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Abstract Recently, a growing body of studies have dem-
onstrated the simultaneous existence of diverse brain ac-
tivities, e.g., task-evoked dominant response activities, de-
layed response activities and intrinsic brain activities, un-
der specific task conditions. However, current dominant
task-based functional magnetic resonance imaging
(tfMRI) analysis approach, i.e., the general linear model
(GLM), might have difficulty in discovering those diverse
and concurrent brain responses sufficiently. This
subtraction-based model-driven approach focuses on the
brain activities evoked directly from the task paradigm,
thus likely overlooks other possible concurrent brain ac-
tivities evoked during the information processing. To deal
with this problem, in this paper, we propose a novel hy-
brid framework, called extendable supervised dictionary
learning (E-SDL), to explore diverse and concurrent brain
activities under task conditions. A critical difference be-
tween E-SDL framework and previous methods is that we
systematically extend the basic task paradigm regressor
into meaningful regressor groups to account for possible
regressor variation during the information processing

procedure in the brain. Applications of the proposed
framework on five independent and publicly available
tfMRI datasets from human connectome project (HCP)
simultaneously revealed more meaningful group-wise
consistent task-evoked networks and common intrinsic
connectivity networks (ICNs). These results demonstrate
the advantage of the proposed framework in identifying
the diversity of concurrent brain activities in tfMRI
datasets.

Keywords Task fMRI . Hybrid framework . Dictionary
learning . Sparse representation

Introduction

Over the past 20 years, the development of functional
magnetic resonance imaging (fMRI) technology has great-
ly advanced neuroimaging research and attracted signifi-
cant interest in the human brain mapping field.
Specifically, task-based fMRI has been widely employed
to identify activated brain regions during a specific task
performance and greatly advances the understanding of
the brain’s functional locations and interactions
(Bullmore and Sporns 2009; Karl J. Friston 2009;
Logothetis 2008). Recently, a growing body of studies
have reported the clues of diverse brain activities that
exist simultaneously under specific task conditions
(Michael D Fox et al. 2005; He 2013; Buxton et al.
2004). For example, Fox and the colleagues identified
both task-related activations and deactivations under
attention-demanding cognitive tasks (Michael D Fox
et al. 2005); He (He 2013) investigated the interaction
between task-evoked and spontaneous brain response ac-
tivities; Lv and his colleagues (Lv et al. 2015b) reported
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concurrent task evoked and intrinsic (resting state) net-
works in specific task conditions; Buxton observed differ-
ent delayed response patterns in tasks (Buxton et al.
2004). However, the current dominant task-based fMRI
analysis approach, the general linear model (GLM), is still
limited in detecting those diverse and concurrent brain
responses sufficiently. Firstly, the premise of GLM (and
other subtraction-based methods) relies on that task-
evoked brain regions could be discovered by subtracting
the activity from a control condition (K. J. Friston et al.
1994; Mastrovito 2013). In order to increase the signal-to-
noise ratio (Mastrovito 2013; M. D. Fox and Raichle
2007), experimental and control trials are performed sev-
eral times and signals are smoothed as a common practice.
Such an approach enhances the task-evoked dominant re-
sponse through averaging (M. D. Fox and Raichle 2007),
however, largely overlooks the diversity of concurrent
brain activities such as delayed task-evoked responses
and intrinsic brain activities. Another potential limitation
is that GLM assumes that the brain activities will follow
the basic task paradigm regressor (which is derived from
the convolution result of task paradigm and hemodynamic
response function) and doesn’t account for the possible
variation during information processing and thus the hy-
pothesized regressors in the design matrix could be limit-
ed (Logothetis and Wandell 2004; Logothetis 2008) as
well. Furthermore, there is no explicit activity patterns
for intrinsic networks. Therefore, the conventional GLM
method is likely insufficient in recovering diverse and
concurrent brain responses during a specific task
performance.

In contrast with these model-driven methods, a variety
of data-driven approaches have been proposed to explore
the intrinsic brain activities, including principal compo-
nent analysis (PCA) (Andersen et al. 1999; Viviani et al.
2005), independent component analysis (ICA) (Mckeown
et al. 1998; Biswal and Ulmer 1999), and sparse coding
and dictionary learning based methods (Eavani et al.
2012; Abolghasemi et al. 2015; Jiang et al. 2015, 2016;
Lv et al. 2015b; Lv et al. 2015a). Specifically, sparse
representation and dictionary learning based methods
(Lee et al. 2011; Abolghasemi et al. 2015; Eavani et al.
2012) have attracted increasing attention, as these
methods are based on the biological findings that sparsity
is more effective than independence in determining neural
activity (Olshausen and Field 1996; Quiroga et al. 2005;
Quiroga et al. 2008; Daubechies and Haxby 2009).
Olshausen (Olshausen and Field 1996) discovered that a
coding strategy of maximizing sparseness sufficiently ac-
counts for the response properties of visual neurons.
Similarly, Quiroga and his colleagues (Quiroga et al.
2008; Quiroga et al. 2005) showed that a subset of medial
temporal lobe (MTL) neurons selectively and sparsely

activated to different stimuli. These findings suggest that
sparsity may be a potential principle in brain activity,
which is quite consistent with the rationale of dictionary
learning and sparse representation algorithms (Mairal
et al. 2010; Wright et al. 2010) in the machine learning
field. An important characteristic of these data-driven
methods is that they do not require any prior hypothesized
neuronal activity pattern or prior knowledge about the
paradigm, and thus can be applied to resting state fMRI
(Greicius et al. 2003; Fransson 2005) data analysis. That
is, data-driven methods can be used to detect those intrin-
sic networks which do not have a predefined task para-
digm. However, the popularity of purely data-driven methods
is limited in tfMRI due to the lack of ability to incorporate task
paradigm information into the algorithm (Calhoun et al. 2005;
Zhao et al. 2015). Typically, studies in (Jiang et al. 2015)
adopted the task paradigm as a reference to select the compo-
nents of interest after the algorithmic procedure. Such
methods, though useful, do not utilize the task paradigm in-
formation directly during the algorithmic procedure.

In order to combine the advantages of both strategies, a
few researchers have proposed hybrid methods to incor-
porate prior information directly into the algorithmic pro-
cedure (Calhoun et al. 2005; Zhao et al. 2015).
Incorporating prior information into algorithmic proce-
dure has several potential advantages. First, components
with constrained time course could be compared directly
across subjects because the predefined task-related time
series provide natural correspondence. Such comparisons
are currently achieved by manual sorting and combined in
data-driven methods (Calhoun et al. 2001). Secondly, the
prior task paradigm information has been proven to be
useful in determining task-evoked brain activities in
model-driven methods and can guide the algorithmic pro-
cedure, thus possibly preventing data-driven components
from converging to local minimum. However, a great
challenge in current hybrid methods is how to sufficiently
utilize the valuable prior task paradigm information for
guiding the brain network identification. Similar to cur-
rent model-driven methods, previous hybrid studies only
adopted the basic task paradigm regressors (Calhoun et al.
2005; Zhao et al. 2015) which didn’t account for the pos-
sible variation of regressors, thus potentially limiting the
task-evoked network detection power. To date, most
tfMRI researches have focused on the estimation of the
shapes of hemodynamic response functions (HRFs)
(Glover 1999; Woolrich et al. 2004; Lindquist et al.
2007; Liao et al. 2002) across different subjects and dif-
ferent tasks by assuming that the generated regressor is
time-invariant and does not change across experiment
time courses (Marrelec et al. 2003; Lindquist et al.
2009; Kalus et al. 2015; Chen et al. 2015). Actually, these
studies implied the assumption that all of the brain voxels
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are evoked directly by the same stimulus pattern, which
may limit the interpretation of neural activities. Indeed,
many studies have reported hierarchical structure in visual
information processing (Felleman and Van Essen 1991;
Van Essen et al. 1992; Vinckier et al. 2007) which sug-
gests that not all of the brain voxels are evoked by the
stimulus pattern directly. Instead, there is a possibility that
apart from the dominant brain response activity, the neural
activity propagation process may also evoke some concur-
rent brain activities at the same time. To alleviate these
problems, in this paper, we propose a novel extendable
supervised dictionary learning (E-SDL) hybrid framework
to explore the diverse concurrent brain networks in tfMRI
data. Compared with previous methods, there are two ma-
jor contributions in this work. First, we propose to ac-
count for the regressor variations in task-evoked network
identification. Our rationale is that the brain activity pat-
terns are not only directly evoked by the stimulus patterns
but also by the variations. Second, we add a regressor
extension module to systematically estimate the possible
neural regressors evoked by specific task stimulus and
develop a uniform network identification framework for
tfMRI. Specifically, we introduce the transformation op-
erators to extend the possible regressor variation. In this
way, the possible regressor variations caused by the neural
activity propagation process are carefully taken into con-
sideration and thus form a more general activation detec-
tion framework for tfMRI study. By applying the pro-
posed E-SDL framework on publicly available task
fMRI dataset of Human Connectom Project (HCP)
(Glasser et al. 2013), highly correlated voxel signals with
systematically extended regressors were observed and
more group-wise consistent and diverse task-related brain
networks as well as intrinsic connectivity networks
(ICNs) were systematically identified, which demonstrates
the superiority of the proposed framework in exploring
diverse and concurrent brain activities under specific task
performance.

Materials and methods

Overview

Figure. 1 summarizes the computational pipeline of ex-
tendable supervised dictionary learning framework.
Firstly, the basic task paradigm regressor is systematically
extended into regressor groups (Fig. 1a) which will be
detailed in the following section. Secondly, the whole
brain signals of voxels are aggregated into a big signal
matrix S (Fig. 1b). After that, we adopt and modify the
codes in the online dictionary learning package (Mairal
et al. 2010) and alter the dictionary learning procedure

to learn an over-completed and hybrid dictionary D and
corresponding coefficient matrix A (Fig. 1c). Specifically,
the extended regressor group is fixed in the dictionary as
Dc (orange part in Fig. 1c) during the dictionary learning
procedure and the other part Dl (green part in Fig. 1c) and
the coefficient matrix A are iteratively learned from fMRI
signals. Each column of D represents a temporal pattern
of a specific brain response network and its corresponding
coefficient vector in A represents the spatial distribution
of this network. Finally, we map each vector in A back
into the brain volume space to obtain the spatial distribu-
tion of each network (Fig. 1d).

Dataset and preprocessing

In this paper, we adopt five independent and publicly available
tfMRI datasets from the Human Connectome Project (HCP)
Q1 release (Barch et al. 2013; Van Essen et al. 2013) to test the
proposed framework. Specifically, the five datasets are emo-
tion, gambling, language, relational, and social task fMRI
datasets. HCP employs a broad battery of tasks to identify as
many core functional Bnodes^ as possible in healthy adult
brains and provides these data publicly available for biomed-
ical research community (Van Essen et al. 2013; Barch et al.
2013). These functional ‘nodes’ relate to structural and func-
tional connectivity as well as behavior measurements.
Currently, the HCP tfMRI dataset provides one of the most
high-quality and publicly available data source for the analysis
of brain function, structure and connectivity over a large pop-
ulation of subjects. The detailed designs of these task para-
digms are available in (Barch et al. 2013). In the Q1 release of
HCP tfMRI datasets, 68 subjects are available (Van Essen
et al. 2013). Therefore, our experiments are based on these
68 subjects in each task dataset.

These HCP tfMRI datasets were acquired at 3 T Siemens
Skyra and the detailed acquisition parameters of tfMRI data
we r e s e t a s f o l l ow s : 2 2 0 mm FOV, i n - p l a n e
FOV = 208 × 180 mm, flipangle = 52, BW = 2290 Hz/Px,
2 × 2 × 2 mm spatial resolution, 90 × 104 matrix, 72 slices,
TR = 0.72 s, TE = 33.1 ms. The preprocessing pipeline in-
cludes skull removal, motion correction, slice time correction,
spatial smoothing, and global drift removal (high-pass filter-
ing). All of these steps were implemented by FSL FEAT. For
more detailed data acquisition protocol and preprocessing pro-
cedures, please refer to literatures (Van Essen et al. 2013;
Barch et al. 2013). For comparison, the GLM-based activation
results are derived using FSL FEAT both individually and
group-wisely.

Regressor extension

In typical activation detection studies, the hypothetical
brain responses (regressors) are modeled as the
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convolution of the stimulus function and a hemodynamic
response funct ion (HRF), as shown in Fig. 2a.
Specifically, these studies are based on the assumption
that all the brain voxels are evoked directly by the same
stimulus pattern, which is limited in interpreting neural
activities. However, many researchers have reported hier-
archical structure in brain’s neural information processing
(Felleman and Van Essen 1991; Vinckier et al. 2007; Van
Essen et al. 1992), which suggests that the neuro activity
may change with the neural activity propagation.
Motivated by these studies, in this paper, we propose a
novel regressor extension method based on the idea that
the variety of brain responses may be caused by the trans-
formation of dominant brain response pattern. As shown

in Fig. 2b, the critical difference with previous methods is
that we systematically extend the basic task paradigm re-
gressor into a regressor group to account for possible re-
gressor variations. The hypothesized regressor generating
procedure could be modeled as follows:

r0 tð Þ ¼ h tð Þ*s tð Þ ð1Þ

where r0(t) is the basic task paradigm regressor which
represents the dominant brain response pattern. r0(t) is
the convolution result of s(t) and h(t). Specifically, s(t)
is the stimulus pattern, and h(t) is the hemodynamic re-
sponse function.

Fig. 2 The pipeline of modeling
hypothesized regressors. a
Traditional methods; b Our
method

Fig. 1 The computational pipeline of extendable supervised dictionary
learning framework (E-SDL). a Regressor extension. The basic task
paradigm regressor is systematically extended into regressor groups to
account for possible variation. b FMRI signal matrix extraction. For
each subject, the whole brain signals of voxels are aggregated into a
signal matrix. c Supervised dictionary learning. The extended regressor

group (fixed as Dc) is kept constant during the dictionary learning
procedure. d Mapping the coefficient matrix back into brain volume
space. Each row in coefficient matrix A is mapped back into brain
volume space. T-network represents generalized task-evoked network
and I-network represents intrinsic network
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r tð Þ¼ r0 tð Þ;r1 tð Þ;…;ri tð Þ½ � ð2Þ

ri tð Þ ¼ F r0 tð Þð Þ ð3Þ

where r(t) is the extended regressor groups and ri(t) represents
the extended regressor with different operations.

Specifically, we first adopt Gamma function to model the
hemodynamic response function of the basic task paradigm,
which has been demonstrated powerful in both theory and
practice (Boynton et al. 1996; Karl J Friston et al. 1998;
Hossein-Zadeh et al. 2003). Then we systematically extend
the basic task paradigm regressor with derivative, integral,
delay and anti (inversed) operations. Our rationale behind
the selection of these operations are twofold. First, these
operations are well-recognized signal transformation forms
in traditional signal processing community and have been
proven in many studies (Richard 2003; Scali and Rachid
1998). In addition, neuroscience researchers have also ob-
served parts of BOLD signals that are similar to these trans-
formations of the task paradigm regressors (Buxton et al.
2004; Valdes-Sosa et al. 2009; Ritter et al. 2009).
However, the basic task paradigm regressor has not been
systematically extended in previous studies, as far as we
know. Concretely, we first expand the regressor into its de-
rivative and integral forms (Yellow and blue patterns of the
second row in Fig. 1a). After that, we transfer the three
regressors into three corresponding groups of regressors with
different delay times and adopted anti (inversed) operation
to the extended regressor groups. Finally, the basic task par-
adigms are systematically extended into regressor groups
(the third row in Fig. 1a). Since the regressors in this study
are extended in a systematic fashion, it may better represent
the brain response patterns and provide valuable information
in detecting task-evoked diverse brain activities. An impor-
tant point to be noticed here is that the sparse coding and
dictionary learning based method (Mairal et al. 2010) does
not require the dictionary basis vectors to be orthogonal,
thus allowing more flexibility to construct the hypothetical
regressors and the regressor basis may be further extended
with the increasing knowledge of mechanisms about neural
response patterns.

Extendable supervised dictionary learning and sparse
representation

In this paper, we propose an extendable supervised dic-
tionary learning and sparse representation framework to
explore diverse and concurrent brain activities under task
conditions. While traditional methods assume that brain
activities are evoked by the same original stimulus, E-

SDL accounts for the possible neural activity propagation
effects through a regressor extension procedure. Given a
whole brain tfMRI signal matrix Sϵℝt × n and the basic
task paradigm regressor, where t is the number of fMRI
time points and n represents the tfMRI signals from n
voxels, E-SDL aims to extend the basic task paradigm
regressor into regressor series and represent each signal
in S with a sparse linear combination of atoms in an over-
completed and hybrid dictionary basis D (Fig. 1c), i.e.,
=D × αi and S = D × A, where A =(α1 , α2 , … . αn) is
the coefficient matrix. Specifically,

D ¼ Dc;Dl½ �ϵℝt�k ; Dcϵℝ
t�kc ; Dlϵℝ

t�kl ð4Þ

where Dc is the extended regressor series which will be
fixed in dictionary learning procedure and Dl is the
learned dictionary atoms from signal matrix S. kc is the
fixed atom number in D and kl is the learned dictionary
atom number in D, respectively. In E-SDL, the empirical
cost function could be modeled as the averaging loss of
regression of n signals.

f n Dð Þ≜ 1

n
∑
n

i¼1
ℓ si; Dc;Dl½ �ð Þ ð5Þ

where the loss function ℓ(si, [Dc,Dl]) is the reconstruction
error of sparse representation of the signals. In order to
yield a sparse representation, we add a ℓ1 constrain as
λ∣|αi|1 , 1 . Here λ is a regularization parameter which
defines the regression residual and sparsity level.

ℓ si; Dc;Dl½ �ð Þ≜ 1

2
j si− Dc;Dl½ �αij j22 þ λj αij j1 ð6Þ

In order to prevent D from arbitrary value, we add con-
strains as follows,

C≜ Dϵℝt�k s:t: ∀ j ¼ 1;…k; dTj d j≤1
n o

ð7Þ

min
DϵC;Aϵℝk�n

1

2
j S− Dc;Dl½ �Aj j22 þ λj Aj j1;1 ð8Þ

Thus the whole problem can be solved as a matrix factori-
zation problem in Eq. (8). In order to solve this problem, we
modify the codes in the online dictionary learning package
(Mairal et al. 2010) and form the extendable supervised dictio-
nary learning framework in this paper. The E-SDL framework
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provides an effective way to learn a hybrid dictionary and co-
efficient matrix which is summarized as Alg.1. In E-SDL, the
convergence condition in our implementation is that the
difference between Dt−1 and Dt is small enough and Dt is

no longer updated. In our implementation, the dictionary
size k and the time point satisfy k ≪ n and t ≪ n, which will
guarantee the convergence of the training procedure
(Mairal et al. 2010).

Identification of brain networks.

With the preserved index information, each row vector in
coefficient matrix A could be mapped back into the brain
volume space as shown in Fig. 1d, representing the spa-
tial distribution of corresponding dictionary column.
Since part of D is fixed in the dictionary learning proce-
dure, A is naturally divided into generalized task-evoked
brain networks Ac corresponding to Dc and data-driven
networks Al corresponding to Dl. With the help of fixed
task regressor basis Dc, it is straightforward to map all
the generalized task-evoked brain networks from Ac for
each subject in each task data. After that, we extensively
inspect all the generalized task-evoked networks and ex-
amine the group-wise consistency of each network. In
this way, those consistent activation networks across

subjects are identified as meaningful generalized task-
evoked networks.

On the other hand, these data-driven networks are learned
in an unsupervised way from individual subjects. It is hard to
group-wisely interpret these networks from Al. Here, a spatial
matching method is thus adopted to compare the similarity
between the data-driven networks in Al and the well-
established intrinsic connectivity network (ICNs) templates
in the literature (Smith et al. 2009) to detect intrinsic connec-
tivity networks. The spatial similarity is defined as:

R X ; Tð Þ ¼ X∩Tj j
Tj j ð9Þ

where X is the learned spatial network from Al and T is the
ICN template.

Algorithm 1 Extendable supervised dictionary learning and sparse coding framework
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Results

In this study, the proposed E-SDL framework has been tested
on five independent and publicly available tfMRI datasets
from the HCP Q1 release (Barch et al. 2013; Van Essen
et al. 2013). The five datasets are emotion, gambling, lan-
guage, relational, and social task datasets. For each task, both
subtler group-wise consistent task-evoked brain networks as
well as intrinsic connectivity networks were simultaneously
identified with the proposed extendable supervised dictionary
learning framework. In the following parts, the analysis of
extended regressors and reconstruction error, as well as the
identified task-evoked and intrinsic networks, are detailed.

Analysis of extended Regressors

In E-SDL framework, we systematically extend the basic
task paradigm regressor into regressor groups with delay,
derivative, integral and anti (inverse) operations, which
are the most common transformation in signal propaga-
tion. Specifically, we first extend it with derivative, inte-
gral operations and then further extend them with 7 dif-
ferent delay time of 3 s difference. Afterwards, we extend
these regressors with anti (inverse) operation. Therefore,
we totally obtain 42 regressors for each basic task para-
digm regressor. Here, we take emotion task dataset as an
example. Fig. 3 shows the extended regressor group from
one randomly selected subject in emotion task. Regressor
1–7 are the extended task paradigm regressors with dif-
ferent delay times. While the second column shows the
extended regressors with derivative operation and differ-
ent delay times, the third column shows the extended re-
gressors with integral operation and different delay time.
Columns 4–6 are the extended regressors from the left
three columns with inverse operation. Thus the basic task
paradigm regressor is systematically extended into regres-
sor groups to account for possible regressor variation. In
conventional model-driven methods (GLM), the basic
idea to identify task-evoked network is to use multiple
linear regression algorithm to search for voxels correlated
with the hypothesized regressor (Grinband et al. 2008).
Therefore, a meaningful hypothesized regressor should
possess high correlation with part of the voxel signals in
the brain. To examine the extended regressors, we calcu-
lated the Pearson correlation between the hypothesized
regressors and the voxel signals in real fMRI data.
Fig. 4 shows the extended regressors and their correlated
voxel numbers from one randomly selected subject from
the HCP emotion task. In our current experiment, if the
Pearson correlation coefficient between the regressor and
voxel signal pattern is over 0.50, the voxel is considered
as a correlated voxel. It is interesting to see that a few
hypothesized regressors show relatively large number of

correlated voxel numbers, which suggests that these ex-
tended regressors are highly correlated with brain activity
patterns. More detailed quantitative measurement is avail-
able in Supplemental Table 1. These highly related voxels
in fMRI data suggest that it is reasonable to systematically
extend regressors in such a fashion.

Analysis of reconstruction error

In order to examine the performance of sparse represen-
tation of fMRI signals, we first calculated the Pearson
correlation coefficients between the original signals and
the reconstructed signals by E-SDL and GLM. Fig. 5 il-
lustrates the Pearson correlation coefficients between the
reconstructed signals and the original fMRI signals from
one randomly selected subject from emotion task by dif-
ferent methods. From Fig. 5, it is easy to see that the
reconstructed signals by E-SDL and the original signals
are highly correlated and most of the Pearson correlation
coefficients are higher than 0.90, which is much larger
than the reconstructed signals by GLM. The detailed
quantitative measurements of the reconstruction errors
and Pearson correlation coefficients across all subjects
and all tasks are listed in Supplemental Table 2. Besides,
we adopted the reconstruction error as Eq. (10) to charac-
terize the reconstruction error and the detailed measure-
ment is also listed in Supplemental Table 2.

error ¼ 1

n
j S−S
���

���
2

2
ð10Þ

In comparison, we also calculated the residual error and
Pearson correlation coefficients between the reconstructed
signals and original signals across all subjects and tasks by
GLM and the detailed quantitative results are listed in
Supplemental Table 3. By comparing Supplemental Table 2
and Supplemental Table 3, it is easy to see that the reconstruct-
ed signals by E-SDL are much better than GLM in terms of
Pearson correlation coefficients, which suggests E-SDL is bet-
ter at representing the original fMRI signals.

In order to examine whether the good reconstruction result
is caused by overfitting, we further conducted an experiment.
Our basic idea is to utilize parts of the fMRI signals to train
dictionaries to avoid overfitting. Specifically, we extracted a
half and a quarter of the original signals with uniform sam-
pling and then utilized these signals to train a dictionary basis
and reconstructed the original fMRI signals. It is interesting to
see that the original fMRI signals can be well reconstructed
from both of the trained dictionary basis. Similar to Fig. 5, the
experiment result is provided in Supplemental Fig. 5. This
experiment demonstrated that the good reconstruction result
is not an overfitting result.
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Identified group-wise consistent diverse and concurrent
brain responses

Since the basic task paradigm regressor has been extended in a
systematically way, E-SDL is able to detect subtler and

meaningful generalized task-evoked brain response activities,
as well as intrinsic connectivity networks. Here, we also take
emotion task dataset as an example. After extendable super-
vised dictionary learning and brain network identification pro-
cedure defined in Section ‘Identification of Brain Networks’,

Fig. 3 Systematically extended regressors of one randomly selected subject in emotion task. Each column is the extended regressors of a regressor
extension operation and each row represents a different delay time

Fig. 4 Examples of the extended regressors and correlated voxel number from one randomly selected subject in the HCP emotion task. The horizontal
coordinate axis represents the extended regressor index and the vertical coordinate axis represents the correlated voxel number
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we identified and confirmed nine generalized task-evoked net-
works (Fig. 6a) and nine intrinsic connectivity networks
(Fig. 6b) in emotion task as shown in Fig. 6. For each identi-
fied task-evoked network, the corresponding extended regres-
sor as well as the extended regressor number are also shown in
the upper row. Interestingly, these identified networks are
quite consistent across the whole population. Fig. 7 shows
the identified generalized task-evoked networks from 10 ran-
domly selected subjects in emotion task and Fig. 8 illustrates
the identified intrinsic connectivity networks from 5 randomly
selected subjects in emotion task. From Figs. 7 and 8, it is
evident that the identified diverse and concurrent networks
are reasonable consistent across subjects in emotion task
dataset.

Similarly, we applied the same procedure on the gambling,
language, relational and social task fMRI datasets.
Specifically, we identified 8, 10, 9 and 9 generalized and
group-wise consistent task-evoked networks for gambling,
language, relational and social task fMRI datasets, which are
shown Supplemental Figs. 1a and b and nine group-wise con-
sistent intrinsic connectivity networks which are shown in
Supplemental Fig. 2. In Supplemental Fig. 1, each identified
network represents the group-wise activation map of the cor-
responding extended regressor, and in Supplemental Fig. 2
each identified ICN represents the group-average intrinsic
connectivity activation map. For comparison purpose, the cor-
responding intrinsic connectivity network templates (Smith
et al. 2009) are listed in the first column.

In summary, the identified generalized task-evoked net-
works with the extended regressors have reasonable similar
and consistent shapes across subjects in emotion task dataset,
which has been shown in Fig. 6 and similar results have also
been observed in gambling, language, relational and social
task fMRI datasets as shown in Supplemental Fig. 1, which
suggests E-SDL framework is capable of identifying subtle
and diverse brain response under task conditions. At the same
time, consistent intrinsic networks could also be identified
across subjects (Fig. 8) and different tasks (Supplemental
Fig. 2), indicating E-SDL framework could also identify

intrinsic networks at the same time. Therefore, we conclude
that E-SDL is efficient in exploring diverse and concurrent
hemodynamic brain responses.

Comparison with GLM

We further compared the identified activation maps by GLM
and corresponding generalized task-evoked networks by E-
SDL (Supplemental Fig. 3). As shown in Supplemental
Fig. 3, for each task, the upper row is the GLM activation
map and the lower row is the corresponding networks identi-
fied by E-SDL. From Supplemental Fig. 3, we can see that the
corresponding networks are quite consistent with GLM acti-
vation maps in both individual level and group level. More
detailed quantitative measurements for each task are in
Supplemental Table 4 and Supplemental Table 5. We adopted
the spatial overlap rate defined in Eq. (9) to characterize the
similarity between the GLM activation maps and correspond-
ing networks in E-SDL. While Supplemental Table 4 de-
scribes the spatial overlap rates between the GLM activation
maps and corresponding networks in E-SDL in individual
level. Supplemental Table 5 characterizes the spatial overlap
rate between group-wise activation maps in each task. From
both spatial maps and quantitative measurements, it is inter-
esting to see that the corresponding activation maps in E-SDL
are quite consistent with GLM activation results, which indi-
cates E-SDL identified networks includes the GLM activation
detection results. However, E-SDL is more powerful in iden-
tifying diverse and concurrent brain activities under task
conditions.

Comparison with ICN templates

We have also identified nine intrinsic networks across all sub-
jects and tasks. Specifically, ICNs #1-#3 correspond to medi-
al, occipital pole and lateral visual areas at visual cortex. ICN
#4 includes ventromedial frontal cortex, bilateral inferior-
lateral-parietal and medial parietal areas, which is known as
Bdefault mode network^. ICN #5 corresponds to action-

Fig. 5 Illustration of the
performance in reconstructing the
fMRI signals by different
methods. a The Pearson
correlation coefficients between
the reconstructed signals by E-
SDL and the original signals. b
The Pearson correlation
coefficients between the
reconstructed signals by GLM
and the original signals
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execution functions, including sensorimotor cortex, supple-
mentary motor area and secondary somatosensory cortex
areas. ICN#6 is known as the auditory network including pos-
terior insular, Heschl’s gyrus and superior temporal gyrus.
ICN#7 includes anterior cingulate and paracingulate areas.
ICNs #8 and #9 cover the middle frontal and orbital areas.
More details are referred to (Smith et al . 2009).
Supplemental Fig. 2 illustrates the identified group-wise in-
trinsic connectivity networks across different tasks.
Supplemental Table 6 provides the spatial overlap rates be-
tween the identified ICNs and corresponding templates in
across individual subjects in each task and Supplemental
Table 7 provides the spatial overlap rates between the identi-
fied group-wise ICN networks and corresponding templates.
We can see that the identified intrinsic connectivity networks

are quite consistent across different subjects and tasks from
both spatial patterns and quantitative measurements. Our re-
sults demonstrated that E-SDL framework is capable of de-
tecting meaningful intrinsic networks as well as task-evoked
networks at the same time.

Reproducibility study and parameter effect

In dictionary learning studies, the dictionary size k and the
sparsity level constraint coefficient λ are two important pa-
rameters to the model. In order to verify the effect of different
parameters to E-SDL framework, we adopted a variety of
combinations of dictionary size k and sparsity level constraint
coefficient λ. Specifically, we first fixed the dictionary size k
as 400 and alternate λ from 0.1 to 1.5, and then we fixed the λ

Fig. 6 Identified group-wise consistent brain activation networks by E-SDL framework from one randomly selected subject in emotion task. a Extended
regressors and corresponding spatial patterns of identified generalized task-evoked networks. b Identified nine ICNs
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as 0.3 and alternate k from 100 to 800. The identified func-
tional networks based on different parameter combinations of
one randomly selected subject were visualized in
Supplemental Fig. 4. The detailed quantitative measurements
of spatial overlap rates of identified networks between

different parameter combinations in the experiment are pro-
vided in Supplemental Table 8.

From Supplemental Fig. 4a-d, we can see that with fixed
dictionary size, the identified task-evoked networks keep rel-
atively stable in a range of λ settings (0.1 ≤ λ ≤ 0.7). And

Fig. 7 Examples of identified generalized task-evoked networks in emotion task. Each column shows one extended regressor and corresponding task-
evoked networks in ten randomly selected subjects
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Fig. 8 Examples of identified ICNs in emotion task. Each row shows the ICN template, group-wise ICN network across all subjects and the
corresponding ICN network in five randomly selected subjects
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similarly, with a fixed λ, the identified task-evoked networks
also keep stable in a range of dictionary size settings (200 ≤
k ≤ 500). Besides, the identified intrinsic networks illustrate
similar result (Supplemental Fig. 4e-f). From these results
and Supplemental Table 8, we can see that although there is
a slight spatial variation, the overall spatial patterns reasonably
remain consistent and stable in a range of parameter settings.
These results demonstrated that our proposedmethod is repro-
ducible and robust in identifying both task-evoked networks
and intrinsic networks in a range of parameter combinations,
and the framework is not very sensitive to parameter settings.

We also noticed that if the dictionary size k and sparsity level
constraint coefficient λ continuously increase, the identified
network components become more and more sparse. This sug-
gests large sparsity level constraint coefficient λ and dictionary
size k will improve the sparsity level of identified brain net-
works. However, it is still an unsolved problem to optimize
these two parameters simultaneously. Based on our current
knowledge, when the sparsity level constraint coefficient λ is
less than 1 and the dictionary size k is between two and three
times of time point number, the identified networks are usually
reasonably good. Besides, the criterion of consistency of the
reconstructed networks across different subjects is also adopted
in previous studies (Jiang et al. 2015; Lv et al. 2015a).

Discussion and conclusion

In this paper, we proposed a novel hybrid task fMRI data
analysis framework, named extendable supervised dictionary
learning (E-SDL), to systematically identify and characterize
diverse and concurrent hemodynamic brain response under
specific task performances. A critical difference between our
proposed framework and previous studies is that we system-
atically extended the basic task paradigm regressor into mean-
ingful regressor groups (as shown in Fig. 3) to account for the
possible regressor variations during information spreading in
brain responses to stimulus. Our hypothesis is that the ob-
served brain response activities to specific task performance
are evoked not only by the original stimulus patterns but also
by its variations which may be generated with the information
flow in the brain. Our results have demonstrated that part of
the systematically extended regressors have quite similar pat-
terns with part of the real voxel signal patterns (as shown in
Fig. 4). In addition, it is interesting to see that part of the
extended regressors have quite consistent and steady spatial
patterns across different subjects and tasks. All these results
indicate that our hypothesis may be more powerful in identi-
fying generalized task-evoked brain response. Furthermore, as
demonstrated in results section (Figs. 6 and 7 and
Supplemental Fig. 1), E-SDL also has the ability to identify
intrinsic connectivity networks (Fig. 8 and Supplemental
Fig. 2) simultaneously, which suggests that our proposed

framework may serve as a general frame work to identify
diverse and concurrent hemodynamic brain responses under
specific task performance.

Compared with current dominant tfMRI data analysis
method general linear model (GLM), E-SDL has demonstrat-
ed several advantages: (1) more generalized and subtle task-
evoked brain networks could be identified. Benefited from the
systematically extended regressors and the nature of sparse
coding and dictionary learning methods that do not require
the dictionary basis vectors to be orthogonal, we could not
only identify dominant brain responses (GLM activation
maps) but also other concurrent task-related networks with
extended regressors simultaneously, which are shown in
Fig. 7 and Supplemental Fig. 1; (2) better representation of
the original tfMRI signals. As shown in Fig. 5, Supplemental
Tables 2 and 3, E-SDL reconstructed the original signals with
less reconstruction errors and much higher Pearson correlation
coefficients, which suggest our framework may better repre-
sent the original signals; (3) the ability to identify intrinsic
brain networks. As demonstrated in results section (Fig. 8
and Supplemental Fig. 2), E-SDL could identify consistent
and meaningful intrinsic brain networks reported in (Smith
et al. 2009); (4) Better robustness may be achieved. Since
our systematically extended regressor naturally accounts for
the possible regressor variations like different delay times,
derivative form, and integral form, E-SDL has been shown
to bemore robust in detecting task-evoked networks, especial-
ly when the given basic task paradigm is not accurate. In
summary, E-SDL offers a general and reliable framework to
identify diverse and concurrent brain activities under specific
task conditions.

In this paper, we have focused on evaluating the systemat-
ically extended regressors and identifying diverse and concur-
rent networks under specific task conditions and the experi-
ments have demonstrated the superiority over current tfMRI
data analysis methods. However, the study could be further
enhanced in following aspects in the future. First of all, with
the research of neural hemodynamic mechanic studies, more
advanced regressor extension methods could be developed
and more accurate regressors could be integrated into the pro-
posed extendable supervised dictionary learning framework.
Second, brain structure information should be integrated into
future enhanced framework. Brain structure provides valuable
information about the brain function nodes and response pat-
terns, thus may further improve the activation detection re-
sults. Third, more advanced machine learning methods should
be adopted in the future. Recently, deep learning methods
have achieved amazing results in a variety of fields including
saliency detection (Zhang et al. 2017; Zhang et al. 2016) and
remote sensing imaging analysis (Yao et al. 2016; Cheng et al.
2016). However, the deep learning based methods in fMRI
analysis especially network detection field is still limited and
this may further improve the result.
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In summary, we have proposed a novel hybrid framework
to identify diverse and concurrent brain hemodynamic re-
sponse patterns. With the proposed framework, subtler and
concurrent task-evoked networks as well as intrinsic connec-
tivity networks were identified, which demonstrates the supe-
riority of our framework over current dominant tfMRI data
analysis method. Motivated by these promising results, we
plan to apply the proposed framework to more task fMRI
datasets to further validate it and reveal the mechanics of brain
responses under specific task conditions. In addition, we will
apply it to brain disorder datasets such as Alzheimer’s dis-
ease and Schizophrenia to assess the possible alterations of
functional interactions between different response networks
in the future.
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