meier 
et al. 2016).

Similar to the published results from Zhan et al. (2015) 
and Meier et al. (2016) the region average brain map (Fig. 4) 
indicated increased ReHo in bilateral PoG, right LgG, right 
FuG, right STG, and decreased ReHo in left insula and 
SMG, and right superior and medial frontal gyri (Supple-
mental Table S5). In the DKT atlas, the SMA and SMFG 

are included in the superior frontal gyrus, preventing direct 
comparison to those regions in which Meier et al. showed 
increases and decreases, respectively. The only direct con-
tradictions are with Meier et al.’s increases in the right MTG 
and left PCL, and Zhan et al.’s decreases in the left PrG and 
PoG. Furthermore, while CF’s significant 9 voxel cluster of 
increased ReHo was in the left superior temporal sulcus, a 
region not indicated in the previous studies, increased ReHo 
was found in the right STG and MTG in Meier et al. (2016).

Across the published findings for ReHo in concussion, 
our trends matched 9 of 13 previously published region 
findings, with agreement in two additional regions unable 
to be determined. If the effects of concussion are spatially 
heterogeneous as indicated by heterogeneity in concus-
sion’s clinical presentation (Rosenbaum and Lipton 2012), 
then Zhan et al. and Meier et al.’s voxel-wise analyses may 
only be detecting a subset of the changes occurring in their 

Fig. 4  Absolute changes in 
ReHo and DC for college 
football players. Longitudinal 
changes for college football’s 
ReHo and DC metrics were 
averaged over each region  
in the DKT atlas. Trends are 
depicted with warm colors 
depicting increases and cool 
colors depicting decreases. In 
preprocessing functional connec-
tivity metric were Z transformed, 
therefore values indicate  
preseason-topostseason changes 
in the Z value. ReHo regional 
homogeneity, DC degree  
centrality
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participants. The areas of change found in their studies may 
be more susceptible to head impacts than other regions, but 
different populations may result in different findings. In this 
study of subconcussion, the spatial heterogeneity combined 
with subtler effects result in only small significant clusters 
from voxel-wise analysis, but the underlying spatial trends 
in football seem to agree remarkably well with the published 
findings in concussion. The lack of significant findings in 
college soccer and lacrosse athletes does not necessarily 
confirm that there are no functional connectivity changes 
in these athletes, but only that if there are similar changes 
they are more subtle than those occurring in college football.

ReHo and DC comparison

Low ranking distance in comparing CF’s ReHo and DC 
rankings suggest that the effects for ReHo and DC may be 
similar, although the SVM classifier does not reach a sig-
nificance for CF’s DC difference maps (p = 0.084). Increased 
local connectivity could result in a modest increase in global 
connectivity, or some other physiological change in these 
regions could independently cause changes in these two 
metrics. Resting-state measures of functional connectivity 
are sensitive to a large number of underlying physiological 
changes in the brain. Previous research in mTBI, concussion, 
and subconcussion suggests several possible injury mecha-
nisms that could be responsible for changes in ReHo and DC 
metrics, including glial activation and chronic inflammation 
(Shultz et al. 2012), and cytoskeletal disruption in neural 
axons and somas (Hemphill et al. 2011; Longhi et al. 2005).

In concussed athletes, a disruption in the functional con-
nectivity of the default mode network has been associated with 
increased cerebrovascular reactivity (CVR) – a measure of 
how cerebral blood flow increases in response to a stimulus 
(Militana et al. 2015). Svaldi et al. (2016) found that CVR was 
decreased in high school girls’ soccer, and those players who 
experienced greater subconcussive impact load were more 
affected (Svaldi et al. 2016). While any of the proposed mech-
anisms could play a role in subconcussion’s effect on ReHo, 
CVR has the most direct pathway to affect fMRI-measured 
functional connectivity, and has already been shown affected by 
subconcussive head impacts. Furthermore, the lack of a strong 
effect in global functional connectivity suggests that damage to 
long-range white matter tracts may not be the primary mecha-
nism of subconcussive injury, as global functional connectivity 
should be theoretically more sensitive to white matter damage 
than local connectivity.

Limitations

Several factors related to our participant groups may 
affect the generalizability of our findings. First, the athlete 

populations in this study are small and are all from the 
same Division I university. The college football sample was 
especially small due to our removal of athletes with lim-
ited head impact, diagnosed concussion during the season, 
and excess head movement during scanning; making the CF 
group (n = 15) roughly half the sample size of the OS and 
MC groups (n = 28 and n = 29, respectively). Second, previ-
ous research in football has shown that head impact can be 
affected by player position (Baugh et al. 2014), offensive 
style (Martini et al. 2013), or practice types (Reynolds et al. 
2016), all of which could be different at other universities 
or teams. Differences may also exist at lower levels of col-
legiate competition or for other levels of play (youth, adult 
amateur, and professional). Youth athletes tend to experience 
less severe subconcussive head impacts but may be more 
susceptible to their effects (Daniel et al. 2012). While our 
subset of athletes represents a wide variety of player posi-
tions, it may not offer an accurate cross-section of the entire 
team. Third, head motion during MRI scanning did differ 
between the two time points for MC, and also between MC 
and the other two groups at the preseason scan. While head 
motion can create false positives in functional connectivity 
comparisons, the most robust findings in our study involve 
the comparisons where no differences in head motion are 
present.

No longitudinal clinical measures were collected from 
the participants during this study, which limits the ability 
to link these functional connectivity changes to behavio-
ral changes. Recent research has suggested that subcon-
cussive head impacts can cause vestibular dysfunction 
(Kawata et al. 2016), disruption of the ocular-motor sys-
tem (Hwang et al. 2016), and impaired processing speed 
and reaction time (Tsushima et al. 2016). If the local con-
nectivity changes correlated with a specific behavioral 
change in our football players, then we might conclude 
that the connectivity changes are the neural cause of the 
behavioral changes. Whereas, if there was no correlation 
between the local connectivity changes and behavioral 
measures, then we may identify the connectivity changes 
as having a subclinical effect. While correlating the local 
connectivity changes to clinical metrics would be valu-
able, the importance of these changes in local functional 
connectivity is not negated by the absence of such a 
correlation.

To control for differences between a collegiate athlete 
population and a non-athlete population, such as higher 
cardiorespiratory fitness (Voss et al. 2016), we collected 
data from athletes in lower impact sports like soccer and 
lacrosse (Reynolds et al. 2017). However, it is possible 
that the athlete groups still differed in their cardiovascular 
training during their respective seasons, affecting group 
comparisons of functional connectivity. Other differences 
could also exist between CF and OS/MC groups that may 
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be responsible for the differential longitudinal changes 
in the groups. Some factors that could be different and 
were not collected or controlled for between our two group 
samples, and which could affect functional connectivity, 
include: caffeine use (Rack-Gomer et  al. 2009; Wong 
et al. 2014), alcohol use (Chanraud et al. 2011), cannabis 
use (Cheng et al. 2014), wakefulness during the rs-fMRI 
scan (Stoffers et al. 2015), and prescription medications 
(Sripada et al. 2013). Given the longitudinal nature of the 
study, these uncontrolled confounds would need to have 
changed between preseason and postseason time points to 
produce the demonstrated effects.

While these alternative factors cannot be entirely 
excluded as explanations for these effects, the authors 
believe that correspondence with ReHo changes in concus-
sion support subconcussive head impacts as the most likely 
cause of these effects.

Conclusions

This study demonstrates how mass-univariate analyses 
and paired SVM classification of rs-fMRI data can be 
combined to provide insight on the effect of subconcus-
sion on functional brain connectivity. The results of com-
bining these techniques suggest the effects of subcon-
cussion may be on the same spectrum as sports-related 
concussion but with a smaller magnitude of change. 
While American football was the high-impact sport under 
study, it is unlikely to be the only sport in which these 
subconcussive effects occur; other high-impact sports like 
ice hockey, rugby, and combat sports may also result in 
similar effects. Further research will be needed to deter-
mine the quantity and severity of subconcussive expo-
sure needed to produce these functional connectivity 
disruptions by biomechanically measuring head impact 
and acquiring longitudinal rs-fMRI in the same cohort. 
Furthermore, the neurophysiological underpinnings of 
these changes should be studied by acquiring multiple 
MRI modalities in the same cohort, and comparing their 
effects across modalities.
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